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Abstract

We assess the impact of the flow profile shape on acoustic propagation in a two-dimensional duct within the
typical operating range of impedance eduction facilities. Firstly, a numerical experiment is proposed in which
the Pridmore–Brown equation is assumed to represent the true physical behaviour, and is used with both
simplified flow profiles commonly used in the literature and a realistic representation of a turbulent boundary
layer using a van Driest universal law of the wall model. The data from these numerical experiments are
then used with a traditional impedance eduction process, and the resulting variation in obtained impedances
are investigated. Secondly, we apply a less-traditional impedance eduction method that incorporates the
sheared velocity profile to data obtained from real-world experiments. The results suggest that the Ingard–
Myers boundary condition remains a good approximation to a realistic boundary layer profile, such as the
universal law of the wall, at least in the two-dimensional case. However, it is also shown that the simplified
flow profiles often used in the literature can lead to significant deviations from the results obtained using a
realistic velocity distribution.
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1. Introduction

Acoustic liners are acoustic treatments applied to the walls of aircraft turbofan engine nacelles to mitigate
fan noise. The simplest and most typical liner construction consists of a honeycomb structure with a hard
backplate and a perforated facesheet [1]. An acoustic liner is typically characterised by its locally-reacting
acoustic impedance, Z̃(ω) = θ + iχ, where θ is the resistance and χ is the reactance. This frequency-
dependent parameter can be used as a boundary condition in simulations of aircraft engine noise, avoiding
the still prohibitive computational cost of explicitly modelling an acoustic liner.

The impedance of an acoustic liner is known to depend on its geometry [2], as well as on operational
conditions such as the grazing flow velocity and profile [3], and the incident Sound Pressure Level (SPL) [4].
Therefore, for proper liner characterisation, experiments must replicate the conditions inside a turbofan
engine. For the experimental characterisation of acoustic liners with grazing flow, the early in-situ technique
(or Dean’s method) [5] and impedance eduction methods [6–8] are commonly used. While the in-situ
technique provides a local value of the liner impedance, impedance eduction techniques give an averaged
impedance as seen by the acoustic field and is experimentally much simpler than the in-situ technique.
As a result, impedance eduction has been preferred by the academic community [e.g. 9, 10]. Impedance
eduction methods rely on an acoustic propagation model in ducts, inferring the impedance from the model
by best fitting the model results to the experimental data. Uniform flow and the Ingard–Myers boundary
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condition are the most common modelling assumptions. However, recent findings have sparked academic
debate regarding the application of such assumptions.

One of the fundamental issues recently observed is that the educed impedance depends on the wave prop-
agation direction relative to the mean flow, which constitutes a violation of the locally reacting hypothesis.
This behaviour has been systematically captured by different laboratory facilities using both inverse and
direct methods, as summarised by Bodén et al. [11]. Renou and Aurégan [12] were the first to demonstrate
such discrepancies and attributed them to a failure of the Ingard–Myers boundary condition. Since then,
other studies have suggested that an additional degree of freedom is necessary to fully characterise acoustic
liners in the presence of flow, such as a thin boundary layer [13], shear stress at the wall [14, 15], or viscos-
ity [16]. In general, this additional degree of freedom is fitted to experimental data in a way that removes
the impedance dependence on the propagation direction. However, the proposed experimental procedures
would yield this result for any additional degree of freedom, irrespective of its physical meaning. Spillere
et al. [17] subsequently proposed an experimental routine to evaluate the accuracy of these novel boundary
conditions. Results obtained suggested that none of the boundary conditions currently available in the liter-
ature are capable of correctly predicting the acoustic wavenumber beyond the data they were fitted to. In a
different approach, Nark et al. [18] found that by multiplying the mean flow velocity by a fitting coefficient,
it is possible to reduce the discrepancy between the upstream and downstream propagation direction educed
impedances, but differences remain.

Another line of research involves substituting the traditional uniform flow hypothesis with a shear flow
profile. Despite the three-dimensional nature of internal flows, most authors consider a two-dimensional
representation of the computational domain, which implies a one-dimensional flow profile [15, 19–21]. Weng
et al. [15] investigated the effect of the uniform flow hypothesis by performing impedance eduction with
the Linearised Navier–Stokes Equations (LNSE) under sheared mean flow, which therefore also includes
the effect of viscosity. Results suggest that including viscous effects and one-dimensional sheared velocity
profiles is not sufficient to collapse the upstream and downstream educed curves. More recently, Yang et al.
[21] conducted an extensive parametric study on the impact of the uniform flow assumption compared to
sheared velocity profiles. Test data were numerically synthesised using the Linearised Euler Equations,
with varying boundary layer thicknesses and flow velocities. They found that the influence of sheared flow
becomes more significant for large Helmholtz numbers. It was concluded that the uniform mean flow is a
valid approximation for small ducts at low frequencies, which is the case for most experimental facilities.

A notable exception to the trend of simplifying the 3D nature of ducts to a 2D problem is the work
of Roncen et al. [22]. They proposed a numerical experiment in which the solution of the acoustic field
using the uniform flow hypothesis (the Convected Helmholtz Equation, CHE) was compared to the solu-
tions of the Linearised Euler Equations (LEE), which considered both one-dimensional and two-dimensional
flow profiles. Results from this numerically synthesised experiment suggest significant differences in the
wavenumbers obtained for the eigenvalue problem of each case. Furthermore, it was found that the uniform
flow hypothesis, combined with the Ingard–Myers boundary condition, introduces a bias error that follows
the same trend observed in the upstream-downstream discrepancy. The authors subsequently performed
a numerical impedance eduction, using the wavenumbers computed for the 2D flow profile as input, but
applying the 1D flow profile in the impedance calculation routine. Although earlier work by Jing et al.
[20] suggests that simplifying the 2D flow profile to a 1D flow profile requires re-scaling the bulk Mach
number, Roncen et al. [22] did not correct the flow profile in their numerical eduction routine, arguing that
this is common practice. The results of their analysis suggest that the experimentally observed upstream-
downstream mismatch may be caused by the bias error introduced when simplifying the 2D flow profile.
The authors also examined the impact of using the 2D-LEE solver in impedance eduction. They concluded
that at low frequencies, the mismatch is quantitatively similar whether considering the two-dimensional
flow profile or a uniform flow. However, at higher frequencies, the 2D-LEE eduction cancels most of the
impedance mismatch, akin to observations made by Nark et al. [18], through the adjustment of the Mach
number. Another observation from their analysis is that in the case of 2D-LEE eduction, the mismatch
trend at lower frequencies is opposite to that observed with the traditional uniform flow eduction approach.

A common practice in the studies mentioned above is the use of simplified formulations for the shared
boundary layer shape. Since the early work of Nayfeh et al. [23], it has been widely accepted that the acoustic
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Figure 1: Schematic duct and coordinates system assumed in this work.

field is not significantly impacted by the actual flow profile, provided that the boundary layer displacement
thickness remains the same. This conclusion was drawn by analysing the acoustic attenuation across a
two-dimensional lined duct, which is directly proportional to the imaginary component of the wavenumber.
However, this observation was valid only for downstream propagation. For upstream propagation, their
results suggest that acoustic attenuation (and therefore the wavenumbers) also depends on the flow shape
factor. Jing et al. [20] analysed the effect of the flow profile on acoustic impedance eduction with sheared
flow, but in their study only downstream propagation was considered, and in this case, good agreement was
found by matching the average Mach number and the boundary layer displacement thickness.

To the best of the authors’ knowledge, there are no reports in the literature on the influence of the
boundary layer shape on impedance eduction when considering sheared flow with different propagation
directions and realistic flow profiles. This effect may help explain if the assumption of a uniform flow has
a role in the current debate regarding the upstream and downstream discrepancy debate. We propose
investigating realistic turbulent boundary layer profiles to compare them with the simpler formulations
commonly used in the literature, examining how the small divergences in wavenumbers reported by Nayfeh
et al. [23] affect the educed impedance. The key difference here compared with early contribution from
Nayfeh et al. [23] is the consideration of duct geometries and frequency ranges typical of impedance eduction
facilities. On the other hand, as opposed to the more recent studies, we propose to consider a realistic
representation of the turbulent boundary layer, namely, the universal law of the wall.

A numerical experiment approach is proposed. The solution of the Pridmore–Brown equation [24] is
assumed as the exact solution for the acoustic field propagating over a sheared mean flow, from which the
axial wavenumbers in an infinite two-dimensional duct are obtained. These wavenumbers are then used
in the traditional straightforward impedance eduction routine [7], assuming uniform flow and the Ingard–
Myers boundary condition. In addition, a parametric study is conducted within the scope of this numerical
experiment to evaluate the impact of the test rig duct width and the average Mach number on the accuracy
of the Ingard–Myers boundary condition. Finally, we employ an iterative impedance eduction method on
experimental data, similar to the one used by Roncen et al. [22], to analyse the impact of different flow
velocity profile distributions on impedance eduction, comparing these results with the estimates provided
by the Ingard–Myers boundary condition.

This document is organised as follows. Section 2 presents the governing equations for duct acoustics with
grazing flow. Section 3 describes the flow velocity distributions considered. The setup for the numerical
experiments is detailed in Section 4. The main theoretical results are discussed in Section 5, while application
to experimental data is presented in Section 6. Finally, the primary conclusions are summarised in Section 7.

2. Governing equations

For the purpose of this study, we consider the infinite 2D duct depicted in Fig. 1. The duct cross-section
has width W . An axial flow with velocities profile u0 = U0(x)k̂ is assumed, where k̂ is the unitary vector
in z axis, which implies that the flow profile has no dependence on the axial direction. The wall located at
x = −W/2 has a locally-reacting frequency-dependent impedance Z(ω), while the other wall at x = W/2 is
acoustically rigid.
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The in-duct acoustic propagation can be described by the Pridmore-Brown Equation (PBE) [24], such
that

(iω + u0 · ∇)
(

1
c2

0
(iω + u0 · ∇)2p̃′ − ∇2p̃′

)
+ 2 ∂

∂z

(
∇p̃′ ·∇ U0

)
= 0, (1)

where p̃′ is the acoustic pressure, ω is the frequency (exp(iωt) dependence assumed), c0 the speed of sound,
i =

√
−1 the complex imaginary unity and ∇ = (∂/∂x, ∂/∂z). Given the axial invariance of the problem,

we can assume an axial modal solutions on the form p̃′(x, z) = p̃′(x) exp(−ikzz), where kz is the axial
wavenumber, so that Eq. (1) can be written as(

∇2
⊥ + ω2

c2
0

)
p̃′ − kz

(
U0

ω
∇2

⊥ − 2
ω

∇⊥U0 · ∇⊥ + 3ωU0

c2
0

)
p̃′

− k2
z

(
1 − 3U2

0
c2

0

)
p̃′ − k3

z

[
U0

ω

(
U2

0
c2

0
− 1

)]
p̃′ = 0, (2)

where ∇⊥ = (∂/∂x, 0). As boundary conditions, at rigid walls the normal acoustic velocity u′ vanishes,
such that

u′ · n̂ = 0, (3)

where n̂ is a unitary normal vector pointing into the wall. Since non-slip flows are assumed, the locally
reacting impedance boundary condition can be written as

Z = 1
ρ0c0

p̃′

u′ · n̂ , (4)

where the air characteristic impedance ρ0c0 is used as a normalisation factor and ρ0 is the air density. For
the two-dimensional duct assumed in this work, n̂ = î at x = W/2, where î is the unitary vector in x axis,
and n̂ = −̂i at x = −W/2. For later convenience, we also introduce the distance to the wall ξ = W/2 − |x|.

2.1. Eigenvalue problem
In this section, we seek to describe the governing equations as a generalized eigenvalue problem. One

can rewrite the PBE (Eq. (2)) in a discrete version as

(A0 + A1kz + A2k2
z + A3k3

z)p̃ = 0, (5)

where the Aj terms involve differentiation in x and multiplication by the frequency ω and the mean flow
U0 and its x-derivatives. In the present work, we follow a strategy similar to Boyer et al. [25], where
the problem is discretised by projecting onto a Gauss–Lobatto grid using Chebyshev polynomials as basis,
with (5) required to hold at each grid point (a pseudo-spectral method). Finally, to solve the cubic generalised
eigenvalue problem given by Eq. (5), auxiliary variables are introduced of the form p̃p = kzp̃p−1 for p > 0,
and the resulting linear eigenvalue problem is solved using the QZ algorithm [26, p. 129].

In order to apply a lined wall boundary condition to the generalised eigenvalue problem, we rewrite
Eq. (4) as

dp̃′

dx
nx + iω

c0Z
p̃′ = 0, (6)

where nx = −1 at x = −W/2. For the hard wall opposite to the liner, the corresponding boundary condition
is

dp̃′

dx
= 0. (7)

If a uniform flow is assumed, i.e. U0 ≡ Mc0 = constant, where M is the bulk (average) Mach number,
the PBE reduces to the Convected Helmholtz Equation (CHE),

∇2p̃′ +
(

k0 − iM ∂

∂z

)2
p̃′ = 0. (8)
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where k0 ≡ ω/c0 is the free-field wavenumber. For lined walls, the slip velocity at the wall is taken into
account by means of the Ingard–Myers Boundary Condition (IMBC) [27, 28], leading to

∂p̃′

∂x
= 1

ik0Z

(
ik0 + Mw

∂

∂z

)2
p̃′, (9)

where Mw is the slipping velocity at the wall, and so Mw = M for a uniform flow. For a non-slip flow,
Mw = 0, and Eq. (9) reduces to Eq. (6).

2.2. Impedance eduction
In this work, we consider the traditional straightforward wavenumber based impedance eduction first

proposed by Jing et al. [7]. Applying the IMBC (Eq. (9)) on the lined wall and Eq. (6) on the rigid walls of
the CHE solution leads to the eigenvalue problem

kx tan(kxW ) − 1
ik0Z

(ik0 − iMkz)2 = 0, (10)

where kx is the transverse wavenumber given by the dispersion relation

k2
x = (k0 − Mkz)2 − k2

z . (11)

Once the axial wavenumber is known, it is straightforward to calculate the liner impedance from Eqs. (10)
and (11).

3. Velocities profile shape functions

The simplest formulation considered in this work is the sinusoidal flow profile, as presented by Gabard
and Astley [29]. In this case,

U0(x)
c0

=

Ms sin πξ

2δs
, 0 ≤ ξ ≤ δs

Ms, ξ > δs,
(12)

where Ms is the free-stream Mach number, and δs is the boundary layer thickness.
Another commonly employed formulation in the literature is the hyperbolic tangent profile introduced

by Rienstra and Vilenski [30], which was used, for instance, by Roncen et al. [22] in their work on 2D flow
profile effects on impedance eduction. This profile is given by

U0(r)
c0

= Mc

[
tanh

(
1 − r

δt

)
+ (1 − tanh (1/δt))

(
1 + tanh (1/δt)

δt
r + (1 + r)

)
(1 − r)

]
, (13)

where Mc is the centreline Mach number, r is the radial position, and δt is a shape factor. In this work, we
use the coordinate transformation r = 2|x|/W to obtain the flow profiles in the x coordinate system.

We also aim to consider a more realistic representation of a turbulent boundary layer velocity profile.
One may express the boundary profile over a smooth wall using a universal wall law, which, according to
van Driest [31], is given by

U+ =
∫ y+

0

2

1 +
√

1 + 4κ2y+2(1 − exp(−y+/A+))2
dy+ + Π, (14)

where U+ ≡ U0/uτ is the flow profile normalised by the friction velocity uτ , κ ≈ 0.42 is the von Kármán
constant, A+ ≈ 27 is the van Driest constant, and y+ = ξuτ /ν is the distance from the wall, ξ, normalised
to viscous lengths, with ν being the air kinematic viscosity. As will be discussed later, for the small ducts
considered in this study, the boundary layer can extend the entire half-duct width. To ensure that the
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derivative of the profile is continuous at the duct centreline, we propose adding a cubic term to Eq. (14),
denoted by Π, which is given by

Π = 2

1 +
√

1 + 4κ2y+
max

2(1 − exp(−y+
max/A+))2

(y+
max − y+)

(
y+

y+
max

)2

, (15)

where y+
max = Wuτ /ν/2 is the distance from the wall to the centreline in viscous lengths. One of the simplest

formulations for the boundary layer shape is the assumption of a linear variation. However, for the purposes
of this work, the linear flow profile is not advantageous, as, although it is continuous, its first derivative is
not continuous, which compromises the convergence of the pseudospectral method used in this study [26, p.
32]. Therefore, we will not use it. Another common simplification for the flow profile shape is the inverse
power law, which provides a good approximation of a turbulent boundary layer [21, 23]. However, the inverse
power law formulation has a problem since the velocity gradient near the wall tends to infinity. One could
avoid this problem either by solving for acoustic displacement, as done by Yang et al. [21], which implies
that the gradient of the mean flow does not appear explicitly in the equation, or by adding a linear sub-layer
near the wall [e.g. 23], which would result in an additional discontinuity in the derivative. Both solutions
add complexity to this problem, and neither is as accurate as using the turbulent wall law formulation from
Eq. (14) .

4. Numerical setup

In this work, we consider a small rectangular duct, representative of traditional liner impedance eduction
facilities [9, 10, 12, 15]. Initially, we consider the dimensions of the Liner Impedance Test Rig from the
Federal University of Santa Catarina (LITR/UFSC), which has a rectangular cross-section with a width of
W = 40 mm.

For the lined wall impedance, two reference impedances are considered. First, we use the impedance
given by

ZSDOF(ω) = 2 − i
(
cot (k0h) − (0.03k0)2)

, (16)

with h = 35 mm, which is representative of a typical Single-Degree-Of-Freedom (SDOF) liner in the consid-
ered frequency range, and is shown in Figure 2a. Additionally, one of the reference impedances considered by
Roncen et al. [22] is replicated in this work. The impedance modelling the ceramic liner CT57 was digitized
for use in this study and is denoted ZCT57, as presented in Figure 2b. The typical range for impedance
eduction, from 500 to 3000 Hz, with a 50 Hz step, is used for ZSDOF, while a reduced range from 500 to
1800 Hz is used for ZCT57 due to the range of frequencies for which data is available.

For the velocity profiles, we consider the three formulations presented in Section 3. The turbulent
universal wall law, given by Eq. (14), with ν = 1.48 × 10−5 m2/s and uτ = 3.956 m s−1, is selected as the
baseline case. This corresponds to the fit of Eq. (14) to experimental data gathered at the LITR/UFSC,
allowing for the comparison of different flow profile formulations with a realistic velocity distribution in a
typical liner test rig duct. This leads to an average Mach number of M = 0.279, a boundary layer thickness
of δ99 % = 15.72 mm, and a boundary layer displacement thickness of δ∗ = 1.70 mm.

We aim to reproduce the study of Nayfeh et al. [23] in the context of impedance eduction. To do so,
we first need to find the parameters for the hyperbolic tangent and sinusoidal flow profiles that match the
same average Mach number M and boundary layer thickness δ99.9 % as the baseline case. This results in
different boundary layer displacement thicknesses δ∗ for each flow profile formulation, which is expected to
lead to different acoustic fields. The parameters obtained for both the hyperbolic tangent and sinusoidal flow
profiles are summarized in Table 1, along with the resulting δ∗ for each case. The different flow profiles are
compared to the experimental data gathered at the facility in Figure 3, where the derivative of the velocity
distribution is also presented.

Next, we consider the case where the different velocity distributions share the same average Mach number
and boundary layer displacement thickness δ∗. The parameters obtained for both the hyperbolic tangent
and sinusoidal flow profiles under this new condition are summarized in Table 2, along with the resulting
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Figure 2: Reference impedances for numerical experiments. (a) SDOF-like; (b) digitalization of CT57 from Roncen et al. [22].

Table 1: Resulting parameters for velocities profile formulations fit to baseline case average Mach number and δ99 %. Baseline
case corresponds to universal wall law with ν = 1.48 × 10−5 m2/s and uτ = 3.956 m s−1.

Velocities Profile Adjusted Parameters Resulting δ∗ δ99 %
Hyperbolic Tangent Mc = 0.363 δt = 0.3546 4.66 mm 15.72 mm

Sinusoidal Ms = 0.406 δs = 17.3 mm 6.28 mm 15.72 mm

δ99 %. The resulting flow profiles are once again compared to the experimental data in Figure 4.
The number of points in the computational domain used for the pseudospectral solver was determined

based on the critical case, which, for this study, corresponds to the universal wall law due to its high gradient
near the walls.

5. Theoretical results and discussion

5.1. Effects of flow profiles on axial wavenumbers
First, we examine the wavenumbers obtained from the Pridmore–Brown equation for different velocity

profile shapes, all with the same boundary layer thickness, δ99 %, and average Mach number M . These results
are compared with the wavenumbers derived from the Convected Helmholtz equation with the Ingard–
Myers boundary condition, which models the refraction at the boundary layer considering the average Mach
number. For brevity, we focus initially on the case of ZSDOF. The wavenumbers for the least attenuated
mode, for both upstream (k−

z ) and downstream (k+
z ) propagation are presented in Figure 5. Results suggest

good agreement between all considered velocity profiles and the predictions from the CHE-IMBC for the real

Table 2: Resulting parameters for velocities profile formulations fit to baseline case average Mach number and δ∗. Baseline
case corresponds to universal wall law with ν = 1.48 × 10−5 m2/s and uτ = 3.75 m s−1.

Velocities Profile Adjusted Parameters Resulting δ99 % δ∗

Hyperbolic Tangent Mc = 0.305 δt = 0.1227 6.50 mm 1.70 mm
Sinusoidal Ms = 0.305 δs = 4.7 mm 4.26 mm 1.70 mm

7



0.0 0.2 0.4 0.6 0.8 1.0

2ξ/W

0.0

0.1

0.2

0.3

0.4

M

(a)

10−5 10−4 10−3 10−2 10−1 100

2ξ/W

0.0

0.1

0.2

0.3

0.4

M

(b)

Wall Law

Hyperbolic Tangent

Sine

Experimental

10−5 10−4 10−3 10−2 10−1 100

2ξ/W

0

500

1000

1500

2000

2500

3000

∂
M
/
∂
x

(c)

Figure 3: Flow velocities profiles in linear (a) and logarithmic (b) scales, and velocity gradients (c) considered in the first step
of this work. Hyperbolic tangent and sinusoidal flow profiles are best fitted to match the bulk Mach number and boundary
layer thickness of the law of the wall.

component of the wavenumber in both propagation directions. However, for the imaginary component of
the wavenumber, which corresponds to the attenuation rate, significant differences are observed between the
wavenumbers obtained for the hyperbolic tangent and sinusoidal flow profiles, compared to those obtained
for the more realistic distribution given by the universal wall law, particularly for upstream propagation.
On the other hand, good agreement is observed between the CHE-IMBC solution and the PBE solutions.
This suggests that the IMBC may provide a good approximation for the typical range of frequencies and
duct dimensions of impedance eduction. A possible explanation is that, due to the high gradient near the
wall, even though the velocity distribution extends nearly across the entire duct half-width, the region where
refractive effects are significant is confined to a much thinner region, making the infinitely thin hypothesis
of the IMBC more appropriate than originally suggested.

Next, we consider the case where the different velocity distributions are adjusted to match the average
Mach number and the boundary layer displacement thickness, δ∗, rather than the boundary layer thickness,
δ99 %. This approach is expected to improve the agreement between the acoustic attenuation predicted by
the different flow profiles, particularly for downstream propagation [23]. The wavenumbers for the least
attenuated mode in both upstream and downstream propagation are shown in Figures 6 and 7, for the
impedances ZSDOF and ZCT57, respectively.

As expected, a better agreement is observed for the wavenumbers obtained for the different velocity
distributions, especially for downstream propagation. However, for upstream propagation, the wavenumbers
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Figure 4: Flow velocities profiles in linear (a) and logarithmic (b) scales, and velocity gradients (c) considered in the first step
of this work. Hyperbolic tangent and sinusoidal flow profiles are best fitted to match the bulk Mach number and boundary
layer displacement thickness of the law of the wall.

for the hyperbolic tangent and sinusoidal flow profiles agree well with each other, but still diverge noticeably
from the solution for the wall law and the prediction for the CHE-IMBC. These initial results suggest
that assuming a uniform flow and compensating for the refraction within the boundary layer using the
Ingard–Myers boundary conditions provides better estimates of the acoustic field in impedance eduction
facilities under typical test conditions, compared to solving for an explicit velocity distribution that is not
representative of realistic conditions.

It is worth noting that the difference between the wavenumbers obtained for the wall law velocity distri-
bution and the estimation obtained with CHE-IMBC is notably higher at the lower frequency range for the
impedance ZCT57, as shown in Figure 7d. To investigate this, we propose analysing the error between the
estimation from the CHE-IMBC, kz,CHE, and the exact solution from the PBE, kz,PBE, defined as

error = |kz,PBE − kz,CHE|
kz,PBE

, (17)

in the complex impedance plane. We fix the frequency at 550 Hz and consider the resistance range θ ∈
[0, 5] and the reactance range χ ∈ [−5, 5]. The three flow profile formulations are considered, and the
corresponding contour plots are shown in Figure 8.

Results suggest that the error function is almost zero for the majority of the considered impedance plane,
with the notable exception of the region defined by resistances smaller than 1 and reactances between -2 and
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Figure 5: Wavenumbers obtained for the SDOF-like impedance with different velocities distributions for the same M and
δ99.9 %.

0. This region has previously been identified as a potential area where double roots for the surface modes
may occur [32], which could compromise the stability of the Ingard–Myers boundary condition [33].

5.2. Effects of flow profiles on impedance eduction
The next step, which is the main goal of this study, is to evaluate the impact of considering different flow

velocity profiles on the evaluation of the acoustic field in impedance eduction. As discussed in Section 2.2,
we use the wavenumbers obtained for the least attenuated mode, considering the different velocity profiles,
in the classical straightforward impedance eduction routine. This routine assumes uniform flow and the
Ingard–Myers boundary condition to model the slip velocity at the wall. For the sake of brevity, from this
point on, we will focus solely on the impedance ZSDOF, as it is a more representative case of typical acoustic
liners’ impedance. The impedances educed with the proposed numerical experiment using Eqs. (10) and
(11), along with the wavenumbers obtained for the different velocity profiles in the PBE, are shown in
Figure 9.

The impedances educed using the wavenumbers obtained from the solution of the hyperbolic tangent
and sinusoidal flow profiles exhibit a similar trend regarding the mismatch observed experimentally between
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Figure 6: Wavenumbers obtained for the SDOF-like impedance with different velocities distributions for the same M and δ∗.

upstream and downstream acoustic sources (downstream and upstream propagation, respectively). At lower
frequencies, the upstream source case results in a lower resistance, with the opposite trend observed at
higher frequencies. This behaviour is similar to what has been observed by Roncen et al. [22]; however,
in our case, the reference impedance is not the midpoint between the two curves. For the most realistic
flow profile, the wall law, the conclusions differ significantly. At the lower frequency end, the assumption of
uniform flow with the IMBC introduces a small bias for both acoustic source positions, with good agreement
observed between them. At higher frequencies, the curves diverge, with the upstream source (downstream
propagation) surprisingly showing a greater deviation from the reference impedance.

The results obtained so far in this work suggest that the shape of the velocity profile considered when
solving for the acoustic field in small ducts with lined walls plays a significant role. Additionally, the
Ingard–Myers boundary condition provides better estimations, when compared to the exact solution for
simplified velocity distributions. However, a single duct geometry and a single average Mach number have
been considered. In what follows, we propose a parametric study on the duct geometry and bulk Mach
number impact in our conclusions.
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Figure 7: Wavenumbers obtained for the digitized CT57 impedance with different velocities distributions for the same M and
δ∗

5.3. Parametric study
In this section, we analyse the sensitivity of the IMBC accuracy to variations in the average Mach

number and duct width through a parametric analysis. We consider the wavenumbers obtained by solving
the PBE and the flow profile described by the universal law of the wall. Furthermore, the thickness of the
boundary layer may influence the accuracy of the Ingard–Myers boundary condition. However, since it has
been observed that the universal law of the wall formulation used in this work can extend to the entire
half-width of the duct, the boundary layer thickness in this case is a function of both the duct width and
the viscosity. To produce significant variations in δ by changing the viscosity ν, non-realistic values would
need to be considered. For this reason, we have decided not to include the boundary layer thickness as a
parameter in this parametric analysis.

First, we examine the effect of the average Mach number. The duct width is set to W = 40 mm, and the
air viscosity is ν = 1.48 m2/s. The friction velocity was adjusted to vary with the average Mach number, and
the values considered are presented in Table 3. The impedances educed for the different average velocities
are shown in Figure 10.

The results suggest that increasing the Mach number leads to higher errors in the educed impedance
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Figure 8: Contour plots of the error of assuming the Ingard–Myers boundary condition as a simplification of different velocities
profile formulations. Red "X" denote the value of the CT57 impedance at 550 Hz.

Table 3: Friction velocities uτ considered for the parametric analysis as a function of the average Mach number M for a duct
width of W = 40 mm.

M 0.20 0.25 0.30 0.40 0.50
uτ [m s−1] 2.93 3.58 4.23 5.49 6.73

when using the Ingard-–Myers boundary condition instead of solving for the exact flow profile, particularly
for the resistance. This aligns with the observations from the evaluation of the wavenumbers, where the
largest differences are noted in the imaginary component of the wavenumber. As with the resistance, the
imaginary component is related to acoustic dissipation. These findings are consistent with previous studies
reported in the literature [21].

Next, we examine the effect of the duct width—and consequently, the boundary layer thickness—on the
accuracy of the IMBC for impedance eduction. This analysis considers the typical dimensions of traditional
liner impedance eduction facilities, which typically feature duct widths smaller than 70 mm. Novel ap-
proaches, such as curved [34] and multimodal [35] duct configurations, are not considered in this study. The
average Mach number is fixed at the same value as the baseline case, M = 0.279, and the friction velocity
is adjusted for each considered duct width. The duct width values and corresponding friction velocities are
summarised in Table 4, while the educed impedances for the different cases are presented in Figure 11.

The results suggest that the accuracy of the IMBC decreases with increasing duct width, particularly
in predicting the resistive component of the impedance. For the reactance, larger errors are observed at
the higher frequency range, especially for the downstream acoustic source (upstream propagation). These
findings align with expectations, as an increase in duct width leads to a corresponding increase in the dimen-
sional boundary layer thickness. This deviates further from the infinitely thin boundary layer assumption
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Figure 9: Educed impedances obtained for the wavenumbers evaluated for the PBE considering different velocities profile
shapes with the impedance ZSDOF at the lined wall. Velocities profiles match the universal wall law with uτ = 3.95 m s−1, in
average Mach number and boundary layer displacement thickness δ∗. US - Upstream Source (downstream propagation), and;
DS - Downstream Source (upstream propagation).

Table 4: Friction velocities uτ considered for the parametric analysis as a function of the duct width W for an average Mach
number of 0.279.

W [mm] 30 40 50 60 70
uτ [m s−1] 4.06 3.95 3.87 3.81 3.76
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Figure 10: Parametric study on the effect of the average Mach number. Impedances educed with the IMBC for the wavenumbers
obtained for the exact solution of the PBE with a realistic flow profile. Solid lines: downstream acoustic source; dashed lines:
upstream acoustic source.
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Table 5: Liner samples parameters. σ - percentage of open area; h - cavity height; d - holes diameter, and; t - perforate sheet
thickness.

Parameter σ [%] h [mm] d [mm] t [mm]
Sample A 5 40 1.2 1
Sample B 12 25.4 0.835 1

of the IMBC.

6. Application to Experimental Data

Finally, we propose to extend the analysis of this study to experimental data gathered at the Liner
Impedance Test Rig of the Federal University of Santa Catarina (LITR/UFSC). The test rig’s test section
consists of modular rectangular cross-sectioned ducts measuring 40 × 100 mm2 (i.e., W = 40 mm). Quasi-
anechoic terminations at the test rig inlet and outlet minimise acoustic reflections. Eight Beyma CP-855nD
compression drivers are distributed both upstream and downstream of the liner test sample holder to generate
sound fields up to 150 dB, propagating either with or against the flow towards the liner sample.

An external compressed air system provides the flow supply, capable of sustaining a cross-section averaged
flow up to Mach 0.7. A Pitot tube located at the test rig inlet is used to control and monitor the flow
Mach number during tests. The average Mach number in the lined section is derived from the Pitot tube
measurement using a pre-calibrated factor determined through a quadrature method. The liner sample
holder has an opening for liner samples with a maximum length of 420 mm.

An array of sixteen equally spaced flush-mounted B&K DeltaTron 4944 1/4" pressure field microphones
is installed on the wall opposite the liner section for impedance eduction. The spacing between consecutive
microphones is 20 mm. In this work, half of the microphones are skipped, resulting in an effective separation
of 40 mm to reduce uncertainties in the lower attenuation range of the liner [36]. Signals are recorded
using a National Instruments PXIe-4499 data acquisition (DAQ) module at a sampling rate of 25.6 kHz.
Measurements are conducted using a harmonic excitation signal, which also serves as a reference for cross-
spectrum estimation using Welch’s method, with 30 averages of 25 600 samples and 75 % overlap. All
hardware control, signal processing, and data post-processing are performed using in-house Python3 code.

Two liner samples are employed in this study, referred to as samples A and B. Both samples are typical
single-degree-of-freedom liner constructions, each with a length of 420 mm. A summary of the relevant
parameters for both samples is presented in Table 5.

Tests were conducted under three different flow conditions: in the absence of flow (M = 0); and with
bulk Mach numbers (area-averaged) of M = 0.2 and M = 0.3. A stepped pure-tone excitation was employed
in a frequency range from 500 Hz to 3000 Hz, with increments of 100 Hz. The sound pressure level was set
to 130 dB for the plane wave amplitude propagating towards the liner, with the acoustic source positioned
either upstream or downstream (one at a time) of the liner.

We consider four cases for impedance eduction using the experimental acoustic field. First, we examine
the traditional straightforward method, which assumes that acoustic propagation is governed by the CHE
and that the Ingard–Myers boundary condition applies to the lined walls. The other three cases involve
solving the PBE while considering different flow velocity distributions. In the first of these, we assume that
the flow profile can be approximated by the universal law of the wall, Eq. (14). The friction velocity is
adjusted so that the average Mach number of the 1D profile matches the bulk Mach number of the 2D test
section. This approach follows the conclusion of Jing et al. [20], who demonstrated that, when simplifying
a 3D duct to a 2D duct, the average Mach number must remain constant.

The other two cases also solve the PBE but use a hyperbolic tangent velocity distribution. In the first
of these, the boundary layer thickness δ99 % is matched to that of the universal law of the wall. In the final
case, the boundary layer displacement thickness, δ∗, is matched instead.

For the impedance eduction considering the solution of the PBE, we follow an iterative procedure first
presented by Roncen et al. [22]. The dominant axial wavenumber of sound in the lined duct section, kz,exp, is
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Figure 12: Impedances educed for sample A. (a,b) M = 0.2; (c,d) M = 0.3. Dashed lines denote impedances educed up-
stream/downstream, and solid lines denote impedances educed downstream/upstream.

extracted from the equally spaced microphone array record using the KT algorithm, as detailed in Bonomo
et al. [36]. The eduction routine minimises a cost function defined as

F(Z) = |kz,exp − kz,PBE(Z)| , (18)

where kz,PBE is the wavenumber obtained by solving the eigenvalue problem of the PBE. To accelerate
convergence, the impedance obtained by solving the convected Helmholtz equation with the Ingard–Myers
boundary condition is used as an initial guess.

The results obtained for the four cases considered, using samples A and B, are shown in Figures 12 and
13, respectively. Greater differences between upstream and downstream educed impedances are observed
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Figure 13: Impedances educed for sample B. (a,b) M = 0.2; (c,d) M = 0.3. Dashed lines denote impedances educed up-
stream/downstream, and solid lines denote impedances educed downstream/upstream.

with sample A, which exhibits stronger non-linear behaviour with respect to flow effects. However, the
conclusions regarding the impact of assuming different 1D flow velocity distributions are consistent for
both liners and can be summarised as follows. The differences in the educed resistances for the different
velocity profiles are larger compared to the differences in the reactances, aligning with observations from
the numerical experiment. Greater differences are also noted with increasing Mach number.

Additionally, the impact of assuming different flow profiles is more pronounced for a downstream acoustic
source (upstream propagation), consistent with the larger biases observed in the wavenumbers obtained
for the different formulations. Regarding the different formulations used for solving the PBE, significant
differences are observed among the three cases. The case with matching δ∗ shows the best agreement between
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the solution obtained for the hyperbolic tangent profile and that for the universal law of the wall.
As anticipated by the numerical experiment, good agreement is observed between the prediction using

the Ingard–Myers boundary condition and the solution obtained for the universal law of the wall profile,
particularly for an upstream acoustic source (downstream propagation). For impedances educed with a
downstream acoustic source, the IMBC slightly over-predicts compared with the solution of the PBE with
the law of the wall. This is consistent with the results of Weng et al. [15], who solved the linearised
Navier–Stokes equation for a realistic flow profile comparable to the one considered in the present work.

7. Conclusion

In this work, the effects of the sheared flow profile shape on acoustic propagation in a 2D duct were
revisited, extending the early work of Nayfeh et al. [23] to the context of impedance eduction techniques.
Three velocity profiles were considered for solving the acoustic field in a duct with sheared grazing flow,
using the Pridmore–Brown equation, with the profiles matching the average Mach number and either the
δ99 % or δ∗ boundary layer thicknesses. The wavenumbers obtained from the PBE were then compared to
those estimated by solving the case with uniform flow, i.e., the Convected Helmholtz equation, with the
Ingard–Myers boundary condition handling the refractive effects within the boundary layer. Results suggest
that the IMBC leads to lower errors relative to the solution for a sheared flow profile with a realistic wall law
turbulent boundary layer velocity distribution, compared to the solution obtained with a simplified profile
formulation. Consistent with the findings of Nayfeh et al. [23], it was observed that matching the boundary
layer displacement thickness δ∗ improves agreement between the different formulations, although noticeable
differences remain.

Next, a numerical experiment was conducted to assess the accuracy of the IMBC in the typical impedance
eduction range for small ducts, by assuming that the PBE is a exact representation of the real world. The
wavenumbers obtained for the different flow profile formulations were used as input for the traditional
straightforward impedance eduction routine. Results suggest that for non-realistic flow profile formulations,
the simplification to the uniform flow assumption with the IMBC may lead to mismatches between results
obtained for upstream and downstream propagating waves, particularly for the acoustic resistance. However,
this mismatch does not occur when a realistic velocity distribution is used to simulate real-world conditions.
A parametric study was then conducted to investigate the impact of the average Mach number and the
duct width, and consequently, the boundary layer thickness. It was found that the error associated with the
simplification to the IMBC increases with both the average Mach number and the duct width.

Finally, an iterative eduction routine was used to evaluate the impact of solving for the sheared flow
profile rather than relying on the IMBC approximation with experimental acoustic data. This analysis
allowed to investigate the effect of simplifying the flow profile representation when performing impedance
eduction and solving for the sheared flow. The results obtained align with the conclusions of Weng et al. [15],
who suggested that solving for the acoustic field using a realistic flow profile produces reasonable agreement
with the IMBC solution.

The main conclusion of this work is that the Ingard–Myers boundary condition is a reasonable simplifi-
cation in the context of low Mach number and small-duct impedance eduction, at least for 2D ducts. The
natural continuation of this work is its extension to a realistic 3D duct, as proposed by Roncen et al. [22],
while taking into account the importance of a realistic flow profile representation.
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