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This paper presents an analytic expression for the acoustic eigenmodes of a cylindrical
lined duct with rigid axially running splices in the presence of flow. The cylindrical duct is
considered to be uniformly lined except for two symmetrically positioned axially running
rigid liner splices. An exact analytic expression for the acoustic pressure eigenmodes is
given in terms of an azimuthal Fourier sum, with the Fourier coefficients given by a
recurrence relation. Since this expression is derived using a Green’s function method,
the completeness of the expansion is guaranteed. A numerical procedure is described for
solving this recurrence relation, which is found to converge exponentially with respect to
number of Fourier terms used and is in practice quick to compute; this is then used to
give several numerical examples for both uniform and sheared mean flow. An asymptotic
expression is derived to directly calculate the pressure eigenmodes for thin splices. This
asymptotic expression is shown to be quantitatively accurate for ducts with very thin
splices of less than 1% unlined area and qualitatively helpful for thicker splices of the
order of 6% unlined area. A thin splice is in some cases shown to increase the damping
of certain acoustic modes. The influences of thin splices and thin boundary layers are
compared and found to be of comparable magnitude for the parameters considered.
Trapped modes at the splices are also identified and investigated.
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1. Introduction

Turbofan aeroengines are routinely fitted with acoustic linings in the intake and bypass
ducts to reduce noise. Owing to construction constraints, these liners have traditionally
been manufactured in two semicircular pieces which are then joined together, leaving a
thin unlined strip along the join, termed a splice. The effect of even thin liner splices
has long been thought to be significant, although earlier studies (see, for example, Fuller
1984, and references therein) were limited by the computational resources available at the
time. For example, Fuller restricted himself to no flow, a half-lined half-unlined duct and
a maximum Helmholtz number of 10, in order to reduce the computational complexity.
The importance of splices was demonstrated experimentally by Sarin & Rademaker
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(1993), who made in-flight measurements on a Rolls–Royce Tay 650 turbofan engine fit-
ted to a Fokker 100 aeroplane, backed up by laboratory experiments (Rademaker, Sarin
& Parente 1996). Modern attempts to theoretically model the effect of liner splices for
realistic parameters could be said to begin with Regan & Eaton (1999), who consid-
ered an infinite rigid cylindrical duct containing a uniform mean flow and fitted with a
finite-length lined section with two thin rigid splices. Regan & Eaton investigated this
situation numerically using a three-dimensional finite-element computation, and con-
cluded that liner splices can significantly influence the transmitted acoustic field and
that further investigation was needed. Other numerical investigations of the same ge-
ometry have been performed by Duta & Giles (2006) using Fourier modes azimuthally
coupled with two-dimensional finite elements, and McAlpine & Wright (2006), who used
three-dimensional finite elements for reduced model scale parameters and found that
scattering by liner splices can adversely affect fan tone noise levels at lower supersonic
fan speeds (a 13dB reduction in attenuation was predicted) but have little adverse affect
on noise levels at higher supersonic fan speeds typical of takeoff. A completely different
type of numerical calculation using the boundary integral method and mode-matching
has been performed by Yang & Wang (2008) for a finite-length lined section within ei-
ther a finite or infinite rigid duct with uniform mean flow, including the propagation to
the far field from a finite-length duct, who find the presence of splices slightly increases
the maximum sound pressure level while the angle of the maximum sound pressure level
remains approximately the same. While all of these studies have been completed in the
frequency domain, Tam, Ju & Chien (2008) completed numerical time-domain simula-
tions, again assuming uniform flow. They used this time-domain simulation to perform
several parametric studies of upstream-propagating sound, concluding that splices had
little effect for widths of 1/100th of a duct radius or smaller, and that the primary effect
of the splices was for the downstream liner edge to scatter the incoming sound with equal
energy into all cut-on duct modes.
Numerical investigations are also possible using the method developed by Watson

(1981), by expanding the perturbation within the spliced section in terms of the eigen-
modes of an unspliced duct, either lined or unlined; however, there is a question over
the completeness of the expansion if lined duct modes are used, since the lined duct
equation is not self-adjoint. A version of Watson’s method, derived by Pagneux, Amir
& Kergomard (1996) and termed the multimodal method, was used to investigate liner
splices without flow by Bi et al. (2006, 2007). They found liner splices to have a negligible
scattering effect for typical aeroacoustic parameters unless the output was dominated by
an especially well attenuated mode, in which case they predicted liner splices could give
a significant penalty, and they also found that when the phases of incident modes were
incoherent the effect of the splices was reduced compared with when the phases of the
incident modes were correlated. Subsequently, using the same multimodal method (again
without flow), Bi et al. (2009) found trapped modes, which are eigenmodes of the lined
spliced duct which are localized about the rigid liner splices.
Another approach is to consider the eigenmodes of the spliced lined duct, with the

axial wavenumber forming the eigenvalue. Such an analysis was performed for an infinite
lined duct by Fuller (1984) without flow and, more recently, by Campos & Oliveira (2004)
including flow, although the boundary condition used by Campos & Oliveira is incorrect
for nonzero mean flow (see Eversman & Beckemeyer 1972; Tester 1973). Both of these
studies posed an expansion of the eigenfunction as a sum of solutions of the Helmholtz
equation for the duct but, unlike the multimodal expansion of Pagneux et al. (1996),
these solutions were not required to satisfy the boundary conditions but were required to
all have the same axial wavenumber; a similar technique, although derived in a different
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manner using a Green’s function approach, is used here, and results in a singly infinite
(Fourier) modal sum. In contrast, Bi (2008) tackled the eigenmode problem in an infinite
spliced lined duct with uniform flow using a type of spectral method consisting of a modal
decomposition in terms of hard-walled duct modes augmented by a pressure-release duct
mode to aid faster convergence, leading to a doubly infinite modal sum. The spliced
eigenmode problem has also been considered numerically by Wright (2006) and Gabard
& Astley (2008), who both used two-dimensional finite elements to numerically calculate
the eigenmodes within the lined section of a duct and then match these to the rigid-
walled modes of the infinite rigid duct at either end of the lined section; both of these
studies used a uniform mean flow. Gabard & Astley conclude that the influence of liner
splices in the far-field is far from simple and that modal scattering at liner discontinuities
can result in complex patterns of radiated noise.
Little real progress has been made by exploiting the thinness of the liner splices,

as is generally the case in practice, with the only application of this assumption to
date being faster numerical computation. Tester et al. (2006) presented a method due
to Cargill (1993) based on the Kirchhoff approximation that the splices cause a small
perturbation to the eigenmodes of a uniformly lined duct, which is effectively a small-
scattering assumption. Tester & de Mercato (2006) extended this work to a finite-length
duct including the propagation to the far field, and demonstrate for a realistic intake
geometry the complex far-field directivity patterns that can be caused by liner splices. A
variant of this method was given by Alonso & Burdisso (2007), who considered pistons
placed along the splice (with two pistons per wavelength) driven so as to approximately
satisfy the rigid wall boundary condition on the splice. An approximation for resolving
thin splices in time-domain simulations without overly refining the computational mesh,
effectively a sub-grid-scale model, was proposed by Tam & Ju (2009).
Although our method is readily generalized to any geometric configuration, in this

paper we derive an expression for the duct pressure eigenmodes in an infinite lined duct
with two rigid splices and arbitrary non-transonic axial mean flow. The eigenmodes
of this duct are given in §3 in terms of a Fourier series, derived analytically without
approximation using a Green’s function method that is physically intuitive and leaves no
question as to the azimuthal completeness of the expansion. The solution of the resulting
recursion relation is given asymptotically for thin splices in §4 and numerically in §5.
These are then used to give a number of example results in §6, including an investigation
of the trapped modes found by Bi et al. (2009).

2. Problem Formulation

Consider the situation shown in figure 1 of a straight hollow cylindrical duct carrying
an ideal fluid. The mean flow of the fluid is purely in the axial direction, with zero swirl,
but with the axial speed varying with radius. We suppose that the mean density and
mean pressure of the flow are uniform. In what follows, lengths are nondimensionalized
using the duct radius d∗, densities using the mean density ρ∗ and time using d∗/c∗0, where
c∗0 is the uniform sound speed. In this way the normalized axial mean flow speed is M(r),
the local Mach number (which is subsonic for the examples presented here), and r is the
radial coordinate 0 6 r 6 1.
We consider unsteady perturbations to this mean flow with fixed dimensionless fre-

quency ω, the Helmholtz number for the cylinder, and fixed axial wavenumber k. In this
way, the unsteady pressure perturbation can be written in the form p(r, θ) exp{ikx− iωt},
with r, θ, x the cylindrical polar coordinates for the duct and t the dimensionless time.
We are interested in eigenmodes of the system in which the axial wavenumber k takes the
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Figure 1. Geometry of a spliced duct with two symmetrically positioned rigid splices.

role of the eigenvalue. It should be noted that, for the general case of sheared axial mean
flow, a continuous spectrum exists in addition to the discrete spectrum of eigenvalues k
considered here (see, e.g. Swinbanks 1975), although this is not present in the special
case of a uniform axial mean flow.
The equation satisfied by p(r, θ) is known as the Pridmore-Brown (1958) equation, as

used by Vilenski & Rienstra (2007). Note that the Pridmore-Brown equation is gener-
ally written in the form applying to a single azimuthal wavenumber, so that p(r, θ) =
p(r) exp{imθ}, but it is a straightforward matter to derive this in the form suitable for
the arbitrary θ dependence to give

1

r

∂

∂r

(

r
∂p

∂r

)

+
1

r2
∂2p

∂θ2
+

2kM ′

ω −Mk

∂p

∂r
+
[

(ω −Mk)2 − k2
]

p = 0 . (2.1)

Here a prime denotes differentiation of M(r) with respect to radius. In the uniform-flow
case M ′(r) = 0 and equation (2.1) reduces to the convected-Helmholtz equation for a
uniform medium.
The wall of the cylinder is taken to be composed of a mixture of lined and rigid sections

of infinite axial extent. In figure 1 we show the case considered in detail here, consisting
of two large lined sections separated by two diametrically opposed rigid splices, although
the theory presented here may be applied to arbitrary arrangements of lined and rigid
sections. The lined sections are modelled as having a given complex impedance, Z, which
is taken here to be uniform in θ and the same for each lined section. The boundary
condition to be satisfied on the lined sections is the standard Myers condition (Eversman
& Beckemeyer 1972; Tester 1973; Myers 1980),

∂p

∂r
+

(ω −Mk)2

iωZ
p = 0 at r = 1 for θ ∈ L , (2.2)

where L is the lined portion of the circumference. We note in passing that this bound-
ary condition has recently proved contentious when used with slipping flow (Aurégan,
Starobinski & Pagneux 2001; Brambley 2009, 2011a), and that any of the proposed mod-
ified boundary conditions (Aurégan et al. 2001; Joubert 2010; Rienstra & Darau 2011;
Brambley 2011b) could be imposed instead; here, we retain the boundary condition as
given in (2.2) for simplicity, while noting that this reduces to the uncontentious invis-
cid boundary condition for nonslipping mean flow, albeit with viscous effects important
for low frequencies still neglected (Aurégan et al. 2001; Brambley 2011a). On the rigid
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sections the boundary condition is

∂p

∂r
= 0 at r = 1 for θ ∈ R , (2.3)

where R is the rigid portion of the circumference. Clearly L∪R is the whole circumference.
We also require that p(r, θ) is regular at r = 0. From Osipov & Norris (1999, equations 109
and 111), we expect p to be continuous and ∂p/∂r to tend to zero near an edge between
L and R. Our aim is to solve this system of equations to determine the spectrum of
allowed values of k, and the corresponding mode shapes p(r, θ), for a given frequency ω.

3. The Green’s function and integral equation formulation

In what follows we seek an integral equation depending only on the surface values
p(1, θ), and to do this we need to calculate a specific Green’s function G(r, θ; θ0). We
suppose that G(r, θ; θ0) satisfies the governing equation (2.1), subject to the boundary
condition

∂G

∂r
+

(ω −Mk)2

iωZ
G =

(ω −Mk)2

iωZ
δ(θ − θ0) on r = 1 (3.1)

for given θ0. Note that (3.1) is the lined condition (2.2), except that we now include an
impulse term on the right. This is precisely the form of Green’s function used by Davis &
Llewellyn Smith (2007), and earlier in a different context by LeBlond & Mysak (1978).
It then follows by superposition that

p(r, θ) =

∫

R

p(1, θ0)G(r, θ; θ0) dθ0 , (3.2)

where we recall that the set R corresponds to that portion of the circumference which is
rigid, which will typically be of very small spatial extent. To verify this superposition solu-
tion, directly differentiating (3.2) shows that p(r, θ) satisfies the governing equation (2.1)
since G(r, θ; θ0) does, while at r = 1 substituting (3.1) into (3.2) shows that

∂p

∂r
+

(ω −Mk)2

iωZ
p =







(ω −Mk)2

iωZ
p θ ∈ R

0 θ ∈ L,
(3.3)

which is the correct boundary condition for both the rigid (θ ∈ R) and lined (θ ∈ L)
portions.
It is convenient to express G(r, θ; θ0) as the azimuthal Fourier series

G(r, θ; θ0) =

∞
∑

n=0

An(r) cos
(

n(θ − θ0)
)

. (3.4)

Substituting (3.4) into the governing equation (2.1) shows that we can write An(r) in
the form

An(r) = gn
Pn(r)

Pn(1)
(n ≥ 0) , (3.5)

where Pn(r) is the unscaled solution which is regular at r = 0 of the traditional Pridmore–
Brown equation

1

r

d

dr

(

r
dPn

dr

)

+
2kM ′

ω −Mk

dPn

dr
+

[

(ω −Mk)2 − k2 −
n2

r2

]

Pn = 0, (3.6)

and is such that Pn(r) = O(rn) as r → 0. Substituting (3.4) into the Green’s function
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boundary condition (3.1) gives

gn =
εn
πDn

, Dn = 1 +
iωZP ′

n(1)
(

ω −M(1)k
)2
Pn(1)

, (3.7)

where εn = 1 for n 6= 0 and ε0 = 1/2. Note that the equation Dn = 0 is the dispersion
relation for waves of azimuthal order n in an unspliced (i.e. fully lined) duct.

Equation (3.6) can in general only be solved numerically, but in the special case of
uniform mean flow it reduces to the Bessel equation of order n. It then follows that
Pn(r) = Jn(αr), where Jn is Bessel’s function of the first kind of order n and α2 =
(ω −Mk)2 − k2, leading to

Dn = 1 +
iωZαJ′n(α)

(

ω −M(1)k
)2
Jn(α)

. (3.8)

The dispersion relation Dn = 0 matches that for waves in an unspliced duct with uniform
mean flow (Rienstra 2003; Brambley & Peake 2006), and its appearance in the denomina-
tor (through gn) of the integral (3.2) mimics the structure of the standard wave Fourier
inversion (see, e.g. Lighthill 1978).

3.1. Solution of the integral equation

We now proceed to solve the integral equation (3.2) with the geometry shown in figure 1
consisting of two rigid sections, |θ| < ε and |θ − π| < ε. In this case, using the Fourier
series representation of the Green’s function (3.4) gives the integral equation

p(1, θ) =

∞
∑

n=0

gn

∫ ε

−ε

cos
(

n(θ− θ′)
)[

p(1, θ′)+ (−1)np(1, θ′+π)
]

dθ′ for |θ| < ε . (3.9)

Since there are only certain values of the axial wavenumber k for which a solution to this
integral equation exists, we aim to solve (3.9) for p(1, θ) for |θ| < ε with k taking the
role of the eigenvalue. The eigenfunction p(r, θ) is then recovered by

p(r, θ) =

∞
∑

n=0

gn
Pn(r)

Pn(1)

∫ ε

−ε

cos
(

n(θ − θ′)
)[

p(1, θ′) + (−1)np(1, θ′ + π)
]

dθ′ . (3.10)

Here, we solve (3.9) by expanding p(1, θ) as a Fourier series, chosen owing to the simplicity
of the algebra. This results in a similar expansion to that used by Fuller (1984), and is
equivalently obtained by expanding 1/Z(θ) as a Fourier series. We note, however, that any
expansion of p(1, θ) for θ ∈ (−ε, ε) could have been used, and indeed other expansions
may prove useful either for computational efficiency or in cases where the solution is
singular at the edge between the two boundary conditions (unlike here). There are two
distinct classes of solutions of (3.9), being when the unsteady pressure is symmetric or
antisymmetric in θ → θ + π, and we address these two cases separately below.

3.1.1. Symmetric solution

Here we consider symmetric solutions for which p(1, θ+π) = p(1, θ). We expand p(1, θ)
as a Fourier series, leading to

p(r, θ) =

∞
∑

n=0

P2n(r)

P2n(1)

[

a2n cos(2nθ) + b2n sin(2nθ)
]

, (3.11)
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taking b0 = 0 without loss of generality. Using this Fourier expansion, equation (3.9)
then implies

∞
∑

n=0

a2n cos(2nθ) + b2n sin(2nθ)

= 2

∞
∑

q=0

∞
∑

ℓ=0

g2q

∫ ε

−ε

cos
(

2q(θ − θ′)
)

[

a2ℓ cos(2ℓθ
′) + b2ℓ sin(2ℓθ

′)
]

dθ′. (3.12)

Using standard trigonometric identities gives

a2n = 2εg2n

∞
∑

ℓ=0

a2ℓ

(

sinc
(

2(ℓ− n)ε
)

+ sinc
(

2(ℓ+ n)ε
)

)

(n ≥ 0) (3.13a)

b2n = 2εg2n

∞
∑

ℓ=0

b2ℓ

(

sinc
(

2(ℓ− n)ε
)

− sinc
(

2(ℓ+ n)ε
)

)

(n ≥ 1), (3.13b)

where sinc(z) = sin(z)/z with sinc(0) = 1. Note that in the case ε = π/2, equa-
tions (3.13a,b) give a2n = g2nπa2n/εn = a2nD2n and b2n = g2nπb2n = b2nD2n, implying
that either a2n = b2n = 0, or D2n = 1 and hence P ′

2n(1) = 0, so that the rigid-wall eigen-
values and eigenfunctions are recovered. Similarly, if ε = 0 then either a2n = b2n = 0 or
D2n = 0, so that the fully lined eigenvalues and eigenfunctions are recovered.

3.1.2. Antisymmetric solution

Similarly, considering antisymmetric solutions for which p(1, θ + π) = −p(1, θ) and
setting

p(r, θ) =

∞
∑

n=0

P2n+1(r)

P2n+1(1)

[

a2n+1 cos
(

(2n+ 1)θ
)

+ b2n+1 sin
(

(2n+ 1)θ
)

]

(3.14)

leads to

a2n+1 = 2εg2n+1

∞
∑

ℓ=0

a2ℓ+1

(

sinc
(

2(ℓ− n)ε
)

+ sinc
(

2(ℓ+ n+ 1)ε
)

)

, (3.15a)

b2n+1 = 2εg2n+1

∞
∑

ℓ=0

b2ℓ+1

(

sinc
(

2(ℓ− n)ε
)

− sinc
(

2(ℓ+ n+ 1)ε
)

)

. (3.15b)

The known results for ε = π/2 and ε = 0 are again recovered.

4. Small-ε asymptotics

In this section, we consider the limit of a thin splice ε → 0. For ε = 0 the duct is
uniformly lined, and the problem reduces to the simpler problem of finding the allowable
values of k and the corresponding mode shapes p(r, θ) for a uniformly lined duct (see,
e.g., Vilenski & Rienstra 2007); such solutions are of the form p(r, θ) = Pq(r)

(

A cos(qθ)+

B sin(qθ)
)

with a wavenumber k0 satisfying Dq(k0) = 0. We now consider small but finite
ε for such a mode. Since Dq(k0) = 0, setting k = k0 + εk1 + ε2k2 + · · · gives

Dq(k) = εD′
qk1 + ε2

(

1

2
D′′

q k
2
1 +D′

qk2

)

+ · · · , (4.1)



8 E. J. Brambley, A. M. J. Davis and N. Peake

where a prime here denotes ∂/∂k, so that if εgq = a+ εb+ · · · then

k1 =
εq

πD′
qa

k2 = −
D′′

q ε
2
q

2π2(D′
q)

3a2
−

εqb

πD′
qa

2
. (4.2)

There are four cases to consider: A = 0 or B = 0 with q even or q odd. We first derive
the asymptotics for the symmetric–symmetric case B = 0 with q even, and then proceed
to the general case.

4.1. Symmetric–symmetric asymptotic solution

Since q is even, we set q = 2Q. We choose k0 such that D2Q(k0) = 0, and pose a2n =
δnQ + εa′2n + · · · with b2n ≡ 0. In this case, the relevant equation to solve is (3.13a),
which for n 6= Q gives, to leading order (O(ε)),

a′2n = 2g2n(k0)
(

sinc
(

2(Q− n)ε
)

+ sinc
(

2(Q+ n)ε
)

)

, (4.3)

while (3.13a) with n = Q gives at O(1)

2a =
(

1 + sinc(4Qε)
)−1

(4.4)

and at O(ε)

b = −
∑

ℓ 6=Q

g2ℓ(k0)

(

sinc
(

2(Q− ℓ)ε
)

+ sinc
(

2(Q+ ℓ)ε
)

1 + sinc(4Qε)

)2

. (4.5)

From a and b we may derive the perturbed wavenumber k = k0 + εk1 + ε2k2 + · · ·
from (4.2), while a2n = δnQ+εa′2n+· · · gives the perturbed mode shape p(r, θ) from (3.11).
Note that, at this order, a′2Q is unspecified, and may be taken as zero since this will only
affect the normalization of the mode.

4.2. General asymptotic solution

Any of equations (3.13a,b) and (3.15a,b) can be expressed in the form

cn = 2εyn

∞
∑

ℓ=0

cℓFnℓ, (4.6)

where Fnℓ is a symmetric matrix and Fnℓ and yn are O(1) except that yQ = a/ε+b+O(ε)
for some given Q. For example, for (3.13a) with D2Q(k0) = 0,

cn = a2n, yn = g2n, Fnℓ = sinc
(

2(ℓ− n)ε
)

+ sinc
(

2(ℓ+ n)ε
)

. (4.7)

Using this notation, we now follow the same method as in §4.1 above. We pose cn =
δnQ + εc′n + · · · . For n 6= Q, equation (4.6) gives, at leading order,

c′n = 2ynFnQ. (4.8)

For n = Q, equation (4.6) at O(1) and O(ε) implies

a =
1

2FQQ
, b = −

∑

ℓ 6=Q

yℓ
F
2
ℓQ

F 2
QQ

(4.9)

This can be seen to reduce to (4.3, 4.4, 4.5) using the definitions of cn, yn and Fnℓ

from (4.7).
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4.3. Size of perturbation for thin splices

The uniformly lined duct has two modes for each allowed axial wavenumber k0, which can
be chosen to be Pq(r) cos(qθ) and Pq(r) sin(qθ). For ε 6= 0 this degeneracy is broken (also
seen in Wright 2006), as shown by the different equations satisfied by an and bn for
ε 6= 0 (equations (3.13) and (3.15)). Considering first modes with cos(2Qθ) dependence
governed by (3.13a), for εQ ≪ 1 we find that

FQQ = 1 + sinc(4Qε) = 2 +O
(

(Qε)2
)

, (4.10)

so that a is O(1), and hence the wavenumber perturbation εk1 is O(ε). However, for
modes with sin(2Qθ) dependence, which are governed by (3.13b), we find that

FQQ = 1− sinc(4Qε) =
8

3
Q2ε2 +O

(

(Qε)4
)

, (4.11)

so that a = O(ε−2) and hence the wavenumber perturbation εk1 = O(ε3), i.e. much
smaller than we expected. This difference between the two sets of modes is not surprising,
since the two splices lie at pressure zeros of the unperturbed eigenmode sin(2Qθ) and
can therefore have little effect on the unsteady flow. This result is the same for modes
with q = 2Q+ 1 governed by (3.15).

5. Numerical solution

In the following discussion we consider only symmetric–symmetric modes for which
p(1, θ) = p(1,−θ) = p(1, θ+ π) given by (3.13a), while remarking that the same method
gives solutions for the other cases (3.13b, 3.15a,b). We solve (3.13a) numerically by trun-
cating the sum over ℓ to range from 0 to N ; in effect, setting a2n = 0 for n > N . It
is hoped that solutions to this finite system will approximate solutions to the infinite
system provided that N is sufficiently large. Typically a truncation of N = 450 was used
in the results that follow.
Define

Ci =
1

2g2i
and Fij = sinc

(

2(i− j)ε
)

+ sinc
(

2(i+ j)ε
)

, (5.1)

so that Fij is a real symmetric matrix depending only on ε, while the vector Ci depends
on k, ω and M(r) but is independent of ε. Setting âj = a2j , equation (3.13a) becomes

N
∑

j=0

A
k
ij âj = 0, where A

k
ij = Ciδij − εFij , (5.2)

with the superscript k denoting that A
k is evaluated at k. We wish to solve this using

a Newton–Raphson iteration. To avoid the obvious solution of âi ≡ 0, we solve the
equivalent equation

A
kâ

√

〈â, â〉
= 0, where 〈x,y〉 =

N
∑

i=0

xiyi = xTy, (5.3)

with xi denoting the complex conjugate of xi. For small δa and δk, taking δa = λâ+δa∗

with 〈â, δa∗〉 = 0 gives

A
k+δk(â+ δa)

(〈â+ δa, â+ δa〉)
1/2

=
1

√

〈â, â〉

(

(

1 + iIm(λ)
)

A
kâ+ A

kδa∗ + δk
(

A
k
)′
â
)

+ O
(

〈δa, δa〉, δk2
)

, (5.4)
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where a prime denotes ∂/∂k. Note that the value of Re(λ) has no effect on this expression,
while Im(λ) will only affect the normalization of our solution, and so we take λ = 0. Our
Newton–Raphson iteration therefore consists of choosing δa∗ and δk such that

A
kδa∗ + δk

(

A
k
)′
â = −A

kâ. (5.5)

We must proceed carefully in solving (5.5), since we seek an eigenvalue k such that A
is noninvertible. First, we project (5.5) onto a basis orthogonal to â, since we know δa∗

to be orthogonal to â and we seek an â lying in the kernel of A. To do this, we choose q
such that |âq| ≥ |âi| for all i and set

δa∗ =
∑

i6=q

bi

(

ei −
〈â, ei〉

〈â, â〉
â

)

, (5.6)

where ei are the standard basis vectors so that â =
∑N

i=0
âiei. Replacing the qth com-

ponent of our system of N equations with the δk equation transforms (5.5) into

B

(

b0, · · · , bq−1, δk, bq+1, · · · , bN

)T

= −A
kâ, (5.7a)

where

Bij =







〈ei,
(

Ak
)′
â〉 j = q

A
k
ij −

〈ei,A
kâ〉

〈â, â〉
âj j 6= q.

(5.7b)

We assume B to be invertible, and so inversion gives bi and δk, from which δa = δa∗

can be recovered from (5.6).
In summary, the Newton–Raphson step is to form the matrix B given in (5.7), to solve

Bb = −A
kâ, and then to update â → â+δa and k → k+δk; here, the LAPACK routine

ZGESV was used for the inversion (Anderson et al. 1999). As a starting point for the
iteration we choose a mode of order m = 2Q of the unspliced problem with eigenvalue
k0, so that our initial guess is k = k0 and âi = δiQ. Alternatively, âi = δiQ and a random
value of k may be taken, or the asymptotic prediction above may be used for an initial
guess at k and â.
The above procedure typically converges reasonably quickly. For example, for ω = 31,

Z = 2 + i and M ≡ 0.5, finding all eigenvalues with |Im(k)| < 50 for ε = 0.1 that are
the equivalent of m = 24 unspliced eigenvalues took 16 seconds on a 3GHz quad-core
desktop computer; evaluating the asymptotics of §4 for the same case was instant.

5.1. Solution of Pn(r)

Calculating Ci above involves calculating P ′
2i(r)/P2i(r). For a general flow profile M(r),

this was performed by solving the Pridmore–Brown equation (3.6) using the same code
as Brambley (2011b), which is a 12th order implicit central finite-difference scheme on
unevenly spaced collocation points, allowing points to be clustered in regions of interest,
such as boundary layers. The boundary conditions applied were P ′

0(0) = 0 or Pn(0) = 0
for n 6= 0, and Pn(1) = 1 for all n. This yielded a banded matrix, which was solved using
the LAPACK routine ZGBSV (Anderson et al. 1999). Typically Nn = 2000 collocation
points where used.
For uniform mean flow, Pn(r) = Jn(αr) with α2 = (ω − Mk)2 − k2. In this case no

finite-difference scheme is needed, and here the algorithm of Amos (1986) was used to
compute Jn. However, since we are interested only in the ratio of P ′

n(α)/Pn(α), care
must be taken to avoid numerical underflow and overflow. It was found necessary to
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Figure 2. Accuracy of numerical eigenvalues kN as the numerical truncation N is varied,
for various splice widths ε. Plotted are minimum, maximum, and (geometric) averages of the
eigenvalue error Ei

N(ε) (defined in equation 5.11) for all eigenvalues with |Im(ki(ε))| < 200,

with error bars showing one standard deviation. Also plotted is a reference line e−N/180. Here
ω = 31, M ≡ 0.5, Z = 2 + i and m = 24.

supplement the algorithm of Amos by the following when m ≫ 1,

z
P ′
n(z)

Pn(z)
= m− 2(m+ 1)

∞
∑

i=0

(

− z2/4
)i

i!(i+m)!/m!

∞
∑

i=0

(

− z2/4
)i

i!(i+m+ 1)!/(m+ 1)!

when |z|2 < 4(m+ 1), (5.8)

mz
P ′
n(mz)

Pn(mz)
∼ −m2/3

√

(

1− z2
)

/ζ
Ai′
(

m2/3ζ
)

Ai
(

m2/3ζ
) otherwise, (5.9)

where Ai is the Airy function of the first kind and

2

3
ζ3/2 = log

(

(

1 +
√

1− z2
)

/z

)

−
√

1− z2, (5.10)

the branch being chosen such that ζ is real for real z. For details, see Abramowitz &
Stegun (1964, ch. 9).

5.2. Validation of numerics and asymptotics

For uniform mean flow, figure 2 shows how the normalized error for the numerically
calculated eigenvalues varies with the numerical truncationN for different values of ε. For
each eigenvalue ki(ε), let kiN (ε) be the corresponding numerically calculated eigenvalue
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ε A B

10−1 2× 10−3 180
10−3 0.11 250
10−4 1.2× 10−2 350
10−6 1.2× 10−4 350

Table 1. Coefficients for EN(ε) = Ae−N/B that give best-fit lines matching the average errors
shown in figure 2 for different splice widths ε.

for a numerical truncation N . We define the normalized error for this eigenvalue as

Ei
N (ε) =

|kiN (ε)− ki1000(ε)|

|ki1000(ε)− ki(0)|
, (5.11)

so that Ei
N (ε) is the discrepancy in position of eigenvalue i between this truncation and

a truncation of 1000 normalized by the distance the eigenvalue moves from fully lined
(ε = 0) to the given splice width; a small value ofEi

N (ε) compared with 1 therefore implies
the effect of the splice has been well resolved. From the reference line e−N/180 plotted
in figure 2, the eigenvalue error can be seen to decay exponentially with increasing N ;
for this example, table 1 gives the coefficients for best fit exponential decay fitted to the
average error curves of figure 2. The worst numerical convergence is seen for ε ≈ 10−3.
That the worst numerical convergence is found not for large or small ε but for some
intermediate value may be explained, as for very small ε all off-diagonal terms in A

k
ij are

very small (and there would be zero truncation error if A were diagonal), while for larger
ε the off-diagonal terms decay faster with increasing N . The value of N = 450 used for
all results presented here ensures an accuracy EN < 0.05 for |Im(k)| < 200 for all values
of ε considered. While it is expected that this numerical truncation will be sufficient for
all impedances Z but is likely to need increasing for higher frequencies than the ω = 31
considered here, this will not be investigated further.
Again for uniform mean flow, figure 3 shows the accuracy of the asymptotics from §4.1

compared with the numerical results calculated using the algorithm above, for the aeroa-
coustically relevant parameters ω = 31, m = 2Q = 24, M ≡ 0.5 and Z = 2 + i, with
the numerics performed using a truncation of N = 450. The theoretical order of accu-
racy of the asymptotics is recovered (as seen from figure 3a), giving confidence in the
correctness of both the asymptotics and the numerics. A similar result is recovered from
consideration of the an coefficients instead of the axial wavenumber k.

6. Results

Figure 4 shows some eigenvalues in the k-plane for the parameters used in §5.2 with
ε = 0.1, and compares the unspliced and spliced eigenvalues. Note that, while the large
imaginary axis range causes modes to look compressed, in fact all modes are discrete,
with no continuous spectrum being present owing to the uniform mean flow used. On the
scale of the figure, the effect of the splice on the eigenvalues is seen to be small, although
this will be discussed in detail later in this section; in contrast, the effect on the mode
shapes will be seen to be very significant. The eigenfunctions for the modes labelled k+,
k− and kHI (which are typical of the results for the other modes) are given in figures 5,
6 and 7 respectively. Comparing figures 5 and 6 suggests that the effect of the splice is
more significant for upstream-propagating modes (k− in figure 6b) than for downstream-
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Figure 3. Average accuracy of asymptotic small-ε eigenvalue prediction of k from (4.4), (4.5)
and (4.2), averaged over all resolved modes with |Im(k0)| < 400. The numerical eigenvalue is kn

for N = 450. Here ω = 31, M ≡ 0.5, Z = 2 + i and m = 24. Figure b) shows a closer view of
the top right of a).
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Figure 4. Unspliced eigenvalues (k0, +) and numerical eigenvalues (kn, ×) for ε = 0.1 and
N = 450, plotted in the k-plane. Here ω = 31, M ≡ 0.5, Z = 2+i andm = 24. The eigenfunctions
for the three modes labelled k+, k− and kHI are given in figures 5, 6 and 7.

propagating modes (k+ in figure 5b). Since the hydrodynamic instability eigenfunction
for k = kHI is difficult to see, being concentrated close to the boundary (as befits its
description as a surface mode), it is shown in r, θ coordinates. It is interesting to note
that the surface mode appears to be sustained by the lining and is exactly cancelled out
on the splice.
Turning now to how the modes vary from uniformly lined as ε is increased from zero,
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a) Re
(

p(r, θ)
)

b) |p(r, θ)− p0(r, θ)|

Figure 5. Contours of the eigenfunction p(r, θ) for k = k+ (as shown in figure 4), normalized
so that max |p(r, θ)| = 1. Contours are spaced at 0.1, 0.2, 0.3, 0.4, 0.7, and 0.9. The thick black
marks around the outside represent the locations of the two splices. a) Re(p(r, θ)). Solid contours
are positive, dotted contours are negative, and the dashed contour is the zero contour. b) The
deviation of the spliced mode from the unspliced mode, |p(r, θ)−p0(r, θ)|. Here ε = 0.1, ω = 31,
M ≡ 0.5, Z = 2 + i, m = 24 and N = 450.

a) Re
(

p(r, θ)
)

b) |p(r, θ)− p0(r, θ)|

Figure 6. As for figure 5 but for k = k
−
.

figure 8 shows the movement in the k-plane as ε is varied from 0 to 0.1 for the same
parameters as figure 4. Interestingly, figure 8b) shows that for the upstream-propagating
k− mode, increasing the splice width initially causes an increase in the damping provided
by the lining for both the even (3.13a) and odd (3.13b) modes, although further increasing
the splice width leads to decreased damping owing to a smaller area of liner. For the
downstream-propagating equivalent k+ mode shown in figure 8c), any nonzero splice
width leads to a decrease in damping. The surface mode kHI shown in figure 8d) shows
an interesting similarity between the even and odd modes apart from for very small values
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0.990.99 11

Figure 7. As for figures 5 and 6 but for k = kHI, plotted in r, θ axes. The locations of the
splices are shown by the boxes on the right of the figures.

of ε. As ε → π/2, kHI tends to infinity since it is not supported by the fully rigid-walled
duct corresponding to ε = π/2.

6.1. Azimuthal Fourier modal amplitudes

The pressure within the duct is given as an azimuthal Fourier sum in (3.11) and (3.14). For
the unspliced duct with ε = 0 we consider modes of azimuthal orderm for which an = δmn

with bn = 0 (where we are here considering modes with cos(mθ) dependence, although
modes with sin(mθ) dependence may be treated in the same way). As ε is increased, we
keep am = 1 fixed and allow the other components and the axial wavenumber k to vary
smoothly (as in figure 8). In this way, we end up with the azimuthal modal amplitudes
an and a value of k for ε = 0.1. We now show results for the amplitudes an for these
modes.

For the k+ mode identified in figure 4 (azimuthal order m = 24, with ε = 0), the
azimuthal modal amplitudes are shown in figure 9. The dominant azimuthal order can
be seen to still be m = 24 when ε = 0.1, as might have been expected from its mode
shape shown in figure 5. In contrast, figure 10 shows the corresponding result for the
k− mode identified in figure 4 when ε = 0.1. While the a24 coefficient is still significant,
the dominant contribution now comes from the a8 azimuthal mode, with modes a6, a16
and a20 also being important, among others. This leads to the more complicated modal
shape for this mode shown in figure 6, with the eight-fold symmetry in the centre clearly
visible. This demonstrates the rather surprising result that the spliced equivalent of the
unspliced m = 24 order mode need not be dominated by the a24 azimuthal mode, even for
ε as small as 0.1. This result is also emphasized by figure 11, which shows the equivalent
for the kHI mode from figure 4. A cursory examination of figure 11 might suggest that the
tracking of this particular mode from ε = 0 to ε = 0.1 became confused and instead, at
some point, picked up the m = 26 mode. However, a careful investigation of the variation
of the an coefficients as ε is varied shows that this is not the case; indeed, the track of the
m = 26 kHI mode does not intersect with that of the m = 24 kHI mode for ε ∈ [0, 0.1].

We will return to the asymptotics plotted in figures 9–11 in §6.4.
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Figure 8. Trajectories of modes in the k-plane as ε is varied from 0 to 0.1. Figure a) demon-
strates the relatively small changes due to the splice, b) and c) show enlargements of the leftmost
(k

−
) and rightmost (k+) modes respectively, while d) shows an enlargement of the surface mode

kHI (which is not shown in figure a) owing to the scale used). Parameters are as for figure 4.

6.2. Thin sheared boundary layer flow

Here we consider a sheared mean flow that differs from the uniform flow only in a thin
boundary layer of width δ. The boundary layer profile used here is the tanh profile used
by Rienstra & Vilenski (2008),

M(r)/M0 = tanh

(

1− r

δ

)

+
(

1− tanh(1/δ)
)

(

1 + tanh(1/δ)

δ
r + (1 + r)

)

(1− r). (6.1)

For a centreline Mach number of M0 = 0.5 and a thin boundary layer of width δ = 10−3,
the trajectories of modes in the k-plane as ε is varied from 0 to 0.1 are shown in figure 12
together with the trajectories of modes in a uniform mean flow (taken from figure 8).
The effect of the thin boundary layer is shown to be of comparable magnitude to the
effect of the splice for most modes. Note, however, that figures 8d) and 12d) show modes
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Figure 9. Azimuthal modal amplitudes an from (3.11), for the k+ mode shown in figure 4. This
mode originated for ε = 0 as a mode with azimuthal order m = 24. b) is a more detailed view
of a). Also shown is the asymptotic prediction from (4.3). Parameters are as for figure 4.
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Figure 10. The same as figure 9 but for the k
−

mode shown in figure 4.

in totally different areas of the k-plane. There is no equivalent of the uniform-flow kHI

mode for this sheared flow profile; instead, however, there is a new mode here labelled
kBL which was not present with uniform flow. It should be emphasized that this mode
is not just the kHI mode in a different quadrant of the k-plane, but rather a new mode
totally separate from kHI; this can be verified by tracking the location of modes for a
flow profile of ηM(r) + (1 − η)M0 as η is smoothly varied from 0 to 1.

6.3. Parabolic sheared flow

Here we consider a parabolic profile given by

M(r) = M0

(

1− r2
)

. (6.2)
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Figure 11. The same as figure 9 but for the kHI mode shown in figure 4.

For M0 = 0.5, the motion of the axial wavenumber k in the k-plane as ε is varied from 0
to 0.1 is shown in figure 13. Note that for this situation, both the upstream-propagating
first-order mode k+ and the downstream-propagating first-order mode k− become less
damped for increasing splice width ε, at least up until ε = 0.1. This is in contrast to
the uniform or thin-boundary-layer profiles shown in figures 8 and 12, for which the
upstream-propagating first-order mode k− is initially more damped with a thin splice
than with no splice at all. For this case there is neither a kHI nor a kBL mode.

6.4. Comparison of asymptotics and numerics

Also plotted in figure 13 are the asymptotic predictions from §4, both for the sin and cos
type modes and for the first- and second-order asymptotics. While this is shown for just
two modes and for a parabolic flow profile, these graphs are typical of all flow profiles and
modes considered. The first-order predictions for the sin and cos modes are in the same
direction but of different magnitudes, as predicted in §4.3. This shows the practicality
of using the first-order asymptotics from §4 for thin splices to predict whether a splice
will increase or decrease the damping of a given mode, and also the practicality of using
the second-order asymptotics to get an estimate of the magnitude of such a change in
damping.
Figures 9–11 showing the modal composition of the k+, k− and kHI modes for ε =

0.1 also show the predicted modal amplitudes from the asymptotics given in (4.4). As
can be seen, the prediction for the k+ mode in figure 9 is quantitatively correct, while
the predictions for the k− and kHI modes in figures 10 and 11 are not. We note that
these modal composition inaccuracies could lead to errors when used for mode-matching,
although for smaller values of ε (say ε ≤ 0.01) the asymptotics may well be sufficiently
accurate for mode-matching applications. For the k− mode at ε = 0.1, however, it could
still be argued that the asymptotic prediction is qualitatively correct, in that it correctly
predicts the importance of the 8th, 16th and 20th azimuthal order modes; moreover, since
the asymptotic correction to the 24th order mode was unspecified by the asymptotics and
was taken to be zero (remembering that q = 24 in this case), it is perhaps understandable
that the relative magnitude of the 24th order modes is less well predicted compared with
that of the others. However, the asymptotic prediction of the kHI mode shown in figure 11
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Figure 12. Trajectories of modes in the k-plane as ε is varied from 0 to 0.1, similar to figure 8
but for a thin boundary layer sheared flow given by (6.1) with M0 = 0.5 and δ = 10−3. Also
shown are the uniform-flow trajectories from figure 8. In d), kBL is a thin boundary layer surface
mode with no uniform-flow equivalent; the kHI mode is not present for this flow profile. Here
ω = 31, Z = 2 + i, m = 24, Nn = 2000 and N = 450.

is not even qualitatively correct. This appears to be a general trend, since numerous
numerical calculations have shown that ε needs to be extremely small (of the order of
10−4 for the parameters used for these figures) for the asymptotics to be accurate for
surface modes. One reason for this could be that the asymptotics require the splice to
be thin compared with the appropriate radial lengthscale of the mode, and this radial
lengthscale is very small for surface modes which are by their nature highly localized
about the boundary.

6.5. Trapped Modes

We now turn our attention to trapped modes, as discovered by Bi et al. (2009) for a single
splice without flow. Trapped modes are modes which are localized within the immediate
neighbourhood of a splice. Bi et al. found that they originate as unspliced surface modes



20 E. J. Brambley, A. M. J. Davis and N. Peake

a) k
−

b) k+

k0 + εk1 + ε
2
k2: cos

k0 + εk1 + ε
2
k2: sin

k0 + εk1: cos

k0 + εk1: sin

(3.13a)
(3.13b)

ε = 0
ε = 0.1, (3.13a)
ε = 0.1, (3.13b)

−5.4

−5.3

−5.2

−5.1

6.2

6.3

6.4

6.5

6.6

6.7

−18.4 −18.35 −18.3 −18.25 −18.2 15.65 15.7 15.75 15.8 15.85

Figure 13. Trajectories of modes in the k-plane as ε is varied from 0 to 0.1, similar to figure 8 but
for a parabolic boundary layer profile given by (6.2). Also shown are the first- and second-order
asymptotics from (4.2). Here M0 = 0.5, ω = 31, Z = 2 + i, m = 24, Nn = 2000 and N = 450.

of low order, and turn into acoustic propagating modes as the splice width is increased; it
is for thin splices where they are undergoing this transition that they appear as trapped
modes.
Figure 14 shows the same case as considered by Bi et al. but for two symmetric splices

rather than the single splice they considered. (Note that Bi et al. also considered a
smoothly varying admittance 1/Z(θ) with a Gaussian profile for the splice, while here
we consider a step function impedance varying abruptly from lined to rigid.) For these
parameters, Bi et al. found that the trapped mode originates as an unspliced surface
mode of azimuthal order m = 0. Here, owing to the different splice geometry, we find
the trapped mode occurring for m = 2. Figure 14a shows the evolution of the trapped
mode from an m = 2 surface mode for ε = 0 with non-negligible Im(k) to a trapped
mode (figures 14c,e) as ε is increased, and finally to an almost fully acoustic mode with
a significantly reduced Im(k) for ε = 0.1. Since there is no flow in this case, the behaviour
is symmetric in x and the other surface mode similarly becomes a trapped mode running
in the other direction.
Also shown in figure 14 is the accuracy of the small-ε approximation from §4.1. Fig-

ure 14a shows the full trajectory in the k-plane as ε is varied from 0 to 0.1, and demon-
strates that the asymptotics is not quantitatively correct for moderately small ε in this
case. However, the small-ε asymptotics does correctly reproduce the quantitative be-
haviour for sufficiently small ε, as it must, and indeed this is shown in figure 14b. The
corresponding eigenfunctions for this mode for ε = 0.005 are compared in figures 14c,d,
and show a marked similarity. For ε = 0.05 the accuracy of the asymptotics is not as good,
as shown in figures 14e,f and as expected from the significantly different predictions for
the eigenvalue k; nonetheless, the qualitative behaviour of having maximal amplitude on
the splice is captured by the asymptotics.
Introducing a uniform mean flow of Mach number M ≡ 0.5 gives the situation shown

in figure 15. Concentrating first on the eigenvalues k shown in figure 15a for both m = 0
and m = 2, it is obvious that the upstream–downstream symmetry is broken by the
mean flow. The downstream-propagating trapped mode originating as a surface mode for
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m = 2 behaves in a similar way to that of figure 14 for no flow. However, the upstream-
propagating trapped mode originates as a surface mode form = 0 and travels significantly
across the k-plane as it transitions from a surface mode (ε = 0, Im(k) ≈ −16) to a trapped
mode and finally to an acoustic mode (ε = 0.1, |Im(k)| < 0.6). This asymmetry is also
shown in the mode shapes: figure 15b shows the downstream-propagating trapped mode
for ε = 0.05 as reasonably broad but still noticeably dominant near the rigid splices;
however, figure 15f shows that for the same value of ε = 0.05 the upstream-propagating
trapped mode is already an acoustic mode and fills the duct, while for ε = 0.005 (shown in
figure 15d) it is tightly trapped about the rigid splices. Figures 15c–f show the transition
of this mode from surface mode to trapped mode to acoustic mode as ε is increased.

7. Conclusion

This paper gives an analytic solution for the pressure modes (solutions proportional
to exp{ikx − iωt}) of a cylindrical duct with lined walls apart from two symmetrically
placed rigid splices of angular extent ±ε radians, with sheared axial flow; this generalizes
previous analytic work to account for sheared axial flow and corrects the mistake in the
boundary conditions of Campos & Oliveira (2004) mentioned in the introduction. In ad-
dition to the mathematical interest, this solution may prove useful as a reference solutions
for validating numerical simulations. The solution is given as a Fourier sum (3.11,3.14)
over solutions of the Pridmore–Brown equation (3.6), with a recurrence relation relating
the coefficients of the sum (3.13,3.15). This expansion is derived using a Green’s func-
tion method that not only correctly mimics the physics but also leaves no question over
the completeness of the modes used in the expansion, as there might have been for a
multimodal method using lined-duct modes as basis functions. A numerical procedure is
given in §5 for solving the recurrence relation that has proved successful in all cases con-
sidered here. The assumption of two symmetrically placed rigid splices to an otherwise
uniformly lined cylinder was chosen both for simplicity and for its practical relevance,
although the authors foresee little difficulty in applying a similar procedure to different
geometry, including differently placed splices, azimuthally variable liner impedances, or
annular or rectangular cross-section ducts.
Treating the eigenvalue of the problem as the axial wavenumber k, §4 derived the

second-order-accurate correction to k for small ε (4.2,4.9) and the first-order-accurate
Fourier mode amplitudes (4.8); a similar result should be obtainable if the frequency
ω is considered the eigenvalue. An interesting conclusion from the asymptotics made
in §4.3 is that, for thin splices of width 2ε, the effect of the splices on modes which
have a pressure antinode on the splice is O(ε) while the effect of the splice on modes
which have a pressure node on the splice is O(ε3). The accuracy of these asymptotics
is verified in figure 3. These figures also show that ε < 10−2 (approximately 0.6% un-
lined area or less) is necessary in some instances for the asymptotics to be accurate.
However, the asymptotics may well still be useful for larger values of ε; figures 9, 10,
11 and 13 show that the level of agreement between the asymptotic and exact solutions
for ε = 0.1 (approximately 6% unlined area) may be quantitatively reasonable (figures 9
and 13b), qualitatively indicative (figures 10 and 13a) or poor (figure 11). For the param-
eters considered here, it would seem that the asymptotics are generally more accurate
for downstream-propagating than upstream-propagating modes, and more accurate for
acoustic modes than for surface modes or trapped modes. The inaccuracy of the asymp-
totics in some cases is of practical importance, since it demonstrates that the effect of
a splice of width 2ε can be larger than the expected O(ε) even for moderately small
values of ε, and therefore that even moderately small splices may play a more prominent
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role than might have at first been expected. Moreover, the asymptotics provide a useful
check on the accuracy of numerical solutions for very small splice widths which are hard
to correctly resolve numerically.
The numerical procedure described in §5 for solving the recurrence relation compares

favourably with other numerical solutions. The infinite azimuthal Fourier sum that is
numerically truncated at N modes is shown in §5.2 to lead to an eigenvalue error that
decays exponentially for increasing N . The comparable numerical scheme of Bi (2008)
involves a doubly infinite sum of radial and azimuthal modes, which, if both are truncated
at the same limit N1/2 (as suggested by Bi for azimuthally nonuniform ducts) leads to N
terms in the truncated sum and eigenvalue errors that decay at the rate O(N5/2) (see Bi
2008, figure 3). The finite-element calculation of duct modes performed by Wright (2006)
was reported to have taken approximately 19 minutes. On a similar computer, the same
calculation using the method presented here would have taken approximately 1 minute,
while if the splice widths were small enough that the asymptotics described here could
be used the same calculation on a similar computer would have taken approximately 5
seconds. It should be noted, however, that the finite-element calculation of Wright (2006)
could be adapted to irregular (i.e. non-circular and non-rectangular) cross-section ducts
more easily than the method presented here.
A number of results are presented in §6 for the parameters ω = 31, m = 24, Z = 2+ i

and a peak Mach number of 0.5, these parameters being taken as typical for parameters
of interest for an aeroengine intake (although note that when considering trapped modes
in §6.5 we use ω = 30 and m ∈ {0, 2} in line with Bi et al. (2009)). For these parameters,
the splice seems to have a most significant effect on modes close to cut-on cut-off tran-
sition. An interesting result is to note that the presence of a splice does not necessarily
cause a decrease in damping, despite the reduction in lined surface; for example, figure 8b
shows the upstream-propagating first-radial-order mode k− to be more strongly damped
with a splice than without, provided the splice is sufficiently thin. The splice may also
cause significant scattering into other azimuthal-order modes; for example, figure 10b
shows that the first-radial-order upstream-propagating mode k−, which for ε = 0 was
of 24th azimuthal order, has, through increasing ε smoothly from 0 to 0.1, obtained a
dominating 8th azimuthal order term and substantial 16th and 20th order terms. The
effect of this can clearly be seen in figure 6, and is also captured qualitatively in the
asymptotic results shown in figure 10b. Overall, very roughly, the effect of a thin splice
on the axial wavenumber k compared with an unspliced duct is seen from figure 12 to
be of comparable order of magnitude to the effect of a thin shear layer over the lining
compared with a uniform mean flow; this suggests that the inaccuracy caused by using a
uniform mean flow and the Myers (1980) boundary condition (Brambley 2011b; Rienstra
& Darau 2011; Joubert 2010) is comparable to the inaccuracy of ignoring the effect of
liner splices on modal propagation (although not necessarily on modal scattering by the
ends of the lined section, which has not been considered here).
The case considered here is of an infinite length of lined spliced duct. A better ap-

proximation to real aeroengines would be to consider a finite length liner in an infinitely
long rigid duct, as used in several mathematical, numerical and experimental studies
(e.g. references in the introduction; Watson, Nark & Jones 2008). In addition to the dif-
ferent propagation characteristics within the lined spliced section, scattering at the two
sudden axial discontinuities in boundary condition between rigid-walled and lined leads
to further effects that are predicted to reduce the effectiveness of the lined section in
absorbing sound in some instances (see the preceding references). While these end effects
are not present in the model presented in this paper, they could be added by using a
mode-matching condition at the two axial wall discontinuities; indeed, this is exactly
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what was done by Wright (2006) and Gabard & Astley (2008), except that in these stud-
ies the duct eigenmodes were determined numerically within the lined spliced section
using a two-dimensional finite-element method in place of the mathematical method pre-
sented here. The sudden discontinuities could also be incorporated using a Wiener–Hopf
method (as in Koch & Möhring 1983; Rienstra 2007); moreover, such a method might
also be used to extend the analytical infinite-duct solution given here to a semi-infinite
duct and hence predict the radiation to the far field (as in, e.g. Munt 1977; Veitch &
Peake 2008).
So far, the only modal solutions to the recurrence relations (3.13,3.15) found are solu-

tions that have an equivalent ε = 0 mode. That this should always be so is not evidently
true; for example, moving smoothly from a rigid-walled duct with 1/Z = 0 to a lined
duct with 1/Z 6= 0 not only perturbs the 1/Z = 0 modes, but also supports up to four
extra surface modes with no rigid-wall equivalent (Rienstra 2003; Brambley & Peake
2006). It might have been thought that the trapped modes localized within the imme-
diate neighbourhood of a splice might have had no unspliced equivalent, but in fact, as
found by Bi et al. (2009) for no flow and here with flow, these trapped modes originate
as unspliced surface wave modes of the appropriate azimuthal order (in this case, m = 0
and m = 2). At present, therefore, the existence of modes with no unspliced equivalent
cannot be ruled out.

The support of E.J.B. by a Research Fellowship from Gonville & Caius College, Cam-
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Koch, W. & Möhring, W. 1983 Eigensolutions for liners in uniform mean flow ducts. AIAA J.
21 (2), 200–213.

LeBlond, P. H. & Mysak, L. A. 1978 Waves in the Ocean. Elsevier.

Lighthill, M. J. 1978 Waves in Fluids. Cambridge.

McAlpine, A. & Wright, M. C. M. 2006 Acoustic scattering by a spliced turbofan inlet duct
liner at supersonic fan speeds. J. Sound Vib. 292, 911–934.

Munt, R. M. 1977 The interaction of sound with a subsonic jet issuing from a semi-infinite
cylindrical pipe. J. Fluid Mech. 83, 609–640.

Myers, M. K. 1980 On the acoustic boundary condition in the presence of flow. J. Sound Vib.
71, 429–434.

Osipov, A. V. & Norris, A. N. 1999 The malyuzhinets thoery for scattering from wedge
boundaries: A review. Wave Motion 29, 313–340.

Pagneux, V., Amir, N. & Kergomard, J. 1996 A study of wave propagation in varying cross-
section waveguides by modal decomposition. Part I. Theory and validation. J. Acoust. Soc.
Am. 100, 2034–2048.

Pridmore-Brown, D. C. 1958 Sound propagation in a fluid flowing through an attenuating
duct. J. Fluid Mech. 4, 393–406.

Rademaker, E. R., Sarin, S. L. & Parente, C. A. 1996 Experimental investigation on the
influence of liner non-uniformities on prevailing modes. AIAA paper 96-1682.

Regan, B. & Eaton, J. 1999 Modelling the influence of acoustic liner non-uniformities on duct
modes. J. Sound Vib. 219, 859–879.

Rienstra, S. W. 2003 A classification of duct modes based on surface waves. Wave Motion 37,
119–135.

Rienstra, S. W. 2007 Acoustic scattering at a hard–soft lining transition in a flow duct.
J. Engng Mathso 59, 451–475.

Rienstra, S. W. & Darau, M. 2011 Boundary-layer thickness effects of the hydrodynamic
instability along an impednace wall. J. Fluid Mech. 671, 559–573.

Rienstra, S. W. & Vilenski, G. G. 2008 Spatial instability of boundary layer along impedance
wall. AIAA paper 2008-2932.

Sarin, S. L. & Rademaker, E. R. 1993 In-flight acoustic mode measurements in the turbofan
engine inlet of fokker 100 aircraft. AIAA paper 93-4414.

Swinbanks, M. A. 1975 The sound field generated by a source distribution in a long duct
carrying sheared flow. J. Sound Vib. 40, 51–76.

Tam, C. K. W. & Ju, H. 2009 Finite difference computation of acoustic scattering by small
surface inhomogeneities and discontinuities. J. Comput. Phys. 228, 5917–5932.

Tam, C. K. W., Ju, H. & Chien, E. W. 2008 Scattering of acoustic duct modes by axial liner
splices. J. Sound Vib. 310, 1014–1035.

Tester, B. J. 1973 Some aspects of “sound” attenuation in lined ducts containing inviscid
mean flows with boundary layers. J. Sound Vib. 28, 217–245.

Tester, B. J. & de Mercato, L. 2006 Far-field directivity of rotor-alone tones radiated from
fan intakes with spliced liners for different intake shapes, with flow. AIAA paper 2006-2456.



Eigenmodes of lined flow ducts with rigid splices 27

Tester, B. J., Powles, C. J., Baker, N. J. & Kempton, A. J. 2006 Scattering of sound by
liner splices: A Kirchhoff model with numerical validation. AIAA J. 44 (9), 2009–2017.

Veitch, B. & Peake, N. 2008 Acoustic propagation and scattering in the exhaust flow from
coaxial cylinders. J. Fluid Mech. 613, 275–307.

Vilenski, G. G. & Rienstra, S. W. 2007 On hydrodynamic and acoustic modes in a ducted
shear flow with wall lining. J. Fluid Mech. 583, 45–70.

Watson, W. R. 1981 Noise suppression characteristics of peripherally segmented duct liners.
Tech. Rep. TP-1904. NASA.

Watson, W. R., Nark, D. M. & Jones, M. G. 2008 Assessment of 3D codes for predicting
liner attenuation in flow ducts. AIAA paper 2008-2828.

Wright, M. C. M. 2006 Hybrid analytical/numerical method for mode scattering in az-
imuthally non-uniform ducts. J. Sound Vib. 2006, 583–594.

Yang, B. & Wang, T. Q. 2008 Investigation of the influence of liner hard-splices on duct
radiation/propagation and mode scattering. J. Sound Vib. 315, 1016–1034.


