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Surface-Waves, Stability, and Scattering for a Lined
Duct with Flow
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We consider a straight cylindrical duct with a steady subsonic axial flow and a reacting
boundary (e.g. an acoustic lining). The wave modes are separated into ordinary acoustic
duct modes, and surface modes confined to a small neighbourhood of the boundary. Many
researchers have used a mass—spring—damper boundary model, for which one surface mode
has previously been identified as a convective instability; however, we show the stability
analysis used in such cases to be questionable. We investigate instead the stability of the
surface modes using the Briggs—Bers criterion for a Fliigge thin-shell boundary model. For
modest frequencies and wavenumbers the thin-shell has an impedance which is effectively
that of a mass—spring—damper, although for the large wavenumbers needed for the stability
analysis the thin-shell and mass—spring—damper impedances diverge, owing to the thin
shell’s bending stiffness. The thin shell model may therefore be viewed as a regularization
of the mass—spring—damper model which accounts for nonlocally-reacting effects. We find
all modes to be stable for realistic thin-shell parameters, while absolute instabilities are
demonstrated for extremely thin boundary thicknesses. The limit of vanishing bending
stiffness is found to be a singular limit, yielding absolute instabilities of arbitrarily large
temporal growth rate. We propose that the problems with previous stability analyses are
due to the neglect of something akin to bending stiffness in the boundary model. Our
conclusion is that the surface mode previously identified as a convective instability may
well be stable in reality.

Finally, inspired by Rienstra’s recent analysis, we investigate the scattering of an acous-
tic mode as it encounters a sudden change from a hard-wall to a thin-shell boundary, using
a Wiener—Hopf technique. The thin-shell is considered to be clamped to the hard-wall.
The acoustic mode is found to scatter into transmitted and reflected acoustic modes, and
surface modes strongly linked to the solid waves in the boundary, although no longitudinal
or transverse waves within the boundary are excited. Examples are provided that demon-
strate total transmission, total reflection, and a combination of the two. This thin-shell
scattering problem is preferable to the mass—spring—damper scattering problem presented
by Rienstra, since the thin-shell problem is fully determined and does not need to appeal to
a Kutta-like condition or the inclusion of an instability in order to avoid a surface-streamline
cusp at the boundary change.

I. Introduction

Acoustic waves in a straight cylindrical hard-wall duct are well understood, with the familiar solution in
terms of Bessel’s functions of the first kind. If a uniform axial mean flow is introduced, the only additional
effect is to produce a Doppler shift to the frequency. If the duct boundary is deformable and allowed to react
to the acoustic perturbations (for example, a vortex sheet boundary layer over a Helmholtz resonator acoustic
lining), the majority of duct modes have their wavenumbers shifted slightly from their hard-wall values.
However, Rienstra recently noted! that modes of another type are present with a deformable boundary
that have no hard wall equivalent. These modes tend to be confined to within a small neighbourhood of
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the boundary, and consequently are termed surface modes. To distinguish them, the modes with hard wall
equivalents are termed acoustic modes. The effect of mean flow on these surface modes is significant, and
indeed they are qualitatively different depending on whether mean flow is present or not. The surface modes,
being tightly coupled with the boundary, also have deep connections with the stability of the boundary (or,
in the example of a vortex sheet over an acoustic lining, the stability of the vortex sheet).

The behaviour of the boundary is characterized by its impedance, Z(k, m,w). The impedance is defined
as Z = p/v, where a harmonic forcing pexp{iwt — ikx — imf} produces a corresponding boundary veloc-
ity vexp{---}. For example, a commonly used simple boundary model is that of a mass—spring-damper
(effectively a modified Winkler foundation), for which the radial boundary displacement w is given by

2
aw—l-Ra—w—l-bw:p = Z =R +idw — ib/w (1)

A=
ot? ot

where d, b, and R are positive real constants representing the mass, spring, and damping terms respectively.
The absence of £ and m in Z above is because the mass—spring—damper boundary is locally reacting.

Rienstra' went on to show that, in an incompressible limit and for a mass—spring-damper boundary,
one surface mode might be interpreted as an instability. Weight was added to this argument by Rienstra &
Peake,? who considered the acoustic scattering from a sudden boundary change, and found that the surface
streamline had an O(z'/2) cusp if no instability was present, while this could be made to be a more favourable
O(z/?) if an instability was included and an appropriate Kutta-like condition satisfied.

There are many criteria for analysing the stability of a linear system, the most common being that of
Briggs & Bers.®* However, as was pointed out by Rienstra & Peake,? owing to a technicality the Briggs—
Bers criterion cannot be applied to a mass—spring-damper boundary model, since Im(w(k)) is not bounded
below for real k. In other words, for arbitrary initial conditions the temporal growth rate is unbounded.
This is a well-known problem, the most common example of which is the widely-studied Kelvin-Helmholtz
vortex sheet instability. For example, Jones & Morgan analysed the stability of a vortex sheet subject to an
acoustic line source,”® and found an unbounded temporal growth rate that caused problems with imposing
causality. Crighton & Leppington also considered the scattering of an acoustic line source by a vortex sheet,”
this time being shed from a semi-infinite plate, and discovered that by taking the time-harmonic solution
with w purely imaginary and analytically continuing the solution to real w, a desirable but unproved Kutta
condition was satisfied at the trailing edge of the plate. Both Jones & Morgan and Crighton & Leppington
concluded by explicitly constructing a causal Green function, which in both cases was highly singular and
expressed in terms of ultradistributions. The question of stability for a vortex sheet was finally resolved by
Jones,® by regularising the vortex sheet by considering a shear layer of finite thickness h. Jones concluded
that for h small but nonzero an instability was present that could be represented in terms of conventional
functions, and which in the limit h — 0 yielded the previous ultra-distribution result.

An alternative stability criterion® has recently found popularity,’ 2 %1 which some authors have termed
the “Crighton—Leppington” criterion. It involves assuming that all modes decay in space for w purely imagi-
nary, and therefore that the stability of the modes may be deduced by analytic continuity in w with |w]| fixed
and arg(w) running from —7/2 to 0. Unfortunately, this method is not universally valid, and in particular
examples are provided in appendix [l for which this method fails.

We begin in section [l by setting out the mathematical model used throughout the paper, and then
deriving the dispersion relation for this model. We then consider the behaviour of the surface modes in sec-
tion [, and demonstrate the unbounded temporal growth rate for a mass—spring-damper boundary model
mentioned by Rienstra & Peake.? This leads us to reconsider the boundary model, and in section [V] the
impedance is derived for a thin cylindrical shell, the outside of which is sprung and damped (as if by a
modified Winkler foundation). The surface modes are characterized for this boundary model, and the limit
of zero shell thickness is shown to correspond to the mass—spring—damper boundary model. We then turn
to the question of stability for a thin-shell boundary model in section [Vl and the temporal growth rate
is shown to be bounded. The thin-shell thickness therefore regularizes the mass—spring-damper boundary
model and enables the Briggs—Bers criterion to be applied. We find the thin shell to be either stable or to
admit absolute instabilities, and the values of the mean-flow Mach number and thin-shell thickness needed
to induce these absolute instabilities are investigated. Finally, in section [Vl we reconsider the scattering
problem of Rienstra & Peake, and show that the thin-shell boundary model leads to an even more favourable
O(2?) surface streamline without necessarily needing an instability to be present. We compute examples
demonstrating scattering, complete transmission, and complete reflection, for different thin shell parameters.
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II. Governing equations

We consider the steady flow of a compressible inviscid fluid within a straight cylindrical duct of radius
ro. The fluid has constant entropy, constant density pg, constant sound speed ¢y, and the flow is in the
axial x direction with constant subsonic speed U. To this steady flow, we consider the evolution of small
time-harmonic perturbations (e.g. sound) which are sufficiently small that we may linearize and ignore all
quadratic and higher terms.

In order to make apparent the important scalings, and to simplify the notation, all quantities are nondi-
mensionalized. Distances are nondimensionalized by r, speeds by cg, densities by po, times by ¢y /ro, and
pressures by poco?. With this nondimensionalization, the axial flow speed U is equal to the Mach number.

Goldstein'? showed that a small perturbation may be decomposed into entropic, vortical, and acoustic
parts, and gave equations for their evolution. Here, we are only interested in the acoustic perturbations, for
which the evolution of the linearized pressure, density, and velocity (p, p, and u) is given in terms of the
velocity potential ¢, as

D¢, D¢
- = =p=-——L = 2
D~V e=0, P=p=—po u = Vg, (2)
where D/Dt = 9/t + U9/0x. By separation of variables, this has solutions
¢ = Al (ar) exp{iwt — ikz — im0}, o? = (w—Uk)? — k2,

where A is an arbitrary constant amplitude. The frequency w, using the nondimensionalization above, is
equal to the Helmholtz number, also known as the “ka” value.

The allowable values of a are given by the boundary conditions. We model the duct boundary as a
flexible impermeable surface (for example, a thin vortex sheet boundary layer over an acoustic lining, as
considered by Rienstral), with impedance Z(k,w,m). The motion of the boundary complicates the no-flux
boundary condition u - 72 = 0 applied on the surface, since both the position of the surface and the direction
of the surface normal 7v are unsteady and dependent on the flow. For a general geometry and impedance,
Myers!? derived the linearized no-flux boundary condition to be

iwu-n=(G(w+U-V—-(n-VU) -n)p/Z, (3)

where n is the unperturbed surface normal out of the fluid, U is the steady mean flow, w and p are the
linearized velocity and pressure, and all quantities are evaluated on the unperturbed boundary. For our
problem, substituting the solution for ¢ into this boundary condition yields the dispersion relation

(w—Uk)? Jn(a)

1—
wZ al («)

=0. (4)

Note that since J,,(—7) = (—=1)"J,,(r), it does not matter which branch is chosen for o. The hard-wall
dispersion relation J/ (a) = 0 is recovered by taking Z — oo.

ITII. Swurface modes

Figure [l shows the solutions to the dispersion relation () for the axial wavenumber k. The close corre-
spondence between the hard-wall modes and the impedance-boundary acoustic modes is clear in figure [l a),
although the impedance boundary includes some damping which modifies the cuton—cutoff behaviour of the
impedance-boundary acoustic modes. Figure [(b) shows two series of surface modes (each series with one
mode per azimuthal order m), for which there are no hard-wall equivalents. The surface modes for m < w
are as predicted by Rienstra.! However, for m > w one surface mode series occurs in a different region of the
k plane than predicted by Rienstra, and therefore might be interpreted on first glance as left propagating,
whereas for m < w it is interpreted as right propagating. Rienstra’s predictions were derived in the limit
w — oo with m fixed, and Rienstra noted that these predictions might break down if m were comparable
with w.

As an aeroengine application, consider a fan with m blades, rotating at the nondimensionalized angular
velocity 2. The blade passing frequency (BPF) is therefore w = 2m. With the nondimensionalization used
here, (2 is equal to the blade-tip Mach number, and is therefore about 1 or less (for a typical aeroengine,'? at
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Figure 1. Axial wavenumbers k, for U = 0.5, w = 10. (a) Comparison between hard-wall wavenumbers (+) and
impedance boundary with Z =2 —1i (x). (b) Larger view showing two surface mode series, for Z =2 —i.

sideline {2 &~ 1.29, at cutback {2 ~ 1.11, while at idle {2 ~ 0.75). For aeroengine applications, therefore, the
assumption that w > m is not appropriate. Rienstra’s predictions were recently generalized by Brambley &
Peake'® to relax this assumption. The generalized surface-mode dispersion relation, written in terms of k
and m, is

(w—Uk)? _

— 0, where = \k2+m?— (w—Uk)? and Re(p) > 0. (5)
iw

=
Modes satisfying this dispersion relation, but with Re(u) < 0, are here termed fake surface modes. The line
Re(u) = 0 is an anti-Stokes line. It corresponds to the surface modes becoming acoustic modes, no longer
being localized about the duct boundary, and hence the asymptotics used to derive (H) breaking down.

A. Unbounded temporal growth rate for a locally-reacting boundary

For the mass—spring-damper boundary model, Im(w(k)) is not bounded below for real k, and so the Briggs—
Bers stability criterion is not applicable.? To see this, substitute the mass-spring-damper impedance ()
into the asymptotic dispersion relation () to find, in the limit |k| — oo, to leading order

omi(2 >/ (©)

where 32 = 1 —U?. This behaviour is also seen for the simple cot(wL) Helmholtz resonator boundary model.
Figure Pl demonstrates this unbounded growth rate, by plotting the image of the real k axis into the w-plane
for the full dispersion relation (H).

Because of this unbounded behaviour, the Briggs—Bers stability analysis is inapplicable. Consequently, a
method suggested by Rienstra® has previously been used!% !0 to analyse the stability of the mass—spring—
damper boundary. Unfortunately, this method is not universally valid; for example, appendix [Al gives an
example for which Rienstra’s method fails. In addition, Rienstra’s method does not consider the possibility
of absolute instability, as demonstrated by the second example in appendix[Al Here, we consider regularising
the problem, as shown in figure Pl by including a bending stiffness in our boundary model. This is similar to
Jones’ regularization of the vortex sheet problem by considering a finite-thickness shear layer.® The bending
stiffness is negligible provided k is small, but for large k it becomes significant and bounds Im(w(k)) below.
We now consider this new boundary model in detail.
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Figure 2. Trajectories of w(k) for k real. Solid lines correspond to the mass—spring—damper boundary model.
The dashed lines show the effect of adding a small bending stiffness in the boundary model. U = 0.5, m = 24,
b=26.5,d=0.022, and R = 3.

IV. The Fliugge thin-shell boundary model

We consider the duct boundary to be a thin cylindrical shell, as shown in figure Bl The Fliigge thin-shell
equations of motion are used here, as given by Paidoussis.'® As well as the radial displacement w, the
thin-shell boundary has an axial displacement u and an azimuthal displacement v, as shown in figure Bl The
outside of the thin shell is subjected to a spring and damping force (i.e. a modified Winkler foundation), so
that the total outward force per unit area on the thin shell is p* = p — bw — ROw/dt, where p is the linearized
acoustic fluid pressure at the boundary, and b and R are the spring and damping strengths respectively.
The thin-shell equations are simplified slightly by assuming that the thin-shell thickness h < 1, and that
2m? — 1 < (k* + m?)?. This gives the thin-shell impedance as

. . ic;2d [ h? 2 in iv
Z=R—-i(c’d+0b)/w+idw— ! <ﬁ (k* +m?) —A1E—A25>7 (7a)
where
ai; a2 1“/“’ _[ A , (7b)
a2 a2 1’1)/11) A2
a —k2+1_ym2—w—2 a —1+mG A=k V—l—h—2 k2—1_ym2
11 — 2 ClQ, 12 — 2 I 1 — 12 2 9
1-v w? h*3—v
o2 1TV, W _ n 2
asg = m° + 5 k o2 Ay m[l—i—12 5 k], (7c)

and ¢;?> = E/(ps(1 — v?)) is the square of the speed of longitudinal compressive waves in the boundary
material, d = psh is the shell mass per unit area, and the properties of the boundary material ps, E and v
are the density, Young’s modulus, and Poisson’s ratio respectively.

If the Aju/w and Azv/w terms in ([Za) can be neglected, a much simpler impedance is obtained:

Z = R—i(c2d+b)/w+idw —iB (k* +m?)*/w, 8)

This is effectively a mass-spring-damper impedance, with the thin shell contributing an extra c;2d spring
force, together with a bending stiffness B = ¢;2dh?/12. One situation where the Aju/w and Ayv/w terms
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Hard Wall Thin Shell

Figure 3. Schematic of a cylindrical duct with a sudden change from hard-wall boundary for z < 0 to thin-shell
boundary for z > 0. The small unsteady perturbations to the position of the thin shell are given by u, v, and
w.

can certainly be neglected is if k is large and m/k < O(1) (of particular interest for stability analysis). Then,
provided the determinant of ([Z) is nonzero, it can be shown that

u/w = O(h%k), v/w < O(h%k), Ajujw + Asv/w = O(h*k?),

so that the Aju/w and Agv/w terms are insignificant compared to the B(k? + m?)? bending stiffness term.
The determinant of ([{H) is zero when k = +k; or k = +k;, where

ki = w?/c? — m? and k2 = w¥e —m? 9)

and ¢, = ¢;/(1 —v)/2 is the speed of transverse waves in the duct boundary. We take Im(k;) < 0, or
Im(k;) = 0 and Re(k;) > 0, and similarly for k¢, so that these are the axial wavenumbers for right-propagating
longitudinal and transverse solid waves in the thin-shell boundary. The zero determinant implies that
these solid boundary waves propagate independently of the radial shell displacement w, and consequently
independently of the fluid within the shell.

A. The thin-shell surface modes

Since the thin-shell boundary is not locally-reacting, as seen by the dependence of Z on k, the previous
interpretations of the surface modes! ! are no longer valid. The asymptotic dispersion relation () is still
valid, however, and may be rearranged to give

(a11a22 — a122)2 (w — Uk)4 — ((a11a22 — a122) in)2 (k2 + m? — (w — Uk)Q) =0. (10)

This is an 18" order polynomial in k for fixed w, or a 14" order polynomial in w for fixed k. There are
therefore 18 surface modes, compared with only 4 for a locally reacting boundary, although of course some
of these may be fake surface modes.

Figure B gives an example of these surface modes. Figure Bl a) demonstrates the accuracy with which
the surface modes are predicted by (). Figure Bib) shows, as well as can be in a two-dimensional plot,
the behaviour of the surface modes in the limit h — 0. Of the 18 potential surface modes, one real surface
mode and one fake surface mode converge to each of k;, ki, —k;, and —k;, and surface modes of this type
are here termed quasi-solid surface modes. It should be emphasized, however, that these surface modes are
distinct from the solid boundary waves with axial wavenumbers +k; and +k;; the quasi-solid modes are
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Figure 4. Surface modes in the k-plane for air within an aluminium boundary (see table [Ml) with external
spring force b = 1 and damping R = 3, for w = 31, U = 0.5, and m = 24. (a) Comparison between the exact
solutions (+) and solutions to ([[) (x), for h = 1073. (b) Thin-shell surface modes for varying h (lines) and
mass—spring—damper surface modes (diamonds). Dashed lines and hollow diamonds denote fake surface modes.

Fluid Solid cy Ps v
Air Aluminium 15.8 2 200 0.33
Water Steel 3.6 7.85 0.3

Table 1. Nondimensionalized thin-shell parameters for different materials, at standard temperature and pres-
sure (STP).

fluid modes occurring in the vicinity of the boundary, with k close to one of +k; or +k;, whereas the solid
boundary waves given by +k; and +k; correspond to zeros of the determinant of (ZD)) and therefore produce
no disturbance in the fluid at all. Of the remaining 10 surface modes, four fake and two real surface modes
tend to infinity, while the other 4 surface modes tend to the mass—spring-damper values. This suggests
that of the 18 potential surface modes, 8 are sustained by compressional and twisting solid mechanisms,
6 are supported by bending solid mechanisms, and four are supported by effectively mass—spring—damper
mechanisms.

If the Aju/w and Asv/w terms may be neglected, leading to the impedance (), then (@) may be
simplified to give

(k% +m?* — (w - Uk)?) ((cfd—i— b) +iwR — dw? + B (k* + m2)2)2 —(w—-Uk)*=0. (11)

This is now a polynomial of 10 order in k, or of 6** order in w. This dispersion relation turns out to
be remarkably accurate, even for modest values of k for which the argument for neglecting the Aju/w
and Asv/w terms is not valid. Of course, neglecting these terms neglects the compressional and twisting
components in the solid, and consequently the 8 quasi-solid surface modes that depend on these mechanisms
are not modelled by ().
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V. Stability analysis

One of the reasons for considering a thin-shell boundary model is to regularize the mass—spring—damper
boundary model and enable the Briggs—Bers stability criterion to be applied. For example, figure B shows
that for air within an aluminium thin shell (with parameters as given in table [l) with thickness h = 107°
and an external spring force b = 1 and damping R = 3, Im(w(k)) is bounded below by —100 for all real k,
while for small k the results are exactly that of a mass—spring—damper with the appropriate mass, spring,
and damping coefficients (as given by equation B). We now aim to show that this is the case for all thin-shell
parameters, provided h # 0, and so application of the Briggs—Bers criterion is valid in all thin-shell cases.

The behaviour of the acoustic modes for a thin-shell boundary is almost exactly the same as for a
mass—spring—damper boundary, and in either case these modes are stable and similar to their hard-wall
counterparts. The acoustic modes do not therefore prohibit application of the Briggs—Bers method (for the
acoustic modes, in fact, Im(w(k)) is bounded below by zero for real k).

The only singularities of the dispersion relation () are due to the zeros of the determinant of (L), and
lead to the finite values of w given in ([@)). Therefore, for k in any finite real interval, Im(w(k)) is bounded
below. This is of course also true for a mass—spring—damper boundary. What goes wrong for the mass—
spring-damper boundary is that there is a surface mode for which Im(w(k)) — —oo as |k| — oo, and so we
now consider what happens for a thin-shell boundary’s surface modes in the limit |k| — oc.

In the limit |k| — oo, we have already shown that neglecting the Aju/w and Asv/w terms is valid
provided we are sufficiently far from a zero of the determinant of ([H). Then, using (), we find six surface
modes, for which

w=Uk+VE2+m?+0(k7°), w=+y/B/d(k*+m*+1/2) + i(Ri D+0(k™),

as |k| — oo, where the two £ in the last equation are independent. These have the leading-order large-k
behaviour of a hard-wall mode and a bending wave in an unforced cylindrical thin shell respectively; these
two classifications are therefore termed fluid and bending surface modes. Although not demonstrated here,
the fluid surface modes and two of the bending surface modes become the four mass—spring-damper surface
modes in the limit h — 0, while the other two bending surface modes tend to infinity as h — 0, as mentioned
previously. Accounting for zeros of the determinant of [ZH) gives an additional eight surface modes, with
one fake and one real surface mode for each of

w==xck+0 (kfl) and w = *citk+ 0 (kfl) .

as |k| — oo; these are the quasi-solid surface modes. Since all of the above surface modes have bounded
Im(w(k)) as |k| — oo, the image of the real k axis in the w-plane has bounded imaginary part for all modes,
and so the Briggs—Bers criterion is valid.

To see how the bending stiffness regularizes the mass—spring—damper problem, consider the unbounded
behaviour of Im(w(k)) for the mass—spring—damper boundary given in (). With the thin-shell boundary,
setting w = Nvk in ([ gives
U? B,
ga tat

Thus, the mass—spring—damper behaviour is seen to hold hold provided
U2 1/3
k — 12
< (g5) - (12)

giving an estimate of the magnitude of k for which bending stiffness becomes important for stability. For
the parameters used for figure B this magnitude is |k| ~ 1850, which agrees well with the results shown.

N?=—

A. A stable example

Figure B shows the real k axis mapped into the w-plane for an air-filled aluminium duct. The duct may
be thought of as having a 1m radius and a shell thickness of 1mm. The many near-parallel trajectories in
figure Bl(a) correspond to the acoustic modes, while the few other modes are the surface modes (a fluid, a
bending, and two quasi-solid modes are shown). Note that no modes are present with Im(w) < 0, so that
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Figure 5. Trajectories of w(k) for k real. For clarity, only modes with Re(w) > 0 are shown; the behaviour for
Re(w) < 0 may be inferred from —w*(—k*) = w(k), where * denotes complex conjugation. The fluid is air and
the boundary is aluminium (see table[]) with R =3 and b =1, for h = 1073, U = 0.5, and m = 24.
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Figure 6. Trajectories of modes in the k-plane for —100 < Im(w) < 0 with Re(w) = 31, with crosses at Im(w) = 0.
As for figure Bl the fluid is air and the boundary is aluminium (see table[ll) with R =3 and b =1, for h = 1073,
U = 0.5, and m = 24.

the Briggs—Bers temporal inversion contour C,, may be taken arbitrarily close to the real w axis. Hence, any
mode with complex k(w) corresponds to an exponentially-decaying mode, while if k(w) is real, the mode is
left propagating if Re(cy) < 0, and right propagating if Re(cy) > 0, where ¢, = Ow/0k is the group velocity,
and there is no possibility of absolute instability. This is exactly as might have been naively expected without
a detailed stability analysis, and shows that for these parameters the system is stable.

As an example of the typical Briggs—Bers treatment given in the literature, figure B shows the trajectories
of modes in the k-plane as Im(w) is varied with Re(w) fixed, for parameters typical of the BPF mode in an
aeroengine.'* No modes cross the real k axis, and thus all modes are seen to be either exponentially decaying
or propagating in the direction of the group velocity, as predicted. It should be emphasized that just this
analytic continuation does not guarantee the stability of the system, without first having ascertained that
Im(w(k)) is bounded below for real k, and having checked that no absolute instabilities are present.
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Figure 7. Values of w for which double roots of the dispersion relation occur for some value of k. The
double roots labelled “Surface Mode” are caused by one surface mode converging with successive acoustic
duct modes (as shown in figure Bla), and the arrows point in the direction of increasing [Im(k)| for the double
root. Parameters are for air in aluminium (see table[l), with b=1, R =3, h = 107°, U = 0.5, and m = 24 (as for
the dashed line in figure 2.

B. Absolute instabilities

If, instead, we consider h = 107°, we arrive at the situation shown in figure Bl by the dashed line. We
must initially take the Briggs—Bers temporal inversion contour C, below w(k) for real &k in order to satisfy
causality, while the C; contour is taken along the real k axis. In this case, a suitable starting contour is
seen from figure @ to be Im(C,,) = —100. We then deform this contour back onto the real w axis, taking
care to deform the Cj contour to avoid any modes in the k plane crossing it. If, however, a pinch frequency
wy, exists for which two modes in the k£ plane coincide and “pinch” the Cj contour, this deformation must
stop. Briggs® showed that this gives rise to an absolute instability, present simultaneously upstream and
downstream of the driver, that dominates the solution at large times. Writing @) as A(k,w) = 0, a pinch
point occurs at a double root, given by dA/9k = 0. The values of w and &k which simultaneously satisfy
both of these constraints were found numerically using a two-dimensional Newton—Raphson iteration, with
starting points located on a grid covering the relevant areas of the k- and w-planes. The values of w found
are shown in figure [ It remains to check which of these are modes from above the Cj contour colliding
with modes from below Cj, (corresponding to a pinch point), and which are modes from the same side of
Cj colliding, for which we can move the C, contour out of the way and therefore do not prevent us from
continuing to deform the C, contour. The majority of the double roots involves the collision of two modes
on the same side of Ci, and so do not correspond to a pinch points, as for example shown in figure B a).
The dominant double roots that do correspond to pinch points are found to be w, = £13 — 54i; the nature
of this double-root is demonstrated to be a pinch point in figure B(b).

If we had instead applied a naive application of the Briggs—Bers criterion as is common in the literature,
involving, say, analytically continuing from Im(w) = —100 to Im(w) = 0 with Re(w) = 1, we would arrive
at something like figure @ This shows the upper-right and far-right surface modes crossing the real k axis,
and we would therefore have concluded that if the system were forced at a driving frequency of wy = 1,
these two modes would be present as right- and left-propagating convective instabilities respectively, and
with frequency wy. This stability analysis is not complete, however, without first considering the possibility
of absolute instability. In fact, we have shown that when excited at a frequency wy = 1, the dominant
contribution to the solution at large times is an absolute instability, which grows exponentially in time at
the frequency w, = +13 — 54i.
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Figure 8. Trajectories in the k plane as Im(w) is varied with Re(w) fixed, for two double roots shown in figure [l
w

(a) One of the double roots labelled “Surface Mode” in figure[ll, between Re(w) = 7.0 (solid line) and Re(w) = 7.1
w

(dashed line).
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(b) The absolute instability pinch between Re(w) = 13.0 (solid line) and Re(w) = 12.9 (dashed
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Figure 10. Values of h and U giving an absolute instability. The results are independent of R. Parameters are
for an air-filled aluminium duct (see table [).

C. The shell-thickness necessary for absolute-instability

The question now arises, how small a shell thickness is needed for there to be an absolute instability? By first
finding the dominant pinch frequency wp, and then tracking this pinch frequency as h is varied, the critical
shell thickness h. giving Im(w,) = 0 may be found. For h < h. we have Im(w,) < 0, giving an absolute
instability, while for h > h. we have Im(w,) > 0, and the C,, contour may be deformed onto the real w axis,
so that no absolute instability is present. Figure [[M plots these values of h. for a variety of parameters; the
amount of external damping, R, is found to have no effect on h., and so figure [ only considers R = 3. For
small U the dominant parameter is the Winkler foundation spring constant b, while the azimuthal order m
plays little role. As U approaches unity the situation is reversed, and m becomes the dominant parameter,
while b plays little role.

In all the cases investigated, the transition from Im(w,) < 0 to Im(w,) > 0 occurs in the same manner.
Consider the double roots shown in figure [ For a double root to correspond to a pinch, one mode must
originate from the upper-half k-plane and one from the lower-half. Hence, at least one of these modes must
cross the real k axis, shown as a solid line in figure [ making two fingers in the lower-half w-plane. As h
is increased, these two fingers shrink, until at a certain value of h there are no modes with real &k in the
lower-half w-plane, and so there can be no instabilities (either absolute or convective). The dominant pinch
frequency w,, is located towards the ends of these fingers, and the critical shell thickness h. turns out to
be exactly the value of h for which these fingers disappear from the lower-half w-plane. This implies the
interesting result that the system is either absolutely unstable or stable, and there is no possibility of the
system supporting only convective, but not absolute, instabilities.

Another interesting feature is that the two fingers of w(k) for real k shrink down to w = 0, and conse-
quently the critical value of wy, defined as Im(w,) = 0, actually occurs at w, = 0. Assuming this to always
be the case, () implies that h. is given by requiring A = 9A/dk = 0, where

U4kt

e (13)

2
A= (8 +m¥ %) ((2d+b)/B + (8 +m?)°)
Note that setting w, = 0 has eliminated the boundary damping R from ([3)), explaining why the curves in
figure [0 are independent of R. If value of k for which w, = 0 satisfies k > m/3 (which will turn out to be
valid provided U is sufficiently far from unity), we may set m = 0 in [[3)) to leading order, to give

9U4

b 1 b 2 2/3
he=———— 4= ) .
w3\ () * (o)
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Figure 11. Comparison between asymptotic approximations and numerical results for h., for b = 1. Solid lines
give the numerical results, and dashed lines give the asymptotics of ([[d) and the power laws derived from it.

If U < 1, this reduces to two cases, an h. = O(U®/3) power law if U < U, and an h. = O(U*?) power law
if U > U,, given by

2 4 \2/3 4 \1/3 3 \1/4
CI17ps 99U aU 8b
he = Y] he ~ | =5 h U.=
5 <8cl4p52> or (8014;)52 where 9ciZp.

This is because, for U < U.., the Winkler foundation spring force b dominates the thin-shell spring force c;%d,
while for U > U, the thin-shell spring force dominates. Note that if b = 0, corresponding to no Winkler
foundation spring force, the h, = O(U*/?) power law is universally valid for U < 1.

Figure [ shows these three predictions, plotted against the values of h. found numerically. As U
approaches unity, the m?/3? factor in ([I3) becomes significant, and the above asymptotics break down
provided m # 0. However, for small and moderate U, the asymptotics derived above show a very good
agreement to the numerical results, and the U%/? and U*/® scaling laws are clearly demonstrated.

D. Recovery of the mass—spring—damper boundary for small shell thicknesses

Since the thin-shell boundary model was introduced in order to regularize the mass—spring—damper boundary
model, we now summarise the stability results of the thin-shell boundary in the limit 2~ — 0, which we know
recovers the mass—spring-damper impedance. From figure [, we know that the thin-shell boundary is
absolutely unstable provided h is sufficiently small, with dominant frequency w,. As h — 0, Im(w,) — —o0,
so that for arbitrarily small shell thicknesses the absolute instability grows arbitrarily quickly. The pinch
leading to this absolute instability occurs because two of the surface modes coincide and pinch the Cj contour,
and one of these surface modes is a surface mode that disappears to infinity as h — 0, as shown in figure EY(b).
We therefore conclude that interpreting the mass—spring—damper as a thin shell of zero thickness, there is
an absolute instability present of infinite temporal growth rate, and there are two surface modes that are
at k = co. Of course, we knew already that, even for real k, the mass—spring-damper boundary supported
arbitrarily large temporal growth rates, as shown in figure

As a comparison between the thin-shell and mass—spring—damper boundaries for a naive Briggs—Bers
application, consider figure This appears to show the thin shell to be stable at this frequency and
the mass—spring—damper boundary to admit a convective instability. However, as we have discovered, one
must always consider the possibility of absolute instability in a Briggs—Bers analysis, and in fact for these
parameters the thin shell is absolutely unstable with a dominant frequency w, = £0.937 — 1.01i.

13 of R

American Institute of Aeronautics and Astronautics Paper 2006-2688



30 }— ———— Mass—Spring—Damper

—
\
\

—————— Thin Shell

20 =

10 |— N

-10 C]\ '

-30

-30 -20 -10 0 10 20 30 40

Figure 12. Comparison of Briggs—Bers trajectories in the k£ plane between a mass—spring—damper and thin-
shell boundary, for U = 0.5, m = 0, w = 1. The mass—spring—damper has b =1, d = 0.1, and R = 1, and the thin
shell has h = 1.75 x 1072 and v = 0.33 (and ¢; = 10, ps = 5.7, b = 0). These parameters correspond to figure 4 of
ref. 2.

VI. Wiener—Hopf scattering

Recently, Rienstra & Peake? considered the scattering of an acoustic duct mode at a transition from
a hard-wall to a locally-reacting boundary. As there was some question over the stability of the surface
modes, they considered both stable and unstable cases. We now investigate how this scattering is altered by
modelling the boundary as a thin shell.

Consider the duct shown in figure Bl which for < 0 has a hard-wall boundary with boundary condition
d¢/0r = 0, while for x > 0 the boundary is a thin shell, as described by Fliigge’s equations in section [¥1
The thin-shell boundary is clamped at the intersection z = 0.

All quantities are assumed to be proportional to exp{iwt — im#}, and this factor will henceforth be
dropped. A right-propagating mode in the hard-wall duct section has pressure p;,, given by

pin(‘ru ’f‘) = exp{_ikinx}ﬂ]m(ainr)/']m(ain) ain2 = (w - Ukin)2 - kin2 J;n(ain) =0

Since this mode does not satisfy the boundary condition for = > 0, as it encounters the boundary transition
it scatters into other duct modes, some of which are reflected back upstream. In order to describe this
scattering, we use a Wiener—Hopf technique.!”

A. Deriving the Wiener—Hopf equation

The governing equations and boundary condition for the fluid give

D2
D—tf —V2¢ =0, subject to

%_Dw

or _ﬁ atr=1, (15)

where w(x) is the radial displacement of the thin shell. We split the fluid pressure into the sum of the
incoming imposed pressure and a scattering pressure, so that p = —D¢/Dt = p;, — D/Dt, where 1) is the
potential of the scattered wave.

In order to achieve a causal solution, and for the convergence of the integrals that follow, it turns out to
be convenient to consider w = w, — ie with w, real and e positive. Moreover, we require € to be chosen such
that Im(w(k)) > —e for all real k. Since by definition of w there are no modes with real k, there exists some
positive ¢ such that the strip D given by [Im(k)| < 4 is free of any hard-wall or thin-shell modes. By applying
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the Briggs—Bers criterion, for this complex frequency all modes that originate at x = 0 decay exponentially
as © — oo, and from the definition of D it follows that they decay at least as fast as exp{—d|z|}. It will
also turn out to be useful to require d§ to be small enough so that w/(U £ 1), k;, and k; all lie outside D.
Eventually, we will analytically continue the solution obtained for this complex frequency to € = 0.

The Fourier transform of 1 is given by

Bk, r) = / e e da,

which, because of the choice of € above, converges absolutely and is therefore analytic for k in D. The Fourier-
transformed differential equation () is solved as before in terms of Bessel’s functions, giving 1/3(k,r) =
A(k)Jm (a(k)r), where A(k) is an as yet undetermined function representing the spectrum of the scattered
wave, and a(k)? = (w — Uk)? — k2. The branch cuts for a(k) are taken parallel to the imaginary axis and
away from the real axis, so that a(k) is analytic and Re(a(k)) > 0 in D. These branch cuts will turn out to
be unnecessary, as in section [, although this will only become apparent a posteriori.

For z < 0 the duct wall is hard and therefore w(x) = 0. The Fourier transform of w(x) is therefore given
by the half-range transform

HY (k)= / w(z)el™ dz,
0
which is an analytic function of k for Im(k) > —d. The boundary condition ([[H) gives
a(k)A(k)J, (a(k)) = i(w — Uk)H* (k), (16)

yielding A(k) in terms of the unknown function H* (k). Equation ([[H) is now satisfied, for any function
H*(k), or equivalently for any boundary deflection w(x). We have therefore solved for the motion in the
fluid, although we have yet to impose the thin-shell equations on the solid boundary.

For a thin-shell boundary, the boundary deflection w(x) is related to the fluid pressure p(x,1) at the
boundary by Fliigge’s equations, the full-range Fourier transforms of which we have already seen in (). For
the half-range Fourier transforms, note that

/ f(x)e*™ dz = — £(0) — ik / f(x)el*® dx
0 0

assuming appropriate decay at infinity (guaranteed by our choice of €). Using the fact that the thin shell is
clamped at x = 0, so that w(0) = w’(0) = u(0) = v(0) = 0, the half-range Fourier transforms give

/ p(x,1)e* dz = iwZ; (k) H ' (k) + iwZo(k), (17)
0
where
2 2
w7 (k) = c’d+ b+ wR — dw® + B (k* +m?)” - ¢2d— AiTaz =241 Ayar £ Aoy , (18)
Yo kem)) (L - 1_V(k2+m2)
Cl2 Cl2 2
wZo(k) = ie2d—1C1aze = (N0 + AoCu)are + AoChan | spy  pe,, (19)

(G- )

l l

and the constants C to Cy are given by

Cr = u(0) — (o), Cy = 1%%’(0),

h? ” h? n :
03:< _E>w (0) — C4, 04:<1—E>w (0) + 2imCs.

The equality u”(0) = w”’(0)h?/12 + imv’(0)(1 + v)/2, implied by the axial component of Fliigge’s equations,
has been used to write Cy4 in the given form. We shall consider these constants later, but for the moment
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we assume their values to be known. By considering the half-range transform of the scattered pressure at
the boundary,

0
P_(k):/ —%(x,l)ei’”dx,

which is analytic for Im(k) < 4, and by noting that the half-range Fourier transform of p,(z, 1) is

/ pin(z, 1)e*® da = i/(k — kin),
0
equation () may be transformed to become

(w = Uk)*Jm (a(k))
a(k)Jy, (a(k))
K (k) is the Wiener—Hopf kernel, and ([Z0) forms the Wiener—Hopf problem.

P~ (k) —i/(k — ki) +iwZo(k) = H (k) K (k), K(k) =

—iwZy (k). (20)

B. Solving the Wiener—Hopf equation

In order to solve this Wiener—Hopf problem, we must first investigate where the poles and zeros of K (k) lie.
K (k) has poles which are zeros of J/ (a(k)), zeros of a(k), or poles of iwZ,. Zeros of J (a(k)) correspond
to hard-wall duct modes, while the poles of iwZ; are due to the determinant of ([{H) being zero, and occur
at £k; and +k;. The zeros of K (k) are given by the zeros of x(k), where

X(k) = (w = Uk)*Jim(a(k)) — iwZ: (k)a(k) I, (a(k)), (21)

and hence correspond to duct modes for a duct boundary with impedance Z; (c.f. equation H). Hence, by
definition of e, the strip D contains no poles or zeros of K (k).

As described in appendix [Bl K (k) may therefore be factorized into K (k) = K+ (k)/K~(k), where K (k)
is analytic for Im(k) > —d, and K~ (k) is analytic for Im(k) < §. Similarly (although more simply),
iwZy(k)K~ (k) may be split into F'~ (k) + F (k). Substituting these factorizations into Z0) yields

LK (k) = K (Kin))
k— kin

iK_(kin)
k— kin

P (k)K (k) — +F (k)= H"(k)KT (k) + — F*(k). (22)
The left hand side is analytic for Im(k) < §, while the right hand side is analytic for Im(k) > —d. Hence,
E2) defines an entire function E(k).

From appendix [Bl the following asymptotic behaviour is found as |k| — oo in the regions of analyticity:
K~ (k)=0(k7?), F-(k)=0(k"), K*(k) =0 (k*), Frk)y=0 (k).

Using integration by parts, if g(x) = O(2™) as & — 0 then the half-range Fourier transform of g is O(k~ (1))
as |k| — oco. Assuming the fluid pressure at the boundary at & = 0 to be finite, this gives P~ (k) = O(k~1),
while the clamped boundary conditions w(0) = w’(0) = 0 imply H* (k) = O(k~3). Hence, both the left and
right hand sides of () are O(k~1) as |k| — oo, and so by Liouville’s theorem the entire function E(k) = 0.

Setting the right hand side of ) to zero gives an equation for H'(k), from which () gives the
scattering wave spectrum A(k), and hence

1 [ (w—=Uk)?Jn(a(k)r) [ K~ (ki) iR iRy | i
= Pin\L, Py ' mdka 2
p(@,r) = pin(,7) + 2m/,m (BT (@ENE () | b —Fm  F—t  h—Fa)C (23)
where 2K (k) 12,2
¢ (K 2 w 2
Rl a 2I€lw2/cl2 (kl (I/ * 12Cl2) m ) (leI " mC2)7 (24)
20— 2,2
et d K (ky) w
Ry = T m(l—v-+ 122 (kiCoy — mCh).

are from F'T (k) (see equation Bl in appendix [BI).
Since the integrand is O(k~2) as |k| — oo, for # < 0 the integration contour may be closed in the
upper half plane and Jordan’s lemma applied. Technically, we must deform this contour around the branch
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cut of « in the upper half plane. However, since J,,(ar)/(aJ’,(a)) is a meromorphic function of o, the
integrand is identical on either side of the branch cut, and the contribution from integrating around the
branch cut therefore vanishes. The singularity at v = 0 corresponds to a removable singularity for m # 0,
while for m = 0 it is included in the following analysis provided it is taken that m?/a? = 0. The integral is
therefore 27i times the sum of the residues of the integrand in the upper half plane. These poles are given
by J/ (a(k)) = 0, and so correspond to hard-wall duct modes. Denoting the j*™ positive root of J/ (a) =0
by ajm = a(kjm) with Im(k;,,) > 0, for z < 0 the pressure is given by

Jm AinT . = Jm aymT .
p(z,r) = ﬁ exp{—ikinx} + Z Rjm ] (( J_ >) exp{—ikjmz},
m\Xin =1 m\&Xjm
R, — (w— Ukjm)2 K~ (ki) n iRy n iR,
T (Uw A+ Bk ) (1= m¥ ajm®) K+ (kjm) [kjm = kin — Kjm — ki kjm — ke

Similarly, for 2 > 0 the integration contour in Z3) may be closed in the lower half plane and Jordan’s
lemma applied. Writing aJ], (a) KT (k) as K~ (k)x(k), where x(k) is given in (Z]), the poles of the integrand
of 3) are given by zeros of x(k), and therefore correspond to duct modes for a duct boundary with
impedance Z;. The pole at k;, exactly cancels the incoming pressure piy,. The two poles at k; and Ky
correspond to zeros of the determinant () and so are also poles of x(k), and the integrand therefore has
removable singularities at these points. Denoting the " zero of x (k) by 7}, with Im(7;,,,) < 0, the pressure
for z > 0 is given by

Jm(a(Tjm)r) .
Tm J exp{—iTjmz},
Z  Dalr) P

(‘U—Uij) m( (Tjm)) |: " (Kin) + iR iR
K- (ij)x (ij) Tim — Kin Tim — ki Tjm — k¢

We have now completely derived the solution within the fluid as a sum of duct modes. In the hard-wall
half of the duct (z < 0), the fluid pressure is the sum of the inbound acoustic mode and reflected hard-wall
modes with reflection coefficients Rj,,. In the thin-shell half of the duct (z > 0), the fluid pressure is the
sum of thin-shell modes with transmission coefficients T},,. However, there is still the question of the four
constants C; to Cy.

Tjm = —

C. Determining the constants C; to Cy

By examining ([23)), we find that the dependence of the solution on the constants C; to C4 occurs only
through R; and Ry, which themselves depend only on C; and Cs and are independent of C's and Cy. In fact
C3 and Cy may be calculated (in terms of Cy and C3) from our solution for H™T, since by integrating by
parts,

HT (k) = —iw” (0)/k* + w" (0)/k* + O(k ™) as k — o0, (25)

giving w”(0) and w'”’(0), and hence C3 and Cy. This is possible because, in determining H, we assumed
the pressure to be bounded at x = 0, implying P~ (k) = O(k™!) as |k| — oo. In general, however, setting
the left hand side of () to zero gives P~ (k) = O(k). Satisfying the finite pressure assumption therefore
requires the constants C's and Cy to be chosen such that

iK_(km)

P— + FY(k) =iwZoK (k) + O(k~3),

and this can be shown to give the same values of C5 and C4 as [H). This may be interpreted as the shell
bending at x = 0 in the only way that does not necessitate an infinite pressure in the fluid at the boundary.
As C3 and Cy do not appear in the solution ([Z3), it is never necessary to solve the above equations to
calculate C3 and C}y, and we may now forget about C3 and C4 completely.

We now turn our attention to the constants C; and Cs, which we determine by imposing causality. The
inversion contour in (Z3)) is chosen along the real k axis within the strip D. By definition of €, the Briggs—
Bers criterion shows that this gives the causal solution to a disturbance in the fluid originating at = = 0.
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However, the solid waves in the boundary with axial wavenumbers +k; and +k; are decoupled from w and
produce no disturbance in the fluid for > 0. It is therefore necessary to impose a further condition that no
solid waves are inbound in the boundary from = = +o0o. The half-range Fourier transforms of the axial and
azimuthal boundary displacements u(z) and v(x) for z > 0 are denoted U™ (k) and VT (k), and are given by
the half-range version of ([ZH) as

[]Jr o 1 ag9 —ai2 _iAlHJr - Cl (26)

v+ aiiaz2 — a122 \ —aqo aii —iAHY —Cy |
This shows that U (x) and VT (k) are O(k~?) as |k| — oo. Taking the inversion contours for u(z) and v(z)
above all poles of Ut and V', Jordan’s lemma may therefore be applied to give u = v = 0 for x < 0, while
for x > 0, v and v are given as a sum of residues. In general, the poles of U and V™ are those of H™.
The zeros of the determinant aqa99 — @122, which occur when k = +k; or k = +k;, lead to four additional
poles of Ut and VT which correspond to two inbound and two outbound solid boundary waves. In order
that there be no incoming waves, it is required that the poles of UT and V' at both —k; and —k; have
zero residue (recall that we chose k; and k; so as to represent right-propagating waves). While this would
appear to be four conditions, the singularity of the matrix at these points reduces this requirement to two
conditions,

ki (1AL (=k) H" (ki) + C1) = m (iA2(=k) H" (=ki) + C2) =0,
m (1A (—ke) HY (=ke) + C1) + Ky (iAo (—ke) Ht (—ke) + C2) = 0.

Since HT (k) is a linear function of C; and Cy, so too are the above two equations. Satisfying them specifies
the constants C; and C (which in turn specifies «’(0) and v/(0)), and ensures that the only permissible solid
boundary waves are those that propagate outward from x = 0.

It is interesting to note that, in fact, the solid boundary waves that propagate outward from = = 0 are not
excited either. This is because these two modes, which correspond to the other two zeros of the determinant
in 28) at k = k; and k = k;, both have zero residue for any choice of C; and C5. This may be seen by
evaluating H+ at k; and k; to give

k
H+(/€l) _: lcl + mOQ

) Cy — ki Co
i and HY (k) = m
ki Ay (k) + mAs(ky) (ke)

YA (ke) — ki Aa(ky)

and then substituting this into 8]). The poles at k; and k; therefore correspond to removable singularities,
and once C7 and Cs have been chosen as above so that the poles at —k; and —k; also correspond to removable
singularities, the only poles of U™ and VT are those of H'. The wave scattering is therefore seen to excite
none of the solid waves in the thin shell, although it can and in general will excite the quasi-solid surface
modes in the fluid.

The values of all four constants C; to C4 have now been specified, giving a unique solution, with the
only assumptions being bounded pressure and causality. Since the thin shell was assumed clamped at x = 0,
w(0) = w'(0) = 0, and hence the surface streamline is O(2?) as x — 0.

D. Some examples

We now consider some scattering examples, which were numerically evaluated using the modal sums given
above. The hard-wall and thin-shell wavenumbers k;,,, and 7;,, were calculated using a Newton-Raphson
iteration on the relevant dispersion relations, while the split functions K™ and K~ were calculated by
numerically integrating ([29) from appendix Numerically, we take ¢ = 0, and deform the integration
contours and the strip D away from the real k-axis in such a way that this gives the correct analytic
continuation from e as chosen above. That is, we choose the integration contours and the strip D such
that modes above them are left-propagating, while modes below are right-propagating, exactly as for the
Briggs—Bers stability criterion.

Figure [ shows the numerically calculated hard-wall and thin-shell poles in the k-plane for an air-filled
aluminium duct of Im radius and 1mm shell thickness, with w and m as appropriate for the BPF in an
aeroengine intake.'* The Briggs-Bers stability analysis of figure Bl has been superimposed on figure [
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Figure 13. Duct modes in the k-plane for hard-wall (+) and thin-shell (x) boundaries. Surfaces modes present
for x > 0 are labelled SM. The dashed lines show the Briggs—Bers trajectories of the modes. Parameters are
for an air-filled aluminium duct (see table[l) with R=3,b=1, h = 1073, w =31, U = 0.5, and m = 24.

showing the motion of the thin-shell modes as ¢ is varied, and demonstrating that the contour Cj gives the

correct analytic continuation. The equation of this curve? is

w

k=—=
1-0U?

. 4/
<§ —U+ IYW) , ¢ ER, (27)

with in this case Y = 0.5 and ¢ = 1.0. Figure [ shows the scattering response to an inbound 15* radial order
mode for this situation. The 1%* radial order mode is the hard-wall duct mode with the most positive Re(k)
shown in figure [3, and nearly coincides with it’s equivalent thin-shell mode. Figures [ a) and [Z(b) show
that the response to the inbound mode is dominated by the rightmost thin-shell mode, with little scattering
or reflection taking place. Figure[[d(c) plots contours of the pressure perturbation amplitude.

The previous example used realisable parameters for an actual aluminium thin shell, and found the thin
shell to act almost exactly as a rigid duct, with very little scattering taking place. As a more interesting
example to demonstrate the Wiener—-Hopf technique, we now consider U = 0.5, R = 0.5, b = 0, m = 1,
w = 16, and h = 10~%. For these parameters, the thin-shell modes are distinctly different from their hard-wall
counterparts, and so the scattering is more evident, while figure [ shows that the boundary is still stable.
The hard-wall and thin-shell modes in the k-plane are shown in figure I3 with the Briggs—Bers trajectories
showing the Cj contour to have been chosen to give the correct analytic continuation. The simple Cj, contour
in 7)) does not provide enough flexibility to do this, and so the more general contour given by

L e/ 11y
e STV Y s (g <1_1+g(€/f+1—U/f)2)]’ SeR

was used, with Y =1.0,¢ =04, f =0.1, and ¢ = 0.1.

FigureM@shows the scattering response for the incoming 15* radial order mode labelled I; in figure[[@ The
surface modes play a major role near x = 0 in order to match the hard-wall and thin-shell solutions smoothly,
although for large  these modes still have a negligible effect owing to their large Im(k) and corresponding
fast exponential decay. For large positive 2 the dominant mode is the 1% radial order thin-shell mode.
However, note also the comparably large coefficient for the 6'* radial order reflected (left-propagating) mode
labelled Rg, showing that both transmission and reflection are important in this situation. Figure [T(a)
shows the amplitude of pressure oscillations, obtained from summing the above coefficients. In z < 0, the
sum of two modes is prominently seen: the inbound 1%* radial order I; mode (maximum amplitude at r = 1
and zero amplitude at r» = 0), and the 6*" radial order Rg reflected mode (visible as six horizontal bands).
Figure [[(b) shows a more detailed view around the boundary transition at = 0 where the surface modes
are important, and demonstrates the continuity between x < 0 and x > 0 which is less apparent from

figure [ a).
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(a) Coefficients vs Re(k) (b) Coefficients vs Im(k)
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Figure 14. Scattering response to an inbound 15' radial order mode. (a) and (b) plot the scattering coefficients
|Rjm| (+) and |T},,| (x) against Re(k) and Im(k). (c) shows the contours of the acoustic amplitude [p(z,7)|.
Parameters are for an air-filled aluminium duct (see table[) with R=3, b=1, h = 1073, w = 31, U = 0.5, and
m = 24 (as for figure [[3)
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Figure 15. Duct modes in the k-plane for hard-wall (+) and thin-shell (x) boundaries, together with the
Briggs—Bers trajectories (dashed lines) for the thin-shell modes. One surface mode is not shown owing to
the scale used. The 15t and 6*" radial order incoming (right-propagating) hard-wall modes and the 6*" radial
order reflected (left-propagating) hard-wall mode are labelled I, I, and Rs respectively. Parameters are for
an air-filled aluminium duct (see table ) with R = 0.5, b =0, h = 10~%, w = 16, U = 0.5, and m = 1.
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(a) Coefficients vs Re(k) (b) Coeflicients vs Im(k)
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Figure 16. Scattering coefficients |R;,,| (+) and [T}, | (x) due to an incoming 1% radial order hard-wall mode
I,;. Parameters are for an air-filled aluminium duct (see table[l) with R = 0.5, b =0, h = 1074, w =16, U = 0.5,
and m =1 (as for figure [[H).

(a) Long range effects
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Figure 17. Amplitude of pressure oscillations |p(r,z)| due to an inbound I; mode. (b) is a more detailed plot
of (a) around the boundary transition at z = 0. Parameters are for an air-filled aluminium duct (see table [I)
with R=0.5,b=0, h=10"%, w =16, U = 0.5, and m = 1 (as for figure [[H).
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If, instead of I;, the 6" radial order mode I is incident, the transmitted pressure disturbance almost
completely disappears. Figure [8 shows the reflection and transmission coefficients for this case. Once again
the surface modes are important in matching the solutions for z < 0 and = > 0, although their influence
for large x is once again small. The dominant transmitted and reflected modes are both of 6" radial order,
although the thin-shell one of these is strongly damped. This is also evident from figure [[d, which plots the
amplitude of the pressure oscillations, and shows a standing 6" radial order wave for x < 0 and virtually no
transmitted wave in > 0.

VII. Conclusion

A locally reacting mass—spring-damper (or a cot(wL) Helmholtz resonator) boundary model is inappro-
priate for stability analysis, since Im(w(k)) is not bounded below for real k, and hence the proven Briggs-Bers
criterion is inapplicable. In fact, problems for which Im(w(k)) is not bounded below for real k are ill-posed,
in that there are initial conditions for which the solution at ¢ = 0 does not match with the solution at
t = € in the limit ¢ — 0. There may not even be a sensible answer to the question of spatial stability of
such problems when excited with a time-harmonic forcing, although such problems are certainly temporally
unstable for some initial conditions.

The problem is regularized by considering the boundary as a thin shell, as described by Fliigge’s equations.
The influence of bending stiffness bounds Im(w(k)) below for real k, enabling the Briggs—Bers criterion to be
applied, while the mass—spring—damper model is obtained in the limit A — 0. The ill-posedness mentioned
above manifests itself as an absolute instability w;, with Im(w,) — —oo as h — 0. Consequently, the solution
to a time-harmonic forcing turned on at t = 0 grows arbitrarily fast in time as h — 0. This also ties in with
the surface modes’ behaviour, since there are two thin-shell surface modes that tend to infinity as h — 0,
and that are not predicted by the the mass—spring—damper model.

The mass—spring-damper model was originally introduced® as a model of an acoustic lining in an aero-
engine. Of course, the thin-shell boundary is a model of a different physical system, and we do not suggest
that real acoustic liners should be modelled as thin shells. However, we have shown that by modifying the
boundary condition for large k with the inclusion of bending stiffness, while retaining mass—spring—-damper
like behaviour for small k, a rigorous stability analysis is possible which leads to different conclusions about
stability from those reached for the mass—spring—damper system. We suggest that, in order to perform a
stability analysis on a model of an acoustic lining, the model needs to incorporate a k dependence in the
impedance Z, such that Im(w(k)) is bounded below.

For the Wiener—Hopf analysis using a mass—spring-damper boundary model, Rienstra & Peake? found
that assuming all modes to be stable leads to an undesirable O(z'/?) cusp in the surface streamline at = = 0.
Considering one of the surface modes to be an instability gave an arbitrary constant, and this was chosen
to satisfy the Kutta-like condition of O(z%/?) smoothness for the surface streamline. Here, the boundary
streamline is O(z?) without the inclusion of any instabilities, and indeed the Briggs—Bers criterion dictates
that no instabilities should be present provided h is sufficiently large. The constants C; and Cs could
have been specified (incorrectly) by satisfying the Kutta-like condition of O(z*) smoothness of the surface
streamline as x — 0. However, this would have necessitated inbound solid waves in the boundary from
x = +00, and would therefore not have given the correct causal solution to the problem of a wave inbound
from x = —oo scattering off the sudden boundary change.

The Wiener—Hopf analysis above has been applied in three cases, two of which were chosen to demonstrate
that reflection and scattering are possible for a hard-wall to thin-shell boundary transition. The first example
may be interpreted as a model of the transition from a hard fan casing to a thin-shell nacelle casing for
rearward-propagating tonal fan noise in an aeroengine, although in reality such a configuration would have an
annular, rather than cylindrical, duct cross-section. For this case, the rotor-alone inbound mode propagated
straight through without any significant scattering or reflection. A model of an aeroengine intake is obtained
by taking U negative, since nowhere has it been assumed that U > 0. The results for U = —0.5 are very
similar to those for U = 0.5, with the thin shell again behaving almost identically to a hard wall, and no
significant scattering being seen.
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(a) Coefficients vs Re(k) (b) Coefficients vs Im(k)
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Figure 18. Scattering coefficients |R;.,| (+) and |7}, | (x) due to an incoming 6" radial order hard-wall mode
Is. Parameters are for an air-filled aluminium duct (see table ) with R = 0.5, b =0, h = 107%, w = 16, U = 0.5,
and m =1 (as for figure [MHF).
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Figure 19. Amplitude of pressure oscillations |p(r,z)| due to an inbound Is mode. Parameters are for an
air-filled aluminium duct (see table[l) with R = 0.5, b=0, h = 10"%, w = 16, U = 0.5, and m = 1 (as for figure [[H)).
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A. A comparison of stability criteria

In this appendix, we analyse the stability of the model problem

oG 9G oG .
5t T gz~ O = 0@H®) explivrt}, (28)

for two values of the constant parameter u. This is a self-exciting advection—diffusion equation, and at ¢t =0
a harmonic point forcing is turned on at = 0. Upon Fourier-transforming [23), we get

Ak, w)G(k,w) = —i/(w — wy), where Alk,w) =i(w—uk) +k* -1

Thus, the solution G(z,t) is given as

G(z,t) / / explivt = tka} g,
T 4% o, (w—w)Alk,w)

Figure 20 shows the Briggs—Bers criterion applied to [28) for v = 3. Initially, we take the Cj, contour
along the real k axis, and the C, contour anywhere below the image of Im(k) = 0. We then deform the C,
contour upwards onto the real w axis to pick up the pole contribution at w = wy. In so doing, the zeros of
A(k,w) in the k-plane move, and the Cj contour is deformed upwards to prevent the zeros from crossing the
contour in order to maintain analyticity. The dashed arrowed lines show the motion of various parts of the
C, contour, and their images in the k-plane. The final shape of the C; contour is shown in figure By
applying Jordan’s lemma, zeros of A(k,w) (corresponding to poles of the k integrand) above Cj, correspond
to left-propagating modes, while zeros of A(k,w) below Cj correspond to right-propagating modes. It can be
seen that for the range of frequencies —3 < w < 3, the k_ modes have crossed the real k axis but are below
the Ci contour and therefore represent exponentially-growing right-propagating convective instabilities.

An alternative stability criterion,” which has recently found popularity in the literature,' 2 1911 is shown
in figureZIl For this criterion, w is analytically continued with |w| fixed from arg(w) = —7/2 to arg(w) = 0.
The dashed arrowed lines again show the motion of the modes as w is varied, and those modes that finish
in the upper-half k-plane that started in the lower half are alleged to be right-propagating instabilities.
However, this criterion shows this happening only for 1 < |w| < 3, in contradiction to the Briggs—Bers
criterion. Since all the assumptions of the Briggs-Bers criterion®* are justified for this example, the Briggs-
Bers criterion gives the correct results, and hence this alternative criterion incorrectly predicts the stability
of this model problem.

If instead we consider u = 1, the contrast between the two methods becomes more stark. For this case,
as the C,, contour is deformed onto the real w axis, k4 and k_ coincide at k, = i/2 when w = w, = —3i/4
and pinch the Cj, contour. We cannot therefore continue to deform this part of the C, contour through w,
whilst still maintaining the correct analytic continuation. Continuing to deform the C,, contour onto the real
w axis as far as possible yields the C,’ contour shown in figure Note that some k4 modes cross the real
k axis and therefore correspond to convective instabilities, although the dominant large-time contribution
comes from the part of the C,, contour with the most negative Im(w), which is at w,, leading to an absolute
instability.

Figure shows the alternative method applied to £8) with v = 1. Since no modes end up having
crossed the real k axis because of the C, deformation, this method predicts no instabilities at all, in stark
contrast to the Briggs—Bers criterion. An erroneous result for this case is unsurprising, since this alternative
criterion completely ignores the possibility of absolute instability.
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Figure 20. The Briggs—Bers criterion applied to ([£5) with v = 3. The C,, contour shown is the initial w contour
which is deformed onto the real axis. In so doing, the C; contour is deformed off the real k axis into the contour
shown, to avoid poles crossing the contour.
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Figure 21. The method of ref. 9 applied to () with v = 3. The dashed arrowed lines show w being deformed
from purely imaginary to purely real with |w| fixed, and the motion of the corresponding poles in the k-plane.
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Figure 22. The Briggs—Bers criterion applied to [8) with v = 1. The C, contour shown is the initial w contour,
which is deformed onto the real axis and around the branch cut into the contour C,’. In so doing, the Cj
contour is deformed off the real k axis into the contour shown, to avoid poles crossing the contour.
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Figure 23. The method of ref. 9 applied to €J) with u = 1.
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B. Details of the Wiener—Hopf scattering problem

In this appendix, we factorize K (k), defined in (1), such that K (k) = KT (k)/K~(k), where Kt (k) is
analytic and non-zero for Im(k) > —¢ and K~ (k) is analytic and non-zero for Im(k) < ¢. The method we
follow is as described by Noble.!” It follows from [[¥) that K (k) = —B(1 — h2/12)k* + O(k?) as |k| — oo.
Hence,

K (k)

L) = - ga— e rxee 1T O(k™),

where X > § is an arbitrary positive constant. Since both K (k) and (k? + X?2)? are analytic and non-zero
in the strip D, so too is L(k), and hence log L may be defined so as to be analytic in D. Using Cauchy’s
integral representation,

Y—ié Y +id —Y+is —Y—is
2mlog(L(k)):/_Y—_5+/ +/Y +/ log(L() 4

Y—is +is —vtis &~k

where the integration contours are straight lines between the endpoints, and £ lies inside this closed contour.
Since log(L(€))/(€ — k) = O(¢73), the end integrals tend to zero as Y — oo and the other two integrals
converge, so that

co—id co+id
ou(ui) = - [ S g L [T sl o )

Comi s £ 2mi J_opis €K

The first integral is analytic for Im(k) > —d, and similarly the second integral is analytic for Im(k) < 4.
Calling the first integral log(L*(k)) and the second integral log(L~ (k)) gives the decomposition L(k) =
L*(k)/L~(k). Hence

K+ (k) =i(B(1 - h2/12))*(k +iX L™ (k)

K= (k) = —i(B(1 — h2/12)) " *(k —iX) "L~ (k)

gives the required decomposition K (k) = K+ (k)/K~ (k). Noble (ref. 17, p. 15, theorem C) states that the
L* and L~ found using this method remain bounded as |k| — oo provided log L = O(k™4) as |k| — oo for
q > 0, which is certainly the case here. Hence, KT (k) = O(k?) and K~ (k) = O(k~2).

Requiring KT/K~ = K with K+ and K~ analytic and non-zero in their respective half planes determines
KT and K~ up to multiplication by an arbitrary analytic non-zero function. Since the asymptotic behaviour
of these specific K™ and K~ is known, they are in fact specified up to multiplication by an arbitrary constant.
This is the degree of freedom provided by the arbitrary constant X above. However, such a constant has no
effect on the final solution, as can be seen from (Z3).

The decomposition of iwZy(k)K ~ (k) into F'* (k)+ F~ (k) is more simple. The only poles of iwZo (k) K ~ (k)
in the lower half plane are the simple poles of iwZy at k; and k;. Hence, F~ (k) = iwZy(k)K (k) — F*(k),

where
Ry R,

ECRES
and R; and R, are the residues of iwZy(k)K (k) at k; and k¢, given in ([@d)). The large k behaviour of F*
and F~ is easily derived from ([d), @), and the asymptotic behaviour of K~ (k), giving F* (k) = O(k™!)
and F~(k) = O(k™') as |k| — oo.

F*(k) (30)
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