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Abstract

An exact analytic solution is derived for the 2D acoustic pressure field generated by a time-harmonic line mass
source located above an impedance surface with uniform grazing flow. Closed-form asymptotic solutions
in the far-field are also provided. The analysis is valid for both locally-reacting and nonlocally-reacting
impedances, as is demonstrated by analysing a nonlocally reacting effective impedance representing the
presence of a thin boundary layer over the surface. The analytic solution may be written in a form suggesting
a generalization of the method of images to account for the impedance surface. The line source is found
to excite surface waves on the impedance surface, some of which may be leaky waves which contradict the
assumption of decay away from the surface predicted in previous analyses of surface waves with flow. The
surface waves may be treated either (correctly) as unstable waves or (artificially) as stable waves, enabling
comparison with previous numerical or mathematical studies which make either of these assumptions.

The computer code for evaluating the analytic solution and far-field asymptotics is provided in the
supplementary material. It is hoped this work will provide a useful benchmark solution for validating 2D
numerical acoustic codes.
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1. Introduction

Impedance surfaces are an important concept in acoustics, as they can be used to represent the response
of any surface to small amplitude perturbations (such as sound or instabilities), and have been successfully
employed in applications ranging from outdoor acoustics over a porous ground [2] to acoustic linings in
aircraft engine intakes [3]. The mean flow present in aircraft engine intakes complicates the interaction
between the acoustics and the impedance surface, potentially allowing for instabilities to grow over the
surface [4]. In order to investigate the behaviour of sound interacting with an impedance surface, either
plane waves or localized (point or line) sources are usually employed. While plane waves are conceptually
simpler, localized sources have two important advantages. Firstly, the solution to a point or line source
forcing represents the Green’s function, and can therefore be used to construct the response of an impedance
surface to arbitrary forcing (including, but not limited to, localized dipole and quadrupole forcing). Secondly,
localized sources are far better suited to verifying the correctness of computational acoustic simulations, since
they involve no incoming waves from outside the computational domain and since they excite all supported
acoustic modes (including possibly unstable surface modes). For these reasons, this paper presents an
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analytic solution to the simplest possible situation involving a localized source, an impedance surface and
a mean flow, this being the 2D situation of a uniform flow over an infinite constant-impedance surface
subjected to a harmonic line forcing.

There have been many studies of the behaviour of an infinite flat impedance surface subjected to a point
source in 3D [5–10] and subjected to a line source in 2D [11–14]. None of these studies consider a mean
flow. Moreover, all of these studies start with a statement that the solution may be written as a sum of a
free-field, or direct, wave, and a reflected wave. Integral identities are then manipulated to find a correction
to either a hard-walled (Z = ∞) or pressure-release (Z = 0) reflected wave, or to find the functional
form of a reflection coefficient, often involving the manipulation of integrals of Bessel identities and/or the
decomposition of cylindrical waves into an integral over plane waves. Here, we use a much simpler and
more direct formulation by solving directly the Helmholtz equation using a Fourier transform. The solution
derived in this way is naturally found to separate into a direct and a reflected term, and for locally-reacting
surfaces the reflected term is naturally of the form of a pressure-release reflection plus a correction.

The classical method of images may be used to compute the reflected wave for a hard-wall or a zero-
pressure surface. Morse and Bolt [5, pp. 141–143] found a comparable result for a general impedance surface
for a 3D point source, which consisted of an image point source plus an image line source perpendicular
to the surface, thus providing a generalization of the method of images. This result has been repeatedly
rediscovered, as pointed out by Taraldsen [10], who argued that this image line source is better viewed as a
complex line source extending in the imaginary normal direction to the surface. Here, we find a comparable
generalization for the reflection of a 2D line source; this generalization of the method of images in 2D is
different from the 3D generalization, albeit with certain similarities.

An impedance surface often supports waves itself, which are here referred to as surface waves. For a point
source in 3D, Attenborough et al. [7], building on the work of Paul [6], performed a steepest descent analysis
and found a pole that gave rise to a surface wave. For a 2D line source, Mechel [14] also found a pole that
lead to a surface wave. Here, due to the inclusion of mean flow, the surface wave behaviour is expected to be
rather different [4, 15], with one such surface wave potentially corresponding to a hydrodynamic instability
of flow over the surface. Due to this complication, Rienstra and Tester [16] choose to neglect the possible
instability of the surface waves as an explicit modelling assumption while deriving their Green’s function for
a 3D point source in a lined cylindrical duct with flow. Studies of surface waves with flow [4, 15, 17] have so
far investigated only the propagation of surface waves, and have not consider their generation by an explicit
acoustic source. Because of this, these studies assumed the surface waves to be localized to the surface and
to decay exponentially away from it, which Crighton [18] showed need not be true if the acoustic source is
included in the model. Crighton demonstrated this by showing that flow over an elastic plate subjected to a
line source results in “leaky waves” that initially grow exponentially away from the surface before eventually
being cut off by a Fresnel region. Here, a similar effect is found.

In addition to providing insight into the nature of the solution, the analysis of a line source above an
impedance surface with flow represents a useful benchmark problem against which to validate numerical
simulations. Choosing a problem to benchmark against can be difficult. For a realistic situation involving
complicated geometries where no exact analytic solution exists, such as a 3D mode propagating out of a
realistic aeroengine intake [19], comparisons can only be made against approximate analytic solutions, such
as those using the Method of Multiple Scales [20–24]. In such situations, it is unclear how well the analytic
and numerical solutions should be expected to match, since the analytic solution is only approximate.
Similarly, validating numerical simulations against experimental results, as performed by Richter [19] using
the NASA Grazing Incidence Tube experimental results [25], has the disadvantage that the mode excited,
the definition of the liner impedance and the measured results are all subject to experimental error, and
that moreover the results appear sensitive to other factors such as the tube’s downstream exit impedance,
3D effects, and viscous and boundary layer effects [26–28]. Simple test cases therefore allow an exact
comparison between the numerical simulation and an analytic solution, one of the simplest of which is that
of an oblique plane wave reflecting from an impedance surface [29]; a number of common validations for 2D
and 3D time-dependent numerical acoustics simulations with flow are described by Richter [19, chapter 7.1],
and similar validations are also used in 2D and 3D frequency-domain simulations [e.g. 30]. However, while
these situations are sufficiently simple to permit an exact closed-form analytical expression for the pressure

2



field, all of these tests rely on accurately introducing an incoming acoustic wave at the boundary of the
numerical domain, while many of them also do not test the correct simulation of surface waves, do not test
the impedance surface at a range of axial wavelengths, nor test correct propagation to the far field. Here,
we consider a simple 2D benchmark problem which avoids all of these limitations, yet which still permit an
analytic solution. Apart from the implementation of the impedance boundary condition, this benchmark
problem is relatively straightforward to simulate numerically, and does not require the forcing of an incoming
wave or mode at a numerical boundary.

In §2, both exact analytical solutions and leading-order asymptotic far-field solutions are derived directly
from the governing equations. The results are valid for both locally- and nonlocally-reacting impedance
surfaces, and this is demonstrated in §3 by implementing a modified impedance boundary condition [31]
which accounts for a thin boundary layer over the impedance surface and results in an effective impedance
which is nonlocal. Plots of the results of both of these sections are given in §4, before the implications of
the analysis for our understanding of surface waves and the 2D generalization of the method of images are
given in §5 and §6 respectively. A summary and a discussion of how the results presented here could be
generalized is then given in §7.

2. Analytic and asymptotic solutions

We consider the simplest possible situation involving a localized source, an impedance surface and a mean
flow. Specifically, we consider a uniform mean flow of Mach numberM flowing in the positive x-direction over
an impedance surface occupying the plane y = 0, on top of which we introduce a time-harmonic localized
source located at x = 0 and y = ys. Here, a line mass source is chosen for analytic and computational
simplicity, although 2D solutions involving dipoles, quadrupoles, or distributed sources could be deduced
directly from this line source analysis. Moreover, while uniform mean flow is considered here, a more realistic
sheared boundary layer mean flow may be represented by incorporating the effect of the sheared flow into the
impedance of the surface [31–33], as will be demonstrated in §3, provided the source is outside the region
of sheared flow. For sources within the sheared flow region, a different analysis would be needed taking
account of the sheared flow explicitly [see, e.g., 34–36].

Throughout what follows, we nondimensionalize density by the (constant) mean flow density ρ0, velocity
by the constant sound speed c0, and distance by an arbitrary length scale a (so that time is nondimensional-
ized by a/c0). While it may at first sight seem confusing to nondimensionalize using an arbitrary lengthscale
a, here we prefer to keep a arbitrary to aid comparison with previously investigations where a is already
specified, such as the radius of a duct or the chord length of a wing1.

Our governing equations are therefore the Linearized Euler Equations, and eliminating all but the per-
turbation pressure p̂ leads to the convected wave equation

D2p̂

Dt2
−∇

2p̂ =
DS

Dt
, with S = δ(x)δ(y − ys)e

iωt, (1)

where D/Dt = ∂/∂t+M∂/∂x is the convective derivative with respect to the mean flow, and S is the mass
source per unit distance in the z-direction, ys is the height of the source above the impedance surface, and
ω is the Helmholtz number. Since Eq. (1) is linear and the source is time harmonic with time dependence
exp{iωt}, so too will the solution be time harmonic with the same dependence. It may be noted that, in the
absence of an impedance surface, Eq. (1) may be solved using a Lorentz transform and the standard uncon-
vected Green’s function in 2D2. However, since this is not possible with an impedance surface present (since
the Lorentz transform interferes with the impedance surface), we proceed using a more general derivation.

1Readers worried by the arbitrary length scale a should take a to be the distance of the source from the impedance surface,
and then set ys = 1 in what follows.

2Using, for example, the change of variables x̂ = x/β, ŷ = y, and t̂ = βt+Mx/β with β2 = 1−M2, the solution to Eq. (1)
with no impedance surface is found to be p̂dir as given in Eq. (16).
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For what follows, it will turn out to be helpful to take Im(ω) = −ε with ε > 0, with the solution for real
ω being obtained in the limit ε → 0. Fourier transforming in the x-direction, so that

p̂(x, y, t; ys) =
eiωt

2π

∫ ∞

−∞

p(y; k, ω, ys)e
−ikx dk, (2)

transforms the governing equation (1) into

d2p

dy2
+ α2p = −i(ω −Mk)δ(y − ys), (3)

where α is the transverse wavenumber given by

α2 = (ω −Mk)2 − k2, with Im
(
α(k)

)
< 0 for k ∈ R. (4)

The surface y = 0 is assumed to behave as an impedance surface; that is, in the absence of mean flow, a
pressure P exp{iωt− ikx} acting on the surface would lead to a vertical velocity −V exp{iωt− ikx} in the
positive y-direction, with the impedance given by P/V = Z(k, ω). If the motion of the surface at one point is
independent of the motion of the surface everywhere else, including neighbouring points on the surface, then
the surface is called locally-reacting, and in this case Z may depend on the temporal frequency ω but must
be independent of the spatial wavenumber k. A general impedance surface with an impedance depending
on both ω and k (for example, an elastic membrane or a thin elastic plate [37]) is called nonlocally-reacting.
Although later a modified impedance boundary condition [31] will be substituted, for now the impedance
boundary condition with the mean flow included is taken to be the Myers [38] boundary condition, given by

iωZ
dp

dy
+ (ω −Mk)2p = 0 at y = 0. (5)

For the derivations that follow, unless specified explicitly, we allow for both locally and nonlocally reacting
surfaces since Z is allowed to be a function of k as well as ω.

Since we have taken Im(ω) < 0 (which can be thought of as the source growing exponentially in strength),
causality requires the radiation boundary condition at infinity that p̂ → 0 when k ∈ R.

2.1. The solution in Fourier space

Discounting solutions which grow exponentially as y → ∞, the solution to Eq. (3) is given by

p =

{
Ae−iαy y > ys,

B sinh(iαy) + C cosh(iαy) y < ys.
(6)

To this solution we must now apply the impedance boundary condition (5) at y = 0, and the continuity
and jump of derivative conditions at y = ys dictated by the delta function source term. Doing so gives the
solution

p =
(ω −Mk)e−iαy>

α
[
(ω −Mk)2 + αωZ

]
[
(ω −Mk)2 sinh(iαy<) + αωZ cosh(iαy<)

]
, (7)

where y> = max{y, ys} and y< = min{y, ys}, which may be rearranged to give

p =
(ω −Mk)

2α

[

e−iα|y−ys| − (ω −Mk)2 − αωZ

(ω −Mk)2 + αωZ
e−iα(y+ys)

]

. (8)

Inverting the Fourier transform and taking each of the two terms in the square brackets separately gives the
solution in real space as p̂ = p̂dir + p̂refl, where

p̂dir(x, y, t; ys) = eiωt

∫ ∞

−∞

(ω −Mk)

4πα
e−ikx−iα|y−ys| dk, (9a)

p̂refl(x, y, t; ys) = eiωt

∫ ∞

−∞

αωZ − (ω −Mk)2

αωZ + (ω −Mk)2
(ω −Mk)

4πα
e−ikx−iα|y+ys| dk. (9b)
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y = −ys

y = 0

Figure 1: Schematic to show the distribution of image line sources needed along y = −ys to satisfy the impedance boundary
condition at y = 0. Solid lines indicate wavefronts from the direct line source p̂dir; dotted lines indicate wave fronts from the
distribution of line sources along y = −ys, which combine to give p̂refl; filled circles denote locations of delta function line
sources; and the dot-dashed line shows the impedance surface.

The first of these, p̂dir, represents the direct wave due to the mass source in the absence of the impedance
surface. The second, p̂refl, represents the effect of reflection by the impedance surface. Note that there are
poles of the integrand of p̂refl given by the solutions of D(k, ω) = 0, where

D(k, ω) ≡ (ω −Mk)2 + α(k)ωZ (10)

is exactly the dispersion relation for surface waves at an impedance surface in flow [4]. However, a subtlety
that will emerge later is that the branch cut required to be taken for α for non-real k here will turn out
to have to be different to that taken by Ref. 4, the interesting implications of which are discussed in §5.
Eq. (9b) may be interpreted as giving the reflection p̂refl as a convolution over a line of image line sources a
depth y = −ys below the surface,

p̂refl(x, y, t; ys) =

∫ ∞

−∞

R(xs)p̂dir(x − xs, y, t;−ys) dxs, (11)

where the generalized reflection coefficient R(x) is given by

R(x) =
1

2π

∫ ∞

−∞

αωZ − (ω −Mk)2

αωZ + (ω −Mk)2
e−ikx dk. (12)

A schematic of this is given in Fig. 1. Note that R(x) is independent of ys, and that Eq. (11) depends on Z
only through R(x), so that all information about the impedance surface is contained within R(x). Moreover,
the special cases of a hard surface (Z → ∞) and a pressure-release surface (Z = 0) give R(x) = δ(x) and
R(x) = −δ(x) respectively, so that the standard solution using the method of images is recovered in these
two cases. This convolution may therefore be seen as a generalization of the method of images to impedance
surfaces (similar to, although different from, the complex line source generalization of the method of images
in 3D [10]). This is further investigated in §6.

2.2. Inversion of the Fourier integral for the direct wave

We now manipulate and solve Eq. (9a) for p̂dir explicitly. While this result is not new, it is presented here
since the same technique will be used in §2.3 to obtain p̂refl, and the technique is easier to follow in the case
of p̂dir. We first deform the contour of integration in Eq. (9a) onto the steepest descent contour. The details
of this are given in AppendixA. The steepest descent contour, parameterized by q ∈ R, is found (A.5) to be
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given by

ksd(q) =
ω

β2

(x

r
−M

)

− ixq2

2r2
+

|y − ys|q
r2

√

iωr + β2q2/4, (13a)

αsd(q) =
ω|y − ys|

r
− iβ2|y − ys|q2

2r2
− xq

r2

√

iωr + β2q2/4, (13b)

where β2 = 1 −M2, r2 = x2 + β2|y − ys|2, and the branch Re
(√

iωr + β2q2/4
)
> 0 is chosen so that the

contour is traversed in the correct direction. An example of this contour is given later in Fig. 6. As shown in
AppendixA, deforming the contour of integration in Eq. (9a) onto this steepest descent contour is possible,
and no poles cross the contour in this process, so that

p̂dir(x, y, t; ys) =
ieiωt−iωr(1−Mx/r)/β2

4π

∫ ∞

−∞

ω −Mksd(q)
√

iωr + β2q2/4
e−q2/2 dq. (14)

While this is easily numerically tractable due to the e−q2/2 term, in fact an exact solution is possible by
making the substitution

−q2/2 = (i + sinhφ)ωr/β2, q
√

iωr + β2q2/4 = − cosh(φ)ωr/β, (15)

yielding

p̂dir(x, y, t; ys) =
−i

4β

(
∂

∂t
+M

∂

∂x

)[

eiω
(
t+Mx/β2

) (−1

iπ

)∫ ∞−iπ

−∞

exp

{
ωr

β2
sinhφ

}

dφ

︸ ︷︷ ︸

H
(2)
0

(
ωr/β2

)

]

=
ω

4β3
exp

{

iω
(
t+Mx/β2

)}
[

H
(2)
0

(
ωr/β2

)
+

iMx

r
H

(2)
1

(
ωr/β2

)
]

,

(16)

where the integral form of the Hankel function H
(2)
0 has been used [39, p. 360] and H

(2)
0

′ = −H
(2)
1 . This

is the convective derivative of the convected form of the classical outgoing cylindrical wave, as might have
been expected for a line mass source in uniform flow; the presence of the convective derivative is due to the
mass source on the right-hand-side of Eq. (1) containing a convective derivative of a delta function.

The form of Eq. (14) is easily amenable to far-field asymptotic analysis. As shown in AppendixA.2,
Eq. (14) for r ≫ 1 gives

p̂dir(x, y, t; ys) =

√
ω

8πr

1−Mx/r

β2
exp

{

iωt− iωr
1−Mx/r

β2
+ iπ/4

}

+O

(
1√
ωr3

)

. (17)

This may also be verified by substituting the asymptotic expansion for large argument of H
(2)
0 and its

derivative [39, pp. 364–365] into Eq. (16). Eq. (17) shows that the direct wave p̂dir consists of an outgoing
cylindrical wave r−1/2 exp{iω(t− r)} from the point (0, ys) modified by a Doppler factor of (1−Mx/r)/β2.

2.3. Inversion of the Fourier integral for the reflected wave

We will now apply the same procedure as in the previous section to p̂refl, given by Eq. (9b). From
AppendixA, the steepest descent contour in this case is given by

r̂2 = x2 + β2(y + ys)
2, (18a)

k̂sd(q) =
ω

β2

(x

r̂
−M

)

− ixq2

2r̂2
+

|y + ys|q
r̂2

√

iωr̂ + β2q2/4, (18b)

α̂sd(q) =
1

r̂2

[

ωr̂|y + ys| − iβ2|y + ys|q2/2− xq
√

iωr̂ + β2q2/4
]

. (18c)
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However, unlike for the direct wave p̂dir, we must now take care to deform onto the steepest descent contour
without crossing any poles of the integrand, which are given in Eq. (10) by D(k, ω) = 0. As shown in
AppendixA, deforming the contour of integration in Eq. (9b) onto this steepest descent contour is possible,
giving

p̂refl(x, y, t; ys) =
ieiωt−iωr̂(1−Mx/r̂)/β2

4π

∫ ∞

−∞

α̂sd(q)ωZ −
(
ω −Mk̂sd(q)

)2

α̂sd(q)ωZ +
(
ω −Mk̂sd(q)

)2

ω −Mk̂sd(q)
√

iωr̂ + β2q2/4
e−q2/2 dq

+
∑

k∈K+

Ake
iωt−ikx−iα|y+ys| −

∑

k∈K−

Ake
iωt−ikx−iα|y+ys| −AkHI

eiωt−ikHIx−iα|y+ys|,

(19)

where K+ and K− are the zeros of the dispersion relation D = 0 lying either in the upper-half k-plane below
the steepest descent contour (K+) or in the lower-half k-plane above the steepest descent contour (K−), kHI

is a zero of the dispersion relation D = 0 representing a possible hydrodynamic instability discussed below,
and

Ak =
i(ω −Mk)3

ωZ
(
β2k +Mω

)
+ 2M(ω −Mk)α− α2ω∂Z/∂k

. (20)

Note that K+ and K− typically contain a small finite number of values of k (with a maximum of four
values for a locally-reacting impedance) and may be empty. We therefore see that the poles of the integrand
represent the triggering of surface waves, analogous to previous 2D and 3D results without flow [6, 7, 14].
The classification of the surface waves in Eq. (19) into K+ and K− assumes that all surface waves are stable.
However, for a locally reacting impedance Rienstra [4] suggested that one of the surface waves (denoted
here by kHI) might represent a hydrodynamic instability. Since kHI is already classified into K+ and K− as
if it were stable, correcting this to consider kHI as an instability is achieved by including the term explicitly
involving kHI in Eq. (19). Excluding this term (or equivalently setting AkHI

= 0) yields the stable solution.
The surface waves are discussed further in §5.

Unlike for p̂dir, in general Eq. (19) is the best that can be done analytically for p̂refl, and solution of
Eq. (19) must proceed by numerical quadrature. However, due to the use of a steepest descent contour,

the integral in Eq. (19) is both nicely decaying as |q| → ∞ as e−q2/2 and has no rapid oscillations as the
exponent is entirely real; computation of this integral is therefore easily numerically tractable. Solution of
the dispersion relation D(k, ω) = 0 is also readily tractable, especially in the locally reacting case when Z(ω)
is independent of k for which D(k, ω) = 0 reduces to a quartic equation in k. Code to evaluate Eq. (19) is
provided in the supplementary material, some example results of which are given in §4.

However, further progress may be made in the far field r̂ ≫ 1, for which Eq. (19) is readily amenable to
asymptotic analysis. As shown in AppendixA.2, for r̂ ≫ 1, Eq. (19) gives

p̂refl =

√
ω

8πr̂

1−Mx/r̂

β2

[

Z(k̂s)β
4(y + ys)/r̂ − (1 −Mx/r̂)2

Z(k̂s)β4(y + ys)/r̂ + (1 −Mx/r̂)2

]

exp

{

iωt− iωr̂
1−Mx/r̂

β2
+ iπ/4

}

+
∑

k∈K+

Ake
iωt−ikx−iα|y+ys| −

∑

k∈K−

Ake
iωt−ikx−iα|y+ys| −AkHI

eiωt−ikHIx−iα|y+ys| +O

(
1√
ωr3

)

,

(21)

where k̂s = k̂sd(0) = (x/r̂ −M)ω/β2. The supplementary material also provides code to evaluate Eq. (21).
Comparing Eq. (21) with Eq. (17) shows that p̂refl consists of an outgoing cylindrical wave from the point

(0,−ys) with the same Doppler factors as p̂dir but with a directivity given by the term in square brackets
in Eq. (21), together with a sum of surface waves.

2.4. Far-field directivity

We now consider the sound radiated to the far field. We take x = R sin θ and y = R cos θ so that
downstream of the line source corresponds to θ > 0. We first note that

√

x2 + β2(y − ys)2 = R
√

1−M2 cos2 θ − β2ys cos θ√
1−M2 cos2 θ

+O

(
1

R

)

. (22)
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Hence, using Eq. (17) and Eq. (21), p̂ = p̂dir + p̂refl is given to leading order by

p̂ =

√
ω

2πR
D(R, θ)eiφ(R,θ) (23a)

where the phase φ and directivity D are given by

φ(R, θ) = ωt− ωR

β2

(√

1−M2 cos2 θ −M sin θ
)

+
π

4
, (23b)

D(R, θ) =

√
1−M2 cos2 θ −M sin θ

β2
(
1−M2 cos2 θ

)3/4
D̂
(

sin θ√
1−M2 cos2 θ

,
cos θ√

1−M2 cos2 θ

)

, (23c)

where D̂(X,Y ) =
β4ZsY cos(ωysY ) + i(1−MX)2 sin(ωysY )

β4ZsY + (1−MX)2
, (23d)

and Zs = Z
(
(X − M)ω/β2, ω

)
. It should be noted that, in deriving this far-field directivity, we have

neglected the sum of surface waves in p̂refl. This is justified for stable surface waves since such surface
waves are exponentially decaying in |x| and therefore are exponentially small compared with the far-field
solution (23). If a hydrodynamic instability is present, this will be exponentially larger than the far-field
solution (23) at angles for which it is excited, and it is not helpful to plot such exponentially large solutions
when considering the far-field directivity. This can be seen in plots of the directivity given in Fig. 3 and
Fig. 5, which are discussed in §4.

2.5. Overall solution

The overall solution for a line source over an impedance wall is given by p̂(x, y, y; ys) = p̂dir(x, y, t; ys) +
p̂refl(x, y, t; ys), where p̂dir is the direct field due to a line source in free space (i.e. with no impedance surface
present) given explicitly in terms of Hankel functions in Eq. (16), and p̂refl is the field due to the reflection
of the line source by the impedance surface given as a steepest-descent integral suitable for numerical
computation in Eq. (19). Code to evaluate p̂ using Eq. (16) and Eq. (19) is provided in the supplementary
material. Eq. (19) shows that the line source also excites surface waves along the impedance surface given
[as predicted by 4] by Eq. (10) for D(k, ω) = 0, which are further investigated in §5. Since one of these
surface waves might represent a hydrodynamic instability, but since the Myers [38] impedance boundary
condition is unsuitable for this purpose [40], we next use the general analysis described already to introduce
a modified impedance boundary condition.

3. Incorporating a modified impedance boundary condition

In this section, we utilize the flexibility afforded by having kept Z(k, ω) as a function of both k and ω to
substitute for the Myers boundary condition (5) a modified boundary condition [31] to account for a thin
boundary layer over the impedance surface. Here, we assume a constant-density linear boundary layer of
thickness δ given by

U(y) =

{
M y > δ
My/δ y < δ

. (24)

The impedance Z(k, ω) used in Eq. (5) is then replaced by an effective impedance Zmod(k, ω) that accounts
for the effects of this boundary layer, given by

iωZmod =
iωZ −Mkωδ + 2k2M2δ/3

1 + iZMδk3(ω −Mk)−2
, (25)

where the Z(k, ω) in Eq. (25) is the actual impedance of the surface. Note that the effective impedance
Zmod seen by the acoustic waves is nonlocally reacting (since it depends on both k and ω) even if the actual
impedance of the surface Z were locally reacting and therefore independent of k. In making this change, only
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the integrand of p̂refl and the amplitudes and wavenumbers of the surface waves Ak are changed. Eq. (19)
then gives p̂refl(x, y, t; ys) as

p̂refl =
ieiωt−iωr̂(1−Mx/r̂)/β2

4π

∫ ∞

−∞

ω −Mk̂sd
√

iωr̂ + β2q2/4
e−q2/2

×
(
ωZ + iMk̂sdωδ − 2ik̂2sdM

2δ/3
)
α̂sd −

(
ω −Mk̂sd

)2 − iMZδk̂3sd
(
ωZ + iMk̂sdωδ − 2ik̂2sdM

2δ/3
)
α̂sd +

(
ω −Mk̂sd

)2
+ iMZδk̂3sd

dq

+
∑

k∈Kmod
+

Amod
k eiωt−ikx−iα|y+ys| −

∑

k∈Kmod
−

Amod
k eiωt−ikx−iα|y+ys| −Amod

kHI
eiωt−ikHIx−iα|y+ys|,

(26)

where k̂sd(q) and α̂sd(q) are as in Eq. (18) and kHI, Kmod
+ and Kmod

− are defined as before but for solutions
to the dispersion relation Dmod(k, ω) = 0, where

Dmod(k, ω) =
(
ωZ + iMkωδ − 2ik2M2δ/3

)
α+

(
ω −Mk

)2
+ iMZδk3 (27)

is the surface wave dispersion relation of [15] although with a different branch cut taken for α, and Amod
k

are the respective surface wave amplitudes given by

Amod
k = i(ω −Mk)

(ω −Mk)2 + iMZδk3

−α∂D/∂k
(28)

where
−α∂D/∂k = (β2k +Mω)(ωZ + iMkωδ − 2ik2M2δ/3)− iα2(Mωδ − 4kM2δ/3)

+ 2M(ω −Mk)α− α2ω∂Z/∂k − 3iMZδk2α− iMδk3α∂Z/∂k.
(29)

Eq. (26) may be easily computed using quadrature, as before, and code to do so is provided in the supple-
mentary material. Moreover, the far-field asymptotics in AppendixA.2 give, for r̂ ≫ 1,

p̂refl =

√
ω

8πr̂

1−Mx/r̂

β2
exp

{

iωt− iωr̂
1−Mx/r̂

β2
+ iπ/4

}

×
[(

Z + iMk̂sδ − 2ik̂2sM
2δ/(3ω)

)
(y + ys)/r̂ − (1−Mx/r̂)2/β4 − iZMδk̂3sω

2

(
Z + iMk̂sδ − 2ik̂2sM

2δ/(3ω)
)
(y + ys)/r̂ + (1−Mx/r̂)2/β4 + iZMδk̂3sω

2

]

+
∑

k∈K+

Amod
k eiωt−ikx−iα|y+ys| −

∑

k∈K−

Amod
k eiωt−ikx−iα|y+ys| −Amod

kHI
eiωt−ikHIx−iα|y+ys|+O

(
1√
ωr3

)

,

(30)

where, as before, k̂s = (x/r̂−M)ω/β2. The modified impedance boundary condition has therefore modified
the directivity of the outgoing cylindrical wave (given by the term in square brackets), and has also modified
the number and nature of the surface waves [as described by 15].

4. Numerical results

To illustrate the above results, we here give numerical examples; the code used to produce these results
is available in the supplementary material. Table 1 describes the two cases presented: case 1 uses the Myers
boundary condition, with parameters intended to be typical of aeroacoustics, while case 2 demonstrates the
use of the modified impedance boundary condition, as derived in §3.

4.1. Numerical results for the Myers boundary condition

Fig. 2 plots a snapshot of the pressure p̂ in the x-y plane for case 1, computed using Eq. (16) and Eq. (19).
Fig. 2(a) shows the impedance surface absorbing sound in the downstream direction, as demonstrated by
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ω M δ ys Z(ω) kHI

case 1 31 0.5 0 0.3 0.75 + 0.01iω − 10i/ω ≈ 112 + 105i
case 2 50 0.4 10−2 0.3 2 + 0.03iω − 60i/ω ≈ 113 + 5i

Table 1: Table of parameters used for the two cases evaluated numerically here. A value of δ = 0 indicates evaluation using
the Myers, rather than the modified, boundary condition.

(a) stable

y

x

(b) unstable

y

x

Figure 2: Snapshot of the pressure field (Im(p̂)) in the x-y plane for case 1, calculated using Eq. (16) and Eq. (19). Parameters
are given in table 1. (a) assumes all surface waves are stable, while (b) assumes the kHI surface wave to be an instability.

the lack of an interference pattern in this region, although some beaming at three oblique upstream angles
and a fourth weaker beam at an angle nearly normal to the surface is present. Fig. 2(b) shows the result
if the kHI surface wave is assumed to be an instability, and clearly shows the surface wave being launched
from the image point y = −ys at a well-defined angle. Note that, apart from the presence of this instability,
Fig. 2(a) and Fig. 2(b) are almost identical.

Fig. 3 plots the far-field directivity for case 1 computed using the far-field asymptotics (23) together with
the actual solution computed using Eq. (16) and Eq. (19) at a large distance R = 50 and a small distance
R = 2 from the origin. As expected, the analytic and asymptotic results are indistinguishable for R = 50,
and although the match at R = 2 is not perfect, it is still surprisingly good. The three strong upstream
beaming directions and the fourth weaker nearly-normal beaming direction are clearly visible, as is the fact
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0dB

−5dB

−10dB

−15dB

−20dB

Figure 3: The far-field directivity (in terms of sound pressure level on a decibel scale) for case 1. Parameters are given in
table 1. (top) at a distance R = 50 from the origin. (bottom) at a distance R = 2 from the origin. Solid line: analytic
solution (16, 19) with kHI assumed unstable. Dotted line: analytic solution (16, 19) with all surface waves assumed stable.
Dashed line: far-field asymptotics given by Eq. (23).

that far more sound is radiated upstream than downstream, in agreement with Fig. 2(a). Also in agreement
with Fig. 2(b), the effect of treating the kHI surface wave as an instability is to dominate the directivity for
a range of observation angles downstream of the line source, but to otherwise leave the far-field directivity
almost unaltered.

4.2. Numerical results for the modified boundary condition

Fig. 4 plots the r.m.s. time-average of the pressure p̂ in the x-y plane for case 2, computed using Eq. (16)
and Eq. (26). For these parameters, Fig. 4(a) shows beaming both upstream and downstream of the source,
although more sound is still radiated upstream than downstream. Fig. 4(b) shows the same result if the
surface wave kHI is considered to be an instability. The surface wave is again seen to be launched from the
image point y = −ys at a well-defined angle, which for these parameters is a very shallow angle. Again,
apart from the presence of this instability, Fig. 4(a) and Fig. 4(b) are almost identical.

Fig. 5 shows the corresponding far-field directivity for case 2, comparing the far-field directivity computed
using Eq. (23) with Z replaced by Zmod from Eq. (25), and the exact solution computed using Eq. (16) and
Eq. (26) at a large distance R = 50 and a small distance R = 2 from the origin. The directivity pattern
clearly matches with that shown in Fig. 4. Once again, the exact and asymptotic results are indistinguishable
for R = 50 and show reasonable agreement at the much closer distance R = 2. Note that the instability is
present at shallow downstream angles for R = 50, but has not yet grown sufficiently to be seen for R = 2, and
that the directivity with kHI assumed unstable is indistinguishable from the directivity with kHI assumed
stable everywhere outside the region that the instability dominates.

5. Surface waves

In the analysis of §2 and §3 above, the reflected wave p̂refl has consisted of a steepest-descent integral and
a sum of surface waves. The surface waves are given by a dispersion relation D(k, ω) = 0, with D being given
by Eq. (10) for the Myers impedance boundary condition and Eq. (27) for the modified impedance boundary
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(a) stable

(b) unstable

Figure 4: Time-averaged r.m.s. pressure amplitude (|p̂|/
√
2) on a dB scale in the x-y plane for case 2, calculated using Eq. (16)

and Eq. (26). Parameters are given in table 1. (a) assumes all surface waves are stable, while (b) assumes the kHI surface wave
to be an instability. (The instability is visible in the bottom right hand corner.)

0dB

−5dB

−10dB

−15dB

−20dB

Figure 5: The far-field directivity (in terms of sound pressure level on a decibel scale) for case 2. Parameters are given in
table 1. (top) at a distance R = 50 from the origin. (bottom) at a distance R = 2 from the origin. Solid line: analytic
solution (16, 26) with kHI assumed unstable. Dotted line: analytic solution (16, 26) with all surface waves assumed stable.
Dashed line: far-field asymptotics given by Eq. (23) with Z replaced by Zmod from Eq. (25).
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(a) Im(ω) < 0 (b) Im(ω) = 0

Im
(k
)

Re(k)Re(k)

BC1

BC2

SD1

SD2

Pole

Figure 6: Sketch in the k-plane of the possible choices for the branch cuts of α(k) and the steepest descent contours for
p̂dir(x, Y + ys, t; ys) and p̂refl(x, Y − ys, t; ys). BC1 is the branch cut for alpha given by requiring Im(α(k)) < 0. BC2 is the
branch cut given by Eq. (32). The shaded region indicates where Im(α(k)) > 0 for branch cut BC2. SD1 is the steepest descent
contour for x/|Y | = 1. SD2 is the steepest descent contour for x/|Y | = 10. Points on the steepest descent contours indicate
the saddle point. Poles of the integrand of Eq. (9b) are also marked.

condition. For a locally reacting impedance, Eq. (10) is exactly the dispersion relation for surface waves
found by Rienstra [4], which was shown to have up to four solutions, one of which might be a hydrodynamic
instability. Eq. (27) is exactly the surface wave dispersion relation found by Brambley [15], which was shown
for a locally reacting impedance to have at most six solutions, one of which is a hydrodynamic instability
(for a discussion of stability, see Refs. 31, 40). However, both dispersion relations D involve the radial
wavenumber α, and since α2 = (ω − Mk)2 − k2 there are two possible choices for the sign of α. Both
Rienstra [4] and Brambley [15] took Im(α(k)) < 0 for all k, justified by requiring exponential decay of the
surface waves away from the surface since surface waves have the form p̂SM ∝ exp{iωt − ikx − iαy}. We
now investigate the surface waves that are excited by a line-source above the impedance surface while only
making the correct and necessary assumption that Im(α(k)) < 0 for real k (implied by causality since we
have taken Im(ω) < 0), which we will see fixes a different choice of α leading to surface waves that can grow
exponentially with distance from the surface. The contour deformation of the Fourier inversion contour onto
the steepest descent contour is only valid provided a continuous choice of α(k) is made along the contour.
Since the choice of sign of α is equivalent to the choice of branch cut for

√

(ω −Mk)2 − k2, this is equivalent
to the statement that the the Fourier inversion contour should never cross the branch cut for this square
root during the contour deformation process.

Fig. 6 shows the complex k-plane and two example steepest descent contours given by ksd from Eq. (13)

with Y = |y − ys| and k̂sd(q) from Eq. (18b) with Y = y + ys. The shape of these contours is only a
function of the angle of observation and not of the distance between source and observer. To see this, we set
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x = r̂(x, y) sin(θ̃) and y+ys = r̂(x, y) cos(θ̃)/β, and reparameterize the steepest descent curve by q̂ = r̂−1/2q.
Eq. (18b) then gives

k̂sd(q̂) =
ω

β2

(

sin θ̃ −M
)

− i sin(θ̃)q̂2/2 + | cos(θ̃)|q̂
√

iω + β2q̂2/4, (31)

which can be seen to be independent of the observer distance r̂. Since which surface waves are excited (by
being included in K±) depends on which side of the poles the steepest descent contour runs, which surface
waves are excited is therefore a function of the observer angle but not the distance from the source; i.e.
particular surface waves get turned off or on3 at particular observation angles. We may therefore modify
the condition that surface waves decay as y → ∞, as was argued by Rienstra [4] and Brambley [15] for the
choice of branch cut of α, and instead specify that only surface waves which are excited for θ̃ = 0 (i.e. that
are observed normal to the surface) need decay as y → ∞.

However, Fig. 6 also shows that we are restricted in which branch cuts may be chosen for α, since the
steepest descent contour is given and α(k) must be chosen to be a continuous branch along the contour (as
indeed it is for αsd given by Eq. (13b)). The branch cut chosen by Rienstra [4] and Brambley [15] is shown
as BC1 in Fig. 6, and can be seen to be crossed by the steepest descent contour for x/|Y | = 10. Considering
|Y | → 0 shows that there is only one possible branch cut for α(k) that is not crossed by any steepest descent
contour, shown in Fig. 6 as BC2. That branch is given by

α(k) = −iβsqrt
(
i(k + ω/(1−M))

)
sqrt

(
− i(k − ω/(1 +M))

)
(32)

where sqrt(η) =
√
η with Re

(
sqrt(η)

)
> 0; conveniently, this is often the branch of the square root that

is implemented by numerical libraries, such as fortran’s SQRT or C’s csqrt functions. Note that this
choice of branch means that Im(α) > 0 for some values of k (indicated by the shaded regions in Fig. 6).
This implies that some surface waves that are excited in fact have Im(α) > 0 and so grow exponentially
as y → ∞. These are what were termed fake surface waves by Brambley and Peake [41]. Hence, “actual”
surface waves with Im(α) < 0 in the shaded regions of Fig. 6 will not be excited by a line source over an
impedance surface, while “fake” surface waves with Im(α) > 0 will be excited for certain radiation angles
provided they lie within the shaded regions of Fig. 6; Fig. 6(b) shows a “fake” surface wave (denoted by
+) that is present in K− for x/|Y | = 10 but not for x/|Y | = 1. As an actual example, Fig. 7 shows the
location of the surfaces waves in the k-plane for case 2. The surface waves that are excited for at least some
angles by a line source above the impedance surface are shown as +, while the surface waves predicted by
Brambley [15] are shown as ×. Two surface waves with Im(α) < 0 are never excited, while one surface wave
with Im(α) > 0 is excited and is observed downstream of the line source at shallow angles to the impedance
surface (i.e. θ̃ close to π/2). The surface wave with k ≈ 113+5i with Im(α) < 0 is excited by the line source
for a certain range of observation angles, and indeed this surface waves is predicted by Brambley [15] to be
a downstream-propagating instability kHI.

The fact that surface waves need not decay as y → ∞ was noted by Crighton [18], who termed such
waves “leaky waves”, as sketched in Fig. 8. Crighton found that supersonic surface waves running along the
surface (from A towards C in Fig. 8) launched oblique acoustic waves into the fluid (denoted by AD, BE
and CF in Fig. 8). Since the supersonic surface wave is loosing energy to the fluid by radiating waves, it
decays exponentially away from the source (decaying in x from the point A in Fig. 8). For a fixed x location
(for example, the dashed vertical line in Fig. 8), as y is increased the observer is looking first at the wave
CF launched from the surface at point C, and then at the wave BE launched from the surface at point B
closer to the source, which is therefore exponentially larger in amplitude; hence, the disturbance in the fluid
is expected to grow exponentially as the distance y from the surface increases. As y is increased further,
there comes a point (or, rather, an observation angle, shown as θ in Fig. 8) for which the oblique wave AD
launched at the source is seen, and for y larger than this no oblique waves generated from the surface exist.
That is, there should be a cutoff observation angle, and indeed this is what we find here.

3More correctly, the surface waves turn off and on within a Fresnel region.
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α from (32)

Im(α) < 0

Branch cut
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Figure 7: Surface waves for case 2. Plotted in the k-plane are surface waves with α as required for excitation by a line source
(+, given by Eq. (32) and corresponding to branch cut BC2 in figure 6), and surface waves predicted by Brambley [15] given
by the same Eq. (27) but with Im(α) < 0 (×, corresponding to branch cut BC1 in figure 6).
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Figure 8: Schematic diagram of a line source (•) and its mirror image (◦) generating a “leaky” supersonic surface wave (dashdot
arrow) which launches an oblique wave into the fluid (wavevectors denoted by dotted lines, wave crests denoted by solid lines).
The dashed line shows a path with x fixed and y increasing.

6. The generalized reflection coefficient at an impedance wall

We have seen in §2.3 that the reflected wave p̂refl can be seen in the far field r̂ ≫ 1 as a Doppler shifted
cylindrical wave with variable directivity together with a sum of surface waves. However, as mentioned
in §2.1 and described schematically in Fig. 1, p̂refl can also be viewed as the result of a line of line sources
along y = −ys with strengths given by a generalized reflection coefficient R(x) (11, 12). Here, we investigate
the generalized reflection coefficient R(x) further, and show how this can be interpreted as a generalization
of the classical method of images which is similar to, although different from, the complex line source
generalization of the method of images for a point source in 3D described by, for example, Taraldsen [10].
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Note that R(x) in Eq. (12) is independent of ys, and that the convolution (11) is independent of Z, so
that all the information about the impedance surface is contained within R(x). The special cases of a hard
wall with Z = ∞ and a pressure-release surface with Z = 0 result in R(x) = δ(x) and R(x) = −δ(x)
respectively. However, in all but these two special cases, obtaining p̂refl via a convolution over R(x), as
given in Eq. (11), is not an effective numerical method for computing p̂refl; instead, the formula in Eq. (19)
consisting of an easily tractable steepest-descent integral and a sum of surface waves is much faster and
more robust. However, R(x) contains all information about the impedance surface, and may therefore give
insight into the character of the reflected wave.

In what follows, we assume a locally reacting impedance; the corresponding derivation for certain non-
locally reacting impedances is given in AppendixB. For a locally reacting impedance, meaning that Z(ω)
is a function of ω only and is independent of k, the integrand of Eq. (12) is O(1) as k → ±∞, leading to a
delta-function singularity in R(x). Multiplying out R(x) in this case gives

R(x) = −δ(x) +
1

2π

∫ ∞

−∞

2αωZ

αωZ + (ω −Mk)2
e−ikx dk

︸ ︷︷ ︸

I0(x)

(33a)

= −δ(x)− βωZ

M2
eiωMx/β2

H
(2)
0

(
ω|x|
β2

)

+
1

2π

∫ ∞

−∞

2ω2Z(ω − 2Mk + β2αZ)

M2α
[
αωZ + (ω −Mk)2

]e−ikx dk

︸ ︷︷ ︸

I1(x)

. (33b)

Note that the integrand of I0 in Eq. (33a) has no pole at α = 0, but is O(1/|k|) as |k| → ∞, leading to a
logarithmic singularity of I0 at x = 0, while I1 in Eq. (33b) is O(1/|k|2) as |k| → ∞, so is expected to be
regular at x = 0, but introduces a pole at α = 0. Applying Jordan’s lemma to I0 gives

R(x) = −δ(x) + Isd0 (x) ∓
∑

k∈K∓

2αAk

ω −Mk
e−ikx, (34)

where Ak is given by Eq. (20), ± is + for x > 0 and − for x < 0, and K+ and K− are the zeros of the
dispersion relation D(k, ω) = 0 given by Eq. (10) that should be considered to be above (+) or below (−)
the inversion contour4. The integral Isd0 (x) is the contribution from deforming the integration contour of
I0(x) onto the steepest descent contour (given by setting Y = 0 in AppendixA), given by

Isd0 (x) =
i exp

{
− iω(±1−M)x/β2

}

π|x|

∫ ∞

−∞

qe−q2/2 dq

1 +
2|x|ω

Zβ5q
√

q2 + 4iω|x|/β2

(

1∓M

(

1− iq2β2

2ω|x|

))2 , (35)

where the branch of the square root is chosen such that
√

q2 + 4iω|x|/β2 ∼ q as q → +∞, with the branch
cuts taken away from the real q axis.

We may write Isd0 (x) = −(βωZ/M2)eiωMx/β2

H
(2)
0

(
ω|x|/β2

)
+Isd1 (x), where Isd1 (x) is the steepest descent

contour contribution from the I1 integral, given by

Isd1 (x) =
Zβ2

πM2

√
ω

|x|π e
−iωx(±1−M)/β2+iπ/4

∫ ∞

−∞

(±1−M)2 ± iq2β2M
ω|x| + iβ4Zq√

iω|x|

√

1− iq2β2

4|x|ω

(

1− iq2β2

4|x|ω

)
(

iZβ4q√
iω|x|

+

(

±1−M+ iq2β2M

2ω|x|

)

2

√

1− iq2β2

4ω|x|

)e−q2/2 dq.

(36)
Note that Eq. (36) is regular at q = 0, which corresponds to α = 0.

Fig. 9 plots R(x) for case 1. Plotted are the solutions calculated via Eq. (33a) and Eq. (33b), denoted

4If a pole in the upper-half k-plane is to be considered a hydrodynamic instability, then it should be considered to be below
the contour and therefore be included in K− rather than K+.
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Figure 9: Plots of R(x) against x for case 1, evaluated using Eq. (33a) (labelled I0) and Eq. (33b) (labelled I1+H
(2)
0 ), together

with the I1 integral from Eq. (33b) (labelled I1). For IHI only, the surface wave kHI is assumed to be an instability.

as I0 and I1 +H
(2)
0 in Fig. 9, which are both expected to give the same answer R(x); also plotted is the I1

integral on its own without the corresponding H
(2)
0 Hankel function. In all cases, the integrals are computed

using Isd0 and Isd1 given by (34–36) using the code available in the supplementary material. Fig. 9(a) shows
the real part, demonstrating oscillatory behaviour and rapid variation near x = 0. Fig. 9(c) zooms in near
x = 0 and demonstrates the logarithmic singularity of R at x = 0, which comes from I0(x) in Eq. (33a)

and from H
(2)
0 in Eq. (33b). The I1(x) integral can be seen to be regular at x = 0 in Fig. 9(c), as expected.

Fig. 9(b) plots instead the absolute values |R(x)| and |I1(x)|. This shows that while I1 is indeed regular
at x = 0, the pole of the integrand at α = 0 gives a far slower decay as |x| → ∞ compared with I0. It
is therefore likely that the most accurate computation of R(x) is given by Eq. (33b) for small |x| and by
Eq. (33a) for large |x|.

Fig. 9(d) shows the effect of treating the kHI surface wave as a hydrodynamic instability. The exponential
increase in |IHI

0 | and |IHI
1 | as x → ∞ can clearly be seen, but note too the corresponding effect in I0 and I1

for x < 0 if that surface wave is instead included as a stable wave.

7. Conclusion

An exact analytic easily-computable solution (16, 19) has been presented for a time-periodic line mass
source over a locally or nonlocally reacting impedance surface, together with closed-form expressions for the
far-field sound radiated (23). Both may be computed using the computer code provided in the supplementary
material. The solution may also be written using a generalized reflection coefficient as a convolution of a line
of line sources (11), which is not useful for numerical evaluation but which demonstrates a generalization of
the method of images for line sources above finite-impedance surfaces. This generalization is similar to the
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3D point-source generalization, but involves a line of line sources running parallel to the surface, whereas for
a 3D point source the generalization is of a line of point sources running perpendicular to the surface [5] or
perpendicular to the surface with an imaginary normal coordinate [10]. While many previous studies have
expressed the reflected wave as either a hard-wall or pressure-release solution plus a correction, §6 shows
that for a locally reacting surface the natural expression is as a correction to a pressure-release solution,
while AppendixB shows that for certain nonlocally reacting surfaces the natural expression is as a correction
to a hard-wall solution.

The surface waves previously identified from poles of the integrand for a point or line source above
an impedance surface without flow remain present with flow, and are here shown to correspond to the
surface wave modes predicted for flow over an impedance surface [4, 15]. In the analysis presented here
we have not attempted to ascertain the stability of these surface waves, but have instead allowed them
to be treated as if they were stable or unstable. (For a proper stability analysis of the surface waves, see
[15, 31].) It is interesting to note from the results presented in Fig. 2 and Fig. 4 that the hydrodynamic
surface wave, if present, appears to originate from the image line source location (x, y) = (0,−ys). In cases
where the stability of these surface waves is questionable, such as for a locally reacting impedance applied
using the Myers boundary condition [40], this degree of flexibility would allow the stability of the surface
waves to be inferred from experimental or numerical results. An important implication from this work is
that the assumption by Rienstra [4] and Brambley [15] that surface waves necessarily decay away from the
surface is not true, as was known by Crighton [18] for “leaky waves”, and indeed we we find here leaky

surface waves excited by a line source that grow exponentially away from the surface. This suggests that the
thorough analysis of the number and nature of surface waves with flow previously performed may need to
be modified.

Since the situation described here of a line source in uniform flow over an impedance surface in 2D is
sufficiently simple to be quickly implementable in numerical 2D acoustics simulations, and since the exact
analytic solution is available and computable using the computer code in the supplementary information,
it is hoped that this test case might form a useful benchmark by which 2D numerical acoustic simulations
may be quickly validated.

A number of extensions and generalizations of the work presented here are possible. For example, the
2D line source could be extended to a dipole or quadrupole line source, as was done for a 3D point dipole
and quadrupole by Li, Taherzadeh, and Attenborough [42] and Li and Taherzadeh [43] respectively. The
leading-order asymptotic far-field solutions (17, 21) given here could be extended to further orders, as was
done for a 3D point source by Thomasson [8] and Rawlins [9], or extended to include the Fresnel regions
where one of the surface wave poles nearly coincides with the steepest descent contour. The infinite extent
of the impedance surface in the x-direction could be changed to a finite-width impedance section of an
otherwise rigid surface, possibly using a Wiener–Hopf technique, as was done without a localized source for
a mode in a waveguide in 2D by Koch [44] and in 3D by Rienstra [45]. Finally, the 3D point source solution
could be investigated with mean flow included.
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AppendixA. Steepest descent derivation

In this appendix we derive the steepest descent contours for, and the far-field asymptotics of, integrals
of the form

I(x, Y ) =

∫ ∞

−∞

f

(
k

ω
,
α

ω

)
(ω −Mk)

4πα
e−ikx−iαY dk, (A.1)

18



for Y > 0, where α(k) =
√

(ω −Mk)2 − k2 with Im(α) < 0 for k ∈ R. Eq. (9a) for p̂dir is of this form
with Y = |y − ys| and f(k/ω, α/ω) ≡ 1, and Eq. (9b) for p̂refl is also of this form with Y = y + ys and
f(k/ω, α/ω) ≡

[
Zα/ω − (1−Mk/ω)2

]
/
[
Zα/ω + (1−Mk/ω)2

]
.

AppendixA.1. Derivation of the steepest descent contour

We first look for saddle points in the integrand exponent Q(k) = −ikx− iαY . Differentiating gives

∂Q

∂k
= −i

(

x− Y

α

(
β2k +Mω

)
)

,
∂2Q

∂k2
=

iY ω2

α3
, (A.2)

where β2 = 1 −M2. Saddle points k = ks are given by ∂Q/∂k = 0, which rearranges to give a quadratic
equation for ks with solutions

ks =
ω

β2

(
x/r −M

)
⇒ αs = Y ω/r and Q(ks) =

iω

β2

(
Mx− r

)
, (A.3)

where r2 = x2 + β2Y 2. (Note that, since Im(ω) = −ε < 0 and since the branch of α was chosen such that
Im(α) < 0 for real k, the other root of the quadratic equation does not lead to a saddle point and is therefore
discarded.) The steepest descent contour ksd(q) for q ∈ R is then given by requiring

Q
(
ksd(q)

)
= Q(ks)− q2/2. (A.4)

Inverting this gives the steepest descent contour as

ksd(q) =
ω

β2

(x

r
−M

)

− ixq2

2r2
+

Y q

r2

√

iωr + β2q2/4, (A.5a)

αsd(q) =
ωY

r
− iβ2Y q2

2r2
− xq

r2

√

iωr + β2q2/4, (A.5b)

dksd
dq

= iαsd(q)
(
iωr + β2q2/4

)−1/2
, (A.5c)

with the branch chosen such that Re(
√

iωr + β2q2/4) > 0 so that the contour given by Eq. (A.5a) is traversed
in the correct direction.

For large |q| and real ω, Eq. (A.5a) shows that Re(−ixksd) = −x2q2/(2r2) + O(1), and therefore for
both the cases x > 0 and x < 0 deforming the integration contour onto the steepest descent contour moves
both ends of the integration contour into sectors of the k-plane where the integrand is exponentially small.
Moreover, from Eq. (A.5b) it can be shown that αsd is never zero for real q, so that poles of the integrand
due to the 1/α factor are not crossed when deforming the contour. Deforming the integration contour onto
the steepest descent contour is therefore possible provided attention is paid to any poles of f(k/ω, α/ω),
and therefore I is given by the steepest descent integral

I(x, Y ) =
ie−iωr(1−Mx/r)/β2

4π

∫ ∞

−∞

f

(
ksd(q)

ω
,
αsd(q)

ω

)
ω −Mksd(q)
√

iωr + β2q2/4
e−q2/2 dq

−
∑

k∈K−

i(ω −Mk)

2α(k)
Rke

−ikx−iα(k)Y +
∑

k∈K+

i(ω −Mk)

2α(k)
Rke

−ikx−iα(k)Y ,

(A.6)

where K+ and K− are the poles of f(k/ω, α/ω) lying either in the upper-half k-plane below the steepest
descent contour (K+) or in the lower-half k-plane above the steepest descent contour (K−), and Rk are their

residues. Eq. (A.6) is easily numerically tractable due to the e−q2/2 term and lack of oscillatory behaviour
in the exponential due to the choice of contour. Moreover, since the steepest descent contour was chosen,
asymptotic analysis in the far field r ≫ 1 is possible.
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AppendixA.2. Derivation of far-field asymptotics

We are interested here in the behaviour of Eq. (A.6) in the limit r ≫ 1. Since the contour chosen is
exactly the steepest descent contour, with the only saddle point crossed at q = 0, the asymptotics are easily
found using the Method of Steepest Descents by expanding the integrand about q = 0 [see, e.g. 46, for
details]:

I(x, Y ) =

√
ω

8πr

1−Mx/r

β2
exp

{

−iωr
1−Mx/r

β2
+ iπ/4

}

f

(
1

β2

(x

r
−M

)

,
Y

r

)(

1 +O

(
1

ωr

))

−
∑

k∈K−

i(ω −Mk)

2α(k)
Rke

−ikx−iα(k)Y +
∑

k∈K+

i(ω −Mk)

2α(k)
Rke

−ikx−iα(k)Y .
(A.7)

AppendixB. R(x) for a nonlocally reacting impedance

If the impedance Z(k, ω) is a function of the wavenumber k as well as the frequency ω, then the procedure
described in §6 to calculate the generalized reflection coefficient R(x) must be altered. While the procedure
given here is valid for any impedance for which k/Z(k, ω) → 0 as |k| → ∞, for definiteness here we consider
an elastic tension T along the impedance surface such that Z(k, ω) = Zloc(ω) − iTk2/ω, where Zloc is a
locally reacting impedance. In this case,

R(x) = δ(x) +
−1

2π

∫ ∞

−∞

2(ω −Mk)2

αωZ + (ω −Mk)2
e−ikx dk

︸ ︷︷ ︸

Î0(x)

(B.1a)

= δ(x)− iM2

Tβ
eiωMx/β2

H
(2)
0

(
ω|x|/β2

)

+
1

2π

∫ ∞

−∞

2ω2Tα− 4MkωTα− 2iM2αωZloc − 2iM2(ω −Mk)2

Tα
[
αωZ + (ω −Mk)2

] e−ikx dk

︸ ︷︷ ︸

Î1(x)

, (B.1b)

where again the integrand of Î0 in Eq. (B.1a) has no pole at α = 0 but is O(1/|k|) as |k| → ∞, leading to a
logarithmic singularity of Î0 at x = 0, while Î1 in Eq. (B.1b) is O(1/|k|2) as |k| → ∞, so is expected to be
regular at x = 0, but introduces a pole at α = 0.

Note that, in this case, the line of line sources consists of an equal source (δ(x)), as if for a rigid surface
(Z = ∞), plus a correction to account for the impedance. This contrasts with the locally reacting impedance,
for which the line of line sources consists of an equal but opposite source (−δ(x)), as if for a pressure release
surface (Z = 0), plus a correction to account for the impedance.
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[28] Y. Renou, Y. Aurégan, Failure of the Ingard–Myers Boundary Condition for a Lined Duct: An Experimental Investigation,

J. Acoust. Soc. Am. 130 (2011) 52–60, doi:10.1121/1.3586789.
[29] G. Gabard, A Comparison of Impedance Boundary Conditions for Flow Acoustics, J. Sound Vib. 332 (2013) 714–724,

doi:10.1016/j.jsv.2012.10.014.
[30] Y. Özyörük, Numerical Prediction of Aft Radiation of Turbofan Tones through Exhaust Jets, J. Sound Vib. 325 (2009)

122–144.
[31] E. J. Brambley, A well-posed boundary condition for acoustic liners in straight ducts with flow, AIAA J. 49 (6) (2011)

1272–1282, doi:10.2514/1.J050723.
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