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In this paper we consider the propagation of acoustic waves on top of an inviscid steady
flow along a curved hollow or annular duct with hard or lined walls. The curvature
of the duct centreline (which is not restricted to being small) and the wall radii vary
slowly along the duct, allowing application of an asymptotic multiple scales analysis.
The modal wavenumbers and mode shapes are determined locally as modes of a torus
with the same local curvature, while the amplitude of the modes evolves as the mode
propagates along the duct. The duct modes are found explicitly at each axial location
using a pseudospectral numerical method.

Unlike the case of a straight duct carrying uniform flow, there is a fundamental asym-
metry between upstream and downstream propagating modes, with some mode shapes
tending to be concentrated on either the inside or outside of the bend depending on
the direction of propagation, curvature and steady-flow Mach number. The interaction
between the presence of wall lining and curvature is also significant; for instance, in a
representative case it is found that the curvature causes the first few acoustic modes to
be more heavily damped by the duct boundary than would be expected for a straight
duct.

Using ray theory, we suggest explanations of these features. For the lowest azimuthal-
order modes, three distinct regimes are found in which the modes are localized in differ-
ent parts of the duct cross-section. This phenomenon is explained by a balance between
whispering-gallery effects along the duct and refraction by the steady flow. At the op-
posite extreme, strongly spinning modes are investigated, and are seen to be due to a
different whispering-gallery effect across the duct cross-section.

1. Introduction

The propagation of acoustic waves along curved pipes has attracted much attention,
with a wide range of applications. One application, which is the motivation for the
research described in the current paper, is the prediction of unsteady flow along the sort
of convoluted intakes often found on the engines of military aircraft. One issue here might
be the behaviour of sound generated by the fan as it propagates upstream, or alternatively
(but not within the scope of this paper) at very large amplitudes the propagation of surge
events.

A selection of previous work will be mentioned here. Keefe & Benade (1983) used
ideas of impedance matching to study the propagation of very long waves along a curved
pipe. Pagneux and coworkers have developed multimodal techniques to describe propaga-
tion in various sorts of curved ducts with zero mean flow (Pagneux, Amir & Kergomard
1996a,b; Felix & Pagneux 2001, 2002). Felix & Pagneux (2004) have also studied sound
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Figure 1. Schematic of the duct geometry.

attenuation round a lined bend, including a ray-tracing explanation of the effects of
curvature, although this was still for zero mean flow. More analytically based stud-
ies have tended to use specific limits, including slender curved ducts (Ting & Miksis
1983) and weakly curved ducts in two and three dimensions (Gridin & Craster 2003;
Adamou, Gridin & Craster 2005).

In a different direction, including mean flow for a straight duct with a circular cross-
section that varies slowly in the axial direction, Rienstra (1999) derived a multiple-
scales approximation for the unsteady field. This approximation has been validated by
Rienstra & Eversman (2001) by comparison with finite-element computations. Rienstra’s
analysis has been extended in a number of ways; by Rienstra (2003b) to the case of
arbitrary duct cross-section, by Cooper & Peake (2001) to the case of swirling mean
flow, and by Ovenden (2005) to a uniformly valid solution that allows modes to undergo
cuton–cutoff transition. However, all of this has been for straight ducts. The aim of this
paper is therefore to investigate both curvature and mean flow simultaneously.

The paper is organised as follows. In §2 we derive the steady potential mean flow
through a curved duct. The unsteady linearized flow is described in §3; as a mode prop-
agates along the duct it is distorted, and the description of this process involves first the
determination of the local axial wavenumber and mode shape, and second the determi-
nation of the slowly varying amplitude. This local eigenvalue problem must be solved
numerically, and our pseudospectral method for doing this is described in §4. Results
are presented in §5, and the possibility of a mode transitioning from cuton to cutoff is
investigated in §6. Finally, in §7, ray-tracing theory is used to shed some light on the
structure of the duct modes, and to investigate the intriguing localization phenomenon
discovered in previous sections.

2. Steady mean flow

We consider a duct, as shown in figure 1, whose centreline possesses nonzero curvature
but zero torsion (i.e. the centreline lies in a plane). The duct has a circular cross-section
in planes normal to the centreline, and can be either hollow or annular. We pick out
two lengthscales for such a duct. The first, ℓ∗ (∗ denotes dimensional variables), is the
lengthscale associated with the geometry of the duct at a given axial location, so that
the duct radius a∗1,2 is of order ℓ∗ and the duct curvature κ∗ is of order 1/ℓ∗. This means
the radius of curvature is on the same scale as the duct radius; were these two of different
scales some asymptotic simplification becomes possible, but here we deal with the full
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generality. The cases of a slender curved duct or a straight duct of varying radius then
follow as special cases. The second lengthscale, L∗, is the shortest lengthscale along the
duct centreline over which these parameters vary.

Let us now be more specific. Let s∗ be the arc-length along the duct centreline. Far
upstream (s∗ → −∞) the duct is assumed to be straight and of uniform outer radius ℓ∗.
(Throughout this paper, the term straight refers to a duct with a straight centreline (zero
curvature), irrespective of variations of the inner and outer radii.) The radii of the inner
(and outer) walls and the centreline curvature then vary along the duct on the lengthscale
L∗, so that the inner and outer radii a∗1,2 and the centreline curvature κ∗ are functions
of S ≡ s∗/L∗. The requirement of slow variation along the axis is then equivalent to
ǫ ≡ l∗/L∗ ≪ 1. The duct carries a mean flow, which far upstream has uniform density
D∗

∞, speed U∗
∞ and sound speed C∗

∞. In what follows speeds are non-dimensionalized by
C∗

∞, densities by D∗
∞, distances by ℓ∗, times by ℓ∗/C∗

∞, and pressures by (C∗
∞)2D∗

∞. We
introduce the duct-centred coordinate system (s, r, θ), where r, θ are polar coordinates
in planes normal to the duct centreline, and s is the arc-length along the centreline. The
duct inner and outer radii are a1,2(S) and the centreline curvature is κ(S), where S = εs
is the nondimensionalized slow coordinate over which the duct geometry varies.

The steady velocity in the duct is written U = Ues + V er +Weθ, and it is assumed
that all steady-mean-flow variables are functions of r, θ, S, i.e. vary slowly down the duct.
The geometric factor associated with the curvilinear coordinate s is hs = 1−κ(S)r cos θ.
We assume an inviscid irrotational perfect gas with ratio of specific heats γ. We apply
the steady continuity condition ∇ · (DU) = 0,

ε

hs

∂

∂S
(DU) +

1

rhs

∂

∂r
(rhsDV ) +

1

rhs

∂

∂θ
(hsDW ) = 0,

together with the condition for irrotational mean flow, ∇∧ U = 0,

1

r

∂

∂r
(rW ) − 1

r

∂V

∂θ
= 0,

1

rhs

∂

∂θ
(hsU) − ε

hs

∂W

∂S
= 0,

ε

hs

∂V

∂S
− 1

hs

∂

∂r
(hsU) = 0,

and the irrotational form of Bernoulli’s equation,

1

2
U2 +

1

γ − 1
Dγ−1 = H, (2.1)

where the enthalpy H = U∞
2/2+1/(γ−1) is a constant determined at upstream infinity.

For the steady flow, the duct walls are considered perfectly hard and impenetrable, with
the corresponding boundary conditions

V − ε

hs

daj

dS
U = 0 at r = aj(S) j = 1, 2 . (2.2)

We assume no leading-order potential swirl, so that W vanishes to leading order. Putting
all these assumptions together, we find that

D = D0 +O(ε2), U = U0 +O(ε2), V = εV1 +O(ε3), W = εW1 +O(ε3),

where

U0(S, r, θ) =
U†(S)

hs(r, θ, S)
, D0 =

[

(γ − 1)

(

H − 1

2
U0

2

)]1/γ−1

.

The quantity U† may be found in terms of U∞ by applying conservation of mass at
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Figure 2. Contours of the axial mean flow Mach number in the RAE 2129 Inlet Diffuser. Far
upstream is a uniform-inlet Mach number of 0.5.

different axial locations, to yield the implicit equation

∫ 2π

0

∫ a2

a1

U0D0r dr dθ = πU∞

(
1 − a1(−∞)

)2
, (2.3)

which can easily be solved numerically. Note that the mean velocity components in the
plane of cross-section arise, in irrotational flow, from the slow variation of the duct, and
are therefore O(ǫ). In what follows it turns out that the value of the radial velocity V1 is
only required on the walls, and can be found simply from the O(ǫ) terms in the boundary
condition (2.2). The value of the O(ε) tangential velocity W1 will not be required at all
in our final answer for the unsteady flow.

One duct geometry we shall consider in particular is the RAE 2129 Inlet Diffuser
duct (as considered by Menzies 2002), which is a much studied reference duct geometry.
A cross-section along the RAE 2129 duct centreline is shown in figure 2, along with the
mean flow for a uniform-inlet Mach number U∞ = 0.5. The duct geometry is defined in
terms of the lateral offset of the centreline, y∗, from its position at the intake s∗ = 0 (as
shown in figure 1), with

y∗(s∗) = −h
∗

2

(

1 − cos

(
πs∗

L∗

))

, (2.4)

The lateral offset at the downstream exit (s∗ = L∗) is then −h∗. The duct itself is hollow,
with outer radius varying quartically between upstream (radius ℓ∗) and downstream
(radius a∗f ) as

a∗(s∗) − ℓ∗

a∗f − ℓ∗
= 3

(

1 − s∗

L∗

)4

− 4

(

1 − s∗

L∗

)3

+ 1 .

For the RAE 2129 duct, L∗/ℓ∗ = 7.1, h∗/L∗ = 0.3 and (a∗f/ℓ
∗)2 = 1.4. This leads to a

value of ε based on the duct length of ε = 1/7.1, for which it is reasonable to suppose
that the small-ε asymptotics of this paper will work well.
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3. Unsteady flow

Consider a small time-dependent perturbation (u, ρ, p) with time dependence exp{iωt}
to the mean flow (U , D, P ). Introducing a scalar potential u = ∇φ, and neglecting
vortical and entropic perturbations, the equations for the unsteady linearized flow due
to Goldstein (1978) reduce to

D

Dt

(
1

C2

Dφ

Dt

)

− 1

D
∇ ·

(
D∇φ

)
= 0, p = C2ρ = −DDφ

Dt
, (3.1)

where D/Dt = iω+U ·∇ is the convective derivative with respect to the mean flow, and
C2 = Dγ−1 is the square of the wave speed. (A similar, although less general, equation
describing sound propagation through a nonuniform medium was originally given by
Blokhintzev 1946.) Equation (3.1) is to be solved subject to the usual Myers (1980)
boundary condition for a lined duct, namely

iωn · ∇φ =
{

iω + U · ∇ −
[
(n · ∇)U

]
· n
}

(p/Zj) on r = aj(S) for j = 1, 2 , (3.2)

where Z1,2(S) are the wall impedances and n is the corresponding wall normal pointing
out of the fluid. (Note that, had an exp{−iωt} convention been adopted, Z1,2 would be
the complex conjugate of what it is here.)

In order to account for the slowly varying duct geometry and mean flow we follow
Rienstra (1999) and pose the multiple-scales WKB ansatz (see for instance Hinch 1991,
chapter 7)

φ =
[
A0(S, r, θ) + εA1(S, r, θ) +O(ε2)

]
exp

{

iωt− i

ε

∫ S

0

k(S′) dS′

}

.

The details of what follows are given in appendix A. In short, substituting this into (3.1)
and taking just the O(1) terms gives

1

hsD0

[
1

r

∂

∂r

(

rhsD0
∂A0

∂r

)

+
1

r2
∂

∂θ

(

hsD0
∂A0

∂θ

)]

+

(
Λ2

C0
2 − k2

hs
2

)

A0 = 0 , (3.3)

where Λ = ω − kU0/hs and C0
2 = D0

γ−1. The O(1) boundary condition from (3.2) is

∂A0

∂r
= ±D0Λ

2A0

iωZj
on r = aj(S) for j = 1, 2 , (3.4)

where ± refers to the outer and the inner walls respectively. For hard walls (3.4) becomes
simply ∂A0/∂r = 0. One crucial difference here from the case of a straight circular duct
is the highly nontrivial dependence of A0 on θ. When κ = 0, (3.3) and (3.4) can be solved
using separation of variables to yield a well-known solution proportional to exp{−imθ} for
integerm and depending on Bessel functions in the radial direction. But when κ 6= 0, (3.3)
is no longer separable. Equations (3.3) and (3.4) must therefore be solved numerically to
determine the axial wavenumber k(S) and the corresponding wave function A0(S, r, θ).
Details are given in the next section. For definiteness, we normalize the solution so that

A0(S, r, θ) = N(S)Â0(S, r, θ),

∫ 2π

0

∫ a2

a1

D0U0ω

C0
2 Â0

2
r dr dθ = 1. (3.5)

The reason for this strange-looking normalization is that it becomes much more natural
when we consider turning point in §6. The unknown amplitude N(S) must be determined
from the solvability condition obtained using the O(ε) terms from (3.1) and (3.2), follow-
ing the procedure given by Rienstra (1999). The details of this are given in appendix A.
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In short, by multiplying the O(ε) part of (3.1) by hsD0A0, integrating across the duct
cross section, and applying the mean flow equations of motion to eliminate V1 and W1,
we arrive at the requirement that the quantity

{
F (S) + I1(S) + I2(S)

}
N(S)2 (3.6)

is independent of S, where

F (S) =

∫ 2π

0

∫ a2

a1

D0Â0
2
[
ωU0

C0
2 +

k

hs

(

1 − U0
2

C0
2

)]

r dr dθ ,

Ij(S) =

[∫ 2π

0

ΛU0D0
2r

iωZj
Â0

2
dθ

]

r=aj

.

Notice here that this condition involves Â0
2
, rather than |Â0|2, which has arisen from

the non-self-adjoint nature of the k eigenvalue problem (in fact the adjoint solution is
A∗

0). In the case of rigid walls (3.6) reduces to the condition that F (S)N(S)2 is constant
along the duct, which for cuton modes can be interpreted as conservation of energy. For
finite impedance, acoustic energy from the flow is dissipated by the walls, and this effect
manifests itself in both the fact that the axial eigenvalue k(S) will be complex and by
the presence of the surface integrals I1,2(S) in (3.6). Note that I1,2 are both additive in
(3.6), corresponding to the fact that energy is dissipated at both walls.

Putting all this together, we now have the leading-order solution (3.5) for the unsteady
flow, in which the local axial wavenumber and mode shape are determined by numerical
solution of (3.3) and (3.4) and the slowly varying amplitude is then given by (3.6).

4. Numerical solution

Our task is to solve the leading-order eigenvalue problem (3.3) and (3.4) so as to
determine the local axial wavenumber k and corresponding eigenfunctions as functions
of the slow arc length S. The leading-order equation for A0 and k is recast, by introducing
B0 = kA0, as the generalised eigenvalue problem





L 0

0 1









A0

B0



 = k







2ωU0

hsC0
2

1

hs
2

(

1 − U0
2

C0
2

)

1 0











A0

B0



 , (4.1)

where

LA0 =
1

hsD0

[
1

r

∂

∂r

(

rhsD0
∂A0

∂r

)

+
1

r2
∂

∂θ

(

hsD0
∂A0

∂θ

)]

+
ω2

C0
2A0,

subject to the boundary conditions

±∂A0

∂r
+

iωD0

Z1,2
A0 = k

(
2iU0D0

hsZ1,2
A0 −

iD0U0
2

hs
2ωZ1,2

B0

)

,

where the negative sign is taken for the inner boundary (if one is present), and the
positive sign for the outer boundary.

We use a pseudospectral method with Chebyshev polynomials as the radial basis (see
for example Khorrami, Malik & Ash 1989; Boyd 2001, chapter 18.6, p. 391) and trigono-
metric polynomials in the azimuthal direction. The number of collocation points in the
radial and azimuthal directions are denoted by nr and nθ respectively (note that nθ must
be odd, since all trigonometric polynomials have an odd number of degrees of freedom).
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For an annular duct, the collocation points are given by

(rj , θℓ) =

(
a1 + a2

2
+
a1 − a2

2
cos

(
jπ

nr − 1

)

,
2ℓπ

nθ

)

,

{
j = 0, . . . , nr − 1,
ℓ = 0, . . . , nθ − 1.

For a hollow duct, a1 is replaced by a small nonzero constant, typically of the order of
the spacing between neighbouring collocation points at the centre, a1 ≈ a2π

2/(2nr −2)2.
While this is ugly, it allows both annular and hollow cases to be calculated using the
same numerical code, and offers the potential to treat a hollow-to-annular transition (as
pointed out by Rienstra 1999). For alternative ways to discretize a hollow duct, see Boyd
(2001, chapter 18.5, pp. 386–391).

Our system is now discretized for an annular duct by requiring the boundary conditions
to be satisfied at collocation points (0, ℓ) and (nr−1, ℓ) for ℓ = 0, . . . , nθ−1, and (4.1) to be
satisfied at collocation points (j, ℓ) for ℓ = 0, . . . , nθ−1 and j = 1, . . . , nr−2. For a hollow
duct, (4.1) is also required to be satisfied at collocation points (0, ℓ) for ℓ = 0, . . . , nθ −1,
and the inner boundary condition is dropped. After a series of manipulations, which
include representation of the r and θ derivatives using standard spectral differentiation
matrices, we arrive at a generalised eigenvalue problem which is 2nθnr square. This
was solved using the QZ algorithm, as implemented in the LAPACK library routine
ZGGEV (Anderson et al. 1999).

In order to avoid spurious eigenvalues, two filtering processes were used. In the first,
based loosely on the description by Boyd (2001, pp. 137–139), eigenvalues which vary
significantly with small changes in the discretization are discarded. Second, we discard
eigenvectors for which nr or nθ are not large enough to resolve properly the true eigen-
function. This is done by decomposing the numerical eigenvector into its spectral rep-
resentation in both r and θ directions, and then ensuring that the outlying spectral
coefficients are sufficiently small. Typically two thirds of the eigenvalues computed failed
these tests, although this fraction is strongly dependent on the parameters used.

We validated our numerical calculations by comparison with known analytic results
for the straight hard-walled ducts, and with numerical results for a lined straight pipe.
An exponential decrease in error with increasing (nr, nθ) is obtained, as is expected from
a pseudospectral method. The results presented in the next section were computed using
typically nr × nθ = 31 × 61. For hollow ducts, a value of a1 = 10−3a2 was found to give
good convergence.

5. Results

We first consider a hypothetical duct, with upstream conditions U∞ = 0.5, a1 = 0.4,
a2 = 1.0, γ = 1.4 and ω = 10. The curvature of the duct was considered to vary
slowly from κ = 0 upstream to κ = 0.1, at which point the spectrum is calculated.
The numerical eigenvalues for this duct with hard walls are shown in figures 3(a,b).
Figures 3(c,d) show examples of cross-sectional modal shapes. Both of these are up-
stream propagating modes, and the fundamental mode (the curved-duct equivalent of a
plane-wave mode) in figure 3(c) is seen to be localized in the inside of the bend. The
downstream propagating modes have similar shapes, but are localized on the outside of
the bend. Figures 3(e,f ) show typical higher-order modes, both of which are cutoff. These
modal shapes are termed bouncing-ball and whispering-gallery type modes respectively,
see Babic & Buldyrev (1991).

One interesting feature of the spectrum is the diagonal vanes of eigenvalues occurring
periodically across the usual vertical line of cutoff modes in figure 3(a) and in close-up in
figure 3(b). This feature only seems to appear in the presence of both non-zero mean flow
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Figure 3. Upstream propagating modes in a hard-walled annular duct. Dashed lines indicate
negative values. The axis orientation is shown in (d), giving the inside of the bend on the right
and the mean flow into the page. U∞ = 0.5, ω = 10, a1/a2 = 0.4, and κ = 0.1.
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and non-zero curvature, and can perhaps be associated with the asymmetric mean flow
and asymmetric mode shapes, leading to slightly different Doppler shifts experienced by
modes localised in different parts of the cross-section. Similar results can also be seen for
hollow rather than annular duct cross-sections.

Figure 4(a) shows eigenvalues for a curved (κ = 0.1), lined (Z = 2−i) hollow duct with
mean flow (U∞ = 0.5). The additional series of eigenvalues in the lower-half k-plane corre-
spond to surface modes, exactly as for a straight duct (Rienstra 2003a; Brambley & Peake
2006). Figure 4(d) shows how such modes are strongly localised near the boundary, while
figure 4(c) shows the upstream-propagating acoustic mode of the same order. This lat-
ter mode is a whispering-gallery mode, and while still being localised close to the outer
boundary is noticeably more pervasive into the duct than the surface mode. (The true
difference is that the mode in 4c decays algebraically away from the boundary, while that
in 4d decays exponentially.) At the other extreme is the bouncing-ball mode shown in
figure 4(b). These modes are similarly to the high-order modes in a hard-wall duct, except
that for the lined duct there is very little oscillation at the duct wall. Figures 4(e, f ) show
the fundamental duct modes, and illustrate the dramatic asymmetry between upstream-
and downstream-propagating modes. The upstream-propagating mode is removed from
the boundary, similar to a mode with a pressure-release boundary condition, while the
curvature biases the mode slightly to the inside of the bend (the right-hand side). The
downstream-propagating mode, in contrast, is strongly localised on the outside of the
bend, and is oscillating significantly on the duct boundary; it is very similar in form to
a hard-wall duct mode.

Figure 5 shows how the axial wavenumbers k vary with the curvature κ. Note that
owing to the left–right symmetry (in the sense of the cross-sections shown in figures 3
and 4) for κ = 0, two distinct modes with κ 6= 0 may merge into a double mode with
κ = 0. As the curvature increases from zero, the first few downstream modes (on the right
of figure 5b) become more damped. In contrast, the surface modes (i.e. the lower branch
in the right half plane) for k . 5 become less damped, while most of the well cutoff
acoustic modes (i.e. the ones in the line parallel to the vertical in figure 4a) maintain the
same rate of decay, although their phase speed shifts slightly towards upstream.

Turning now to the RAE 2129 (hard-walled) duct described in §2, the cuton eigenvalues
(i.e. those with real axial eigenvalue k) are plotted against the position along the duct
centreline in figure 6, for a realistic aeroengine rotor-alone frequency. As can be seen,
many modes which are cuton at the fan face (s = 7.1) will propagate all the way to the
intake (s = 0). In figure 7 we plot the sound pressure level (SPL) of one such cuton mode
(in the initial straight portion of the duct this corresponds to the m = 24 first radial
order mode, a typical aeroengine rotor-alone mode), and in this case the amplitude varies
rather little along the duct and the mode is concentrated close to the duct wall all the
way along. The curvature does give an amplification of 4 dB to the mode, occurring
on the inside of the left-most bend. For these parameters, there are also several duct
modes which transition from cuton to cutoff within the duct, i.e. the sequence of real
wavenumbers starting at the fan reaches a minimum value of s before turning round and
moving back towards the fan (e.g. in figure 6 there are four modes which turn around near
s ≈ 2, etc.). These transitions correspond to wave reflection by the changing geometry
and flow, and will be described in detail in the next section. The cutoff transition confines
these modes to the fan end of the duct. The amplitude of one such mode is shown in
figure 8 (in the initial straight portion of the duct corresponding to the m = 24 second
radial order mode, a harmonic of a typical aeroengine rotor-alone mode), indicating the
standing-wave pattern formed by the mode and its reflection between the fan and the
transition point. This suggests the possibility of acoustic resonance, in which acoustic
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modes are trapped upstream of the fan by the cutoff transition and are prevented from
propagating downstream by the swirl in the rotor–stator gap (see Cooper & Peake 2000).

6. Turning points and wave reflection

For a hard-walled duct the secularity condition (3.6) represents conservation of axial
energy flux. Since a cuton mode has a non-zero energy flux and a cutoff mode has zero
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Figure 7. SPL for the first radial order, 24th azimuthal order mode propagating from right to
left, normalized to give a maximum fan-face wall pressure of 0 dB. The axial wavenumber k for
this mode is shown in figure 6 as the middle of the three solid lines.
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Figure 8. The second radial order, 24th azimuthal order mode propagating from the fan face
(on the right) towards the intake (on the left), before being reflected by the duct geometry and
propagating back towards the fan face. The axial wavenumbers k for these modes are shown as
the upper solid line in figure 6. The incoming wave has unit maximum amplitude. Contours of
Re(φ) in (a) are at 0.5, 1.0, 1.5, and 2.0, with dashed lines indicating negative φ. Contours of
|φ| in (b) are at 1.0, 2.0, 3.0, and 4.0.

energy flux, it is to be expected that the secularity condition breaks down in the neigh-
bourhood of a cuton–cutoff transition. The secularity condition (3.6) becomes singular
when F (S) → 0, a so-called turning point. This is well understood in straight ducts
(see, for example, Rienstra 2003b), and here we now derive the turning point behaviour
incorporating curvature.
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Define

G(S) =

∫ 2π

0

∫ a2

a1

D0

hs
Â0

2
(

1 − U0
2

C0
2

)

r dr dθ,

so that k = (F (S)− 1)/G(S). From previous studies on a straight duct (Rienstra 1999),
we can expect that this transition occurs over a portion of the S-axis of length O(ε2/3),
and since G(S) will vary little over this interval it follows that the change in k from real
(cuton) to complex (cutoff) is associated with a change of sign of F (S)2. Figure 9 shows
the variation in F (S)2 for a mode in the RAE 2129 duct that undergoes a cuton–cutoff
transition; in the neighbourhood of the cutoff region, F (S)2 is seen to be a linear function
of S, and goes through zero as the mode transitions from cuton to cutoff.

The singularity in the secularity condition (3.6) is artificial and is due to the neglect
of a term occurring at a higher power of ε. Including this term, the secularity condition
becomes

d

dS

(

FN2
)

+ iεGN
d2N

dS2
= 0. (6.1)

Let the turning point be at S0, so that F (S0 +∆S) =
√
a∆S for some a. In what follows

an inbound downstream propagating mode is considered (exactly the same analysis can
be applied to an upstream propagating mode, for example as in the RAE 2129 duct), so
that a is negative. By introducing the inner variable x, (6.1) becomes

N ′′ + 2i
√
xN ′ +

iN

2
√
x

= 0, where x = ∆Sε−2/3G−2/3a1/3,

with branch cuts taken along the positive imaginary axis. This has leading-order solution

N =
(
AAi(−x) +BBi(−x)

)
exp

{

−2i

3
x3/2

}

.

Using asymptotic expansions of the Airy function for large |x| (see Abramowitz & Stegun
1964, pp. 448–449), N has the large-x behaviour

N ∼ eiπ/4

2
√

πx1/4

[

(A− iB) exp

{

−4i

3
x3/2

}

− i(A+ iB)

]

as x→ ∞,

N ∼ 1

2
√

π|x|1/4

[

A+ 2B exp

{
4

3
|x|3/2

}]

as x→ −∞.
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The outer solution to (3.6) about the singular point S0 is

N =







N0

(a∆S)1/4
for S < S0

TN0e
iπ/4

|a∆S|1/4
for S > S0.

Expanding in terms of the inner variable x and matching with the inner solution gives
B = 0 and T = 1. However, there is still an unmatched term as x→ ∞. This term is

Aeiπ/4

2
√
πx1/4

exp

{

−4i

3
x3/2

}

∼ iN0
√

F (S)
exp

{

2i

ε

∫ S

S0

F (S′)

G(S′)
dS′

}

.

The inbound downstream propagating mode has k = (F (S)−1)/G(S). The corresponding
upstream propagating mode would have k̃ = (−F (S)− 1)/G = k− 2F (S)/G(S). Hence,
the downstream propagating mode from the singular point would have the form

RN0
√

F (S)
exp

{

− i

ε

∫ S

S0

k̃(S′) dS′

}

= exp

{

− i

ε

∫ S

S0

k(S′) dS′

}

RN0
√

F (S)
exp

{

2i

ε

∫ S

S0

F (S′)

G(S′)
dS′

}

.

This is exactly the solution needed to match with the extra term in the inner solution,
provided R = i.

This conclusion is exactly the same as was reached for a turning point in a straight
duct by Rienstra (2003b). This is perhaps surprising, since within the inner region s
varies by O(ε−1/3), which is long compared with the local radius of curvature. The inner
region is therefore strongly curved, albeit with a constant curvature, and so one might
have expected a curvature-dependent reflection and transmission coefficient.

An example of the results of this matching behaviour is shown in figure 8, as pre-
viously discussed. Note that only the outer solution for φ is plotted in figure 8, and
therefore a singularity at the reflection point is shown. This singularity is not physical,
and is smoothed over by the inner Airy function solution. A method for obtaining a
uniformly valid solution, incorporating both the inner and outer solutions, is given by
Ovenden (2005), motivated by investigating cuton–cutoff transition near the ends of the
duct (especially for civilian aeroengines, where the ducts are very short). This was not
investigated further here, as the reflection points for a curved duct tend to occur in the
centre of the duct, and away from this reflection point the accuracy of the outer solution
is unaffected by the singularity. In particular, the reflection and transmission coefficients
derived above, which are arguably the most important result of this section, are correct
without needing to resort to a uniformly valid solution.

7. Ray theory for a hard-walled duct

We now investigate the high-frequency limit using ray theory. This will turn out not
only to provide an asymptotic approximation for certain types of modes, but will also
provide a more intuitive insight into why modes have the characteristics discovered above.
We consider two different limiting cases. First, we are concerned with the fundamental
modes, i.e. those which are very close to being plane waves. For a straight duct these
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modes would have azimuthal order m = 0, and would be uniform across the duct cross-
section. With wall curvature (and nonuniform mean flow), we see that the fundamental
modes can be localised on one side of the bend or the other. In contrast, we consider sec-
ond the limit of very high azimuthal order, and apply a known result of Babic & Buldyrev
(1991) to determine the whispering-gallery modes.

In what follows, S will only occur as a parameter specifying which slice of the duct is
being considered, and dependence on S will not be explicitly mentioned in the following
equations. The gradient ∇⊥ is used for the derivative in the cross-section of the duct, i.e.
the r and θ directions only. We start off by introducing the ray ansatz for A0(r, θ) by
writing

A0(r, θ) =
A0(r, θ)

√

hs(r, θ)D0(r, θ)
exp(−iωψ(r, θ)) . (7.1)

The reason for normalizing by the square root is to transform (3.3) into a form suitable
for ray tracing (see A 6 in appendix A). We suppose that ω, the dimensionless frequency,
is large, so that (7.1) corresponds to highly oscillatory modes, while ψ is O(1). The
corresponding unknown axial eigenvalue is O(ω), and so we write k = µω with µ = O(1).
Substituting (7.1) into (3.3) (or equivalently into A6) and taking just the leading terms
in ω, i.e. O(ω2), we get

(∇⊥ψ)2 = α2 , α2 =
1

C0
2 − 2µU0

hsC0
2 − µ2

hs
2

(

1 − U0
2

C0
2

)

, (7.2)

which is the standard ray-tracing result for propagation through a medium with nonuni-
form wavespeed 1/α (this is a standard ray tracing derivation; see Babic & Buldyrev
1991, chapters 1 and 4 for details). Substituting (7.1) into (3.4), taking the hard-wall
limit Zj → ∞, and taking just the leading terms in ω, i.e. O(ω), gives the boundary
condition ∂ψ/∂r = 0 at r = aj . This gives simply normal reflection of a ray by the
boundary (again, see Babic & Buldyrev 1991, chapter 4).

This result is quite important because it shows that, for large dimensionless frequencies
ω, our problem for the curved duct with variable mean flow can be replaced by ray-tracing
in two dimensions within a circular boundary with spatially varying sound speed 1/α.
Note that the duct curvature and the duct radii affect α2 through the mean flow terms
(U0, C0 and D0), as well as the curvature appearing in the metric factor hs. In fact, it
may be seen that α2 only depends on x = r cos θ, the transverse position towards the
inside or outside of the curve of the duct, and the position along the duct labelled by the
slow axial coordinate S. The duct modes may therefore be thought of as bouncing around
inside the cross-section of the duct, being reflected normally by the boundary, subject to
a variable wave speed 1/α that varies horizontally from the inside to the outside of the
bend, but not vertically.

7.1. Plane-wave localization

The plane-wave fundamental modes for a straight duct are uniform across the duct cross-
section. For a curved duct, some fundamental modes are shown in figures 3(c) and 4(e,f ).
As mentioned above, for these parameters the upstream-propagating modes are localized
on the inside of the bend, while the downstream-propagating modes are localized on the
outside. However, this is not always the case: figure 10 shows that, for κ = 0.2, U∞ = 0.5,
and ω = 31 there are two upstream-propagating fundamental modes, one localized on
the inside of the bend and one on the outside, with the downstream-propagating mode
still localized on the outside. The wavenumbers for these modes are shown in figure 11,
together with a left–right weighting
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(a) k = −66.4 (b) k = −62.1 (c) k = 25.1

Figure 10. Fundamental modes, for a hard-wall duct with κ = 0.2, U∞ = 0.5, and ω = 31. The
inside of the bend is on the right. (a) and (b) are upstream-propagating modes, while (c) is a
downstream-propagating mode.
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Figure 11. The wavenumbers k for propagating modes against their approximate azimuthal
order m, for a hard-wall duct with κ = 0.2, U∞ = 0.5, and ω = 31. The vertical axis plots
Wx, with modes localized on the inside and outside that have stalks extending upwards and
downwards respectively. Only numerically resolved modes are shown (nr = 23, nθ = 131); the
curve denotes the unresolved region.

Wx =

∫ 2π

0

∫ a2

a1

r cos(θ)|A0(r, θ)|2 rdrdθ
∫ 2π

0

∫ a2

a1

|A0(r, θ)|2 rdrdθ
.

Modes which are highly localized on the left/right of the duct (i.e. on the outside/inside
of the bend) have a value of Wx close to ∓1 respectively. The presence of a couple of
upstream modes localized on the outside is clear in figure 11. The question is, therefore,
what parameters influence the localization of duct modes?

In three dimensions, the fundamental modes may be thought of travelling nearly axially
down the duct, reflecting occasionally from the duct boundary. In order to do this, the
flow and the geometry must be such that a ray, having just reflected from the boundary,
is driven back towards the boundary, as shown in figure 12(a). Figure 12(b) shows the
corresponding projection of the rays onto the duct cross-section, as derived above. The
dashed lines are where α2 becomes negative, and the rays are restricted to regions where
α2 is positive.

A ray travelling purely axially at the local speed of sound along the duct at a fixed
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(b)(a)

x

Figure 12. Schematic of localized fundamental rays. The dashed lines are where α2 = 0. (a)
A projection of the three-dimensional rays onto a vertical plane, and (b) the corresponding
projection onto the cross-sectional plane.

horizontal offset x from the duct centreline would give the ray-tracing parameter µ±(x) =
hs/(U0±C0), with + for downstream and − for upstream. Substituting µ±(x) into (7.2)
shows that α2 = 0 for each x, corresponding to the fact that such a ray is travelling
completely in the axial direction, and therefore has no motion in the duct cross-section.
Here, we are concerned with modes localized on the inside or outside boundary, and so
(normalizing such that the duct radius is a2 = 1) we are concerned only with the value
of µ±(x) at x = 1 (for the inside of the bend) and x = −1 (for the outside of the bend).
Figure 13 shows the variation of α2 across the duct for the four cases in which µ takes one
of the values µ+(±1), µ−(±1). Figure 13(b) corresponds to figure 3, while figure 13(d)
corresponds to figure 10. By perturbing the value of µ slightly from the values µ±(±1),
it is possible that a small pocket of positive α2 might be created close to the duct wall,
and thus (provided the frequency is high enough) a localized mode on that boundary
is possible. In order for a small perturbation to µ to lead to a localised mode on the
boundary, α2(x) must decrease away from that boundary. This is also the requirement
that a ray having just reflected from the boundary is driven back towards the boundary
(it is a standard ray-tracing result that rays bend towards regions with larger α, as may
be seen by taking ∇⊥ of the left-hand side of (7.2)). A change in the number of localized
fundamental modes is therefore seen when the derivative of α2 at x = ±1 changes sign. As
an example, figure 13(a) demonstrates the possibility of a downstream fundamental mode
localized on the outside of the bend and an upstream fundamental mode localized on the
inside. Figures 13(b,d) both demonstrate the possibility of a downstream fundamental
mode localized on the outside, and two upstream fundamental modes, one localized on
the inside and one on the outside. Figure 13(c) demonstrates the possibility of both the
downstream and upstream fundamental modes being localized on the outside of the bend.

In order to investigate which values of U∞ and κ give rise to which types of localization
behaviour, we will now look for a change in derivative of α2 at x = ±1. Differentiating
α2 with respect to x gives

∂α2

∂x
=

(γ − 1)κU0
2

C0
4hs

− 2κU0H(γ − 1)µ(2hs − µU0)

C0
4hs

3 − 2κµ2

hs
3

(

1 − U0
2

C0
2

)

, (7.3)

and substituting µ = µ±(x) = hs/(U0 ± C0) gives

∂α2

∂x
=

κ

hs(U0 ± C0)2

[

(γ − 1)
U0

2

C0
2 ∓ 4

U0

C0
− 2

]

. (7.4)
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(b) U∞ = 0.5, κ = 0.1
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(c) U∞ = 0.3, κ = 0.1
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(d) U∞ = 0.5, κ = 0.2

Figure 13. Graphs showing the variation in α2(x) across the duct cross-section, for potential
upstream- and downstream-propagating modes localized on the inside and outside of the duct
bend. The solid line is the upstream outside mode (i.e. µ = µ−(−1)), the long dashed line the
upstream inside (i.e. µ = µ−(1)), the short dashed line the downstream inside (i.e. µ = µ+(−1)),
and the dash–dot line the downstream outside (i.e. µ = µ+(1)).

A sign change of ∂α2/∂x for a ray propagating axially down the duct is therefore given
by a zero of the square brackets in (7.4). After some algebraic manipulation, this gives

U0
2 = H

(

1 ±
√

2

γ + 1

)

. (7.5)

Note that the + solution of this (corresponding to a downstream-propagating mode) is
very close to U0

2 = 2H , at which point the mean density on the inside of the bend
becomes zero.

Equation (7.5) may be evaluated to give κ in terms of U∞, or U∞ in terms of κ,
for the critical parameters for which an upstream or downstream propagating mode (−
or + in (7.5)) may be localized on the inside or outside of a bend (evaluating (7.5) at
x = 1 or x = −1). Unfortunately, since U† depends on both κ and U∞ and is calculated
numerically, (7.5) must in general be solved numerically. However, if the duct cross-
sectional area is the same as far upstream, then it can be shown from (2.3) that U† =
U∞+O(κ2). Hence, if the cross-sectional area is the same as far upstream and κ is small,
(7.5) gives

κ =
1

x

(

1 − U∞

[

H

(

1 ±
√

2

γ + 1

)]−1/2
)

, (7.6)
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Figure 14. The different localization behaviours of plane waves for different upstream Mach
numbers (U∞) and curvatures (κ). The sketches show whether upstream and downstream modes
localized on the inside and outside of the intake are possible, with downstream being the right–
facing arrow. Solid lines are numerical results from (7.5), and dashed lines are asymptotic results
from (7.6). The two dash–dot lines (one numerical and one asymptotic) are where U0

2 = 2H ,
for which the density on the inside of the bend becomes zero.

with x being either +1 or −1 for the inside or outside of the bend. Here H is given by
(2.1) upstream.

Figure 14 plots the small-curvature asymptotics given by (7.6) and the numerically
calculated solutions of (7.5). The numerically generated solutions stop around U∞ = 0.65,
since for these parameters the duct is choked; i.e. there is no solution to (2.3) for U† that
gives the required mass flow rate.

Interestingly, the boundaries between the different behaviours of the upstream funda-
mental mode intersect at κ = 0, as shown in figure 14. At this point, the small-curvature
asymptotics give the exact answer (assuming the duct cross-sectional area is the same
as far upstream), and rearranging (7.6) gives the upstream Mach number for which this
occurs as

U∞ =
2

γ − 1

(√

γ + 1

2
− 1

)

.

For γ = 1.4, as used for all the examples presented here, this gives U∞ ≈ 0.477. This
means that, for U∞ close to this value (and U∞ = 0.5 has been used for most examples
presented here) for all but very small curvatures it is possible for both the upstream
localized modes to be present. Indeed, this can be seen in Figure 10, where both inside-
and outside-localised upstream modes are shown.

For low Mach number flows, the geometry keeps both upstream and downstream modes
localized on the outside of the bend. This is exactly the result seen by Felix & Pagneux
(2004). However, different behaviour is seen for larger Mach number flows. For large
Mach number flows, the mean flow is fastest on the inside of the bend and slowest on the
outside, giving a refraction effect which curves upstream-propagating rays towards the
inside of the bend and downstream-propagating rays towards the outside. Hence, as the
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Figure 15. SPL for the plane-wave mode propagating from right to left, normalized to give a
maximum fan-face wall pressure of 0 dB. The axial wavenumber k for this mode is shown in
figure 6 as the bottom of the three solid lines.

Mach number is increased from zero, the upstream mode first becomes present on the
inner wall, and then disappears from the outside as the Mach number is increased further.
Increasing the curvature makes this effect more pronounced. This case is similar to the
unsteady flow through a loaded cascade considered by Atassi, Fang & Patrick (1993), in
which upstream propagating waves can propagate along the suction surface of the blade
(corresponding to the inside of our bend) and become blocked if the mean flow becomes
locally close to sonic, giving increased local amplitudes on the suction surface.

Figure 15 gives an example of an upstream-propagating plane wave in the RAE 2129
duct, in a similar manner to figure 7. In this case, the mode is always localized on the
outside of the bends, and becomes a straight-duct plane wave at the midpoint of the
intake where the curvature passes through zero. On the right (fan-end) of the duct only
this localization is possible. On the left (intake-end) a mode localized on the inside of
the bend is also possible, but is not excited.

The validity of the results of this section requires the frequency ω to be high enough. For
the relatively low frequency ω = 10, as in figures 3 and 4, no upstream modes localized
on the outside can be found. However, for the high frequency ω = 31, the ray-theory
prediction of inside and outside upstream fundamental modes presented in figure 14 is
confirmed in figure 11.

While the results presented here have been for a duct with the same cross-section as
far upstream, (7.5) is still valid even if this is not the case. The small-κ asymptotics
of (7.6) do require this restriction, however.

7.2. Whispering-gallery modes

Keller & Rubinow (1960) used ray theory to construct a method for determining the
eigenvalues of the Helmholtz equation in certain closed domains containing a uniform
acoustic medium. Their procedure was adapted by Babic & Buldyrev (1991) to domains
with a varying sound speed. We now make use of Babic & Buldyrev’s procedure to ob-
tain analytically-based approximations for the eigenvalues of our curved duct at high
frequency and high azimuthal order for the case of hard duct walls.
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Figure 16. Comparison of ray-tracing asymptotics (×) with numerical results (+). U∞ = 0.5,
κ = 0.1 and ω = 40.

One key step in the Keller & Rubinow procedure is the determination of the shape of
a caustic surface inside the domain, which provides an envelope for all possible ray direc-
tions. In the case of a circular domain with a uniform medium these caustics are simply
concentric circles, whose radii are related to the allowed eigenvalues of the problem. How-
ever, for our equivalent variable sound speed it does not appear possible to determine
the shape of this caustic in general, but analytical progress can be made for so-called
whispering-gallery modes. Whispering-gallery modes consist of rays running close to the
boundary, bouncing a large number of times at very short intervals. A typical modal
shape is shown in figure 4(c).

Babic & Buldyrev (1991) determined an asymptotic expression for the eigenvalues of
whispering-gallery modes of a circle with nonuniform sound speed. These modes are
parameterized by two integers: m ≫ 1, the azimuthal order, and j = 1, 2, . . ., the radial
order. For the case of a curved duct, with the effective sound speed given by (7.2), their
analysis gives (see Babic & Buldyrev 1991, §5.3)

kjm =
πµ

I1(a2)

{

2m+ I2(a2)

[
9m

4I1(a2)

(
j − 3/4

)2
]1/3

}

, (7.7)

where

I1(r) =

∫ 2π

0

α rdθ, I2(r) =

∫ 2π

0

α1/3

(
1

r
+

1

2α2

∂α2

∂r

)2/3

rdθ,
∂α2

∂r
= cos θ

∂α2

∂x
,

with ∂α2/∂x given in (7.3). This expression is valid for both annular and hollow ducts;
because the rays are bouncing around the outer boundary, the inner boundary plays no
part. Note that (7.7) gives kjm(µ) implicitly as a function of µ ≡ kjm/ω, and an iterative
method was therefore needed to find the axial wavenumber kjm for a specified value of ω.
Figure 16 shows the results of the ray tracing asymptotics against numerically calculated
eigenvalues. A frequency of ω = 40 was used for the comparison, so as to allow high
azimuthal order modes to be cuton. The results are plotted against the azimuthal-order
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m so the individual modes can be distinguished. The agreement is seen to be reasonable,
especially for nearly cutoff large-m modes, as is to be expected from using large m
asymptotics.

8. Concluding remarks

In this paper we have considered the propagation of acoustic waves along a curved
duct carrying mean potential flow. The wall radii, impedance of the acoustic lining, and
curvature of the duct centreline may vary slowly along the duct, allowing application
of an asymptotic multiple-scales analysis. Our general results have not relied on any
assumption of weak curvature. We have seen that the spectrum of local eigenmodes is
more complicated than in the straight-duct case, due to the fundamental asymmetry
between upstream and downstream propagating modes. For the plane-wave fundamental
modes in a hard-wall duct, this asymmetry has been classified into different regions of
parameter space, depending on the local curvature and the upstream Mach number. This
asymmetry is even more pronounced when an acoustic lining is present. In contrast, our
closed-form expression for the variation of the slowly varying amplitude is very similar
in form to the straight-duct case, possibly due to its connection with the energy flux
along the duct. This similarity even extends to cuton–cutoff turning points, for which
the straight-duct solution is recovered despite the duct being significantly curved (albeit
with constant curvature) on the inner asymptotic region.

Throughout this paper we have assumed an inviscid mean flow, and indeed in most
circumstances this is a valid assumption. In some cases, however, particularly for strongly
curved ducts and high Mach number mean flows, it is possible for the viscous boundary
layer along the duct wall to separate. This possibility has been neglected here. However,
assuming the boundary layer remains attached to the duct walls, it is expected that the
inviscid assumption will be acceptable.

The pseudospectral eigenvalue solver is sufficiently general to allow straightforward
extension of our solution to more complicated geometries; for example, to the curved-duct
version of Rienstra’s (2003b) solution for a duct of arbitrary slowly varying cross-section.
Another possible extension of this work would be to relax the restriction that the duct
centreline is planar. This means that as well as a nonzero slowly varying curvature, the
duct centreline would possess a slowly varying torsion τ(S). Germano (1982) showed how
the coordinate system can be modified to account for this effect, simply by replacing the
cross-sectional polar angle θ by

θ +
1

ε

∫ S

0

τ(S′) dS′ ,

which yields an orthogonal coordinate system which effectively twists with the duct
centreline. For zero mean flow the effect of torsion can therefore be included as a very
simple modification of the results given in §3. For nonzero mean flow, however, the cross-
sectional components V,W become O(1) when τ 6= 0, rather than O(ε) when τ = 0, and
this would lead to significant, but perhaps not intractable, complication.

This work has been supported by an EPSRC CASE award from Rolls-Royce. Helpful
discussions with Dr S. W. Rienstra are gratefully acknowledged.
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Appendix. Details of the multiple-scales derivation

We consider a small perturbation (u, ρ, p) with time dependence exp{iωt} to the steady
mean flow (U , D, P ). We neglect vortical and entropic perturbations, and introduce a
scalar potential u = ∇φ. Our starting point is (3.1), the equation for the unsteady
linearized flow due to Goldstein (1978)

D

Dt

(
1

C2

Dφ

Dt

)

− 1

D
∇ ·

(
D∇φ

)
= 0, p = C2ρ = −DDφ

Dt
, (A 1)

where D/Dt = iω + U · ∇ and C2 = Dγ−1, and (3.2), the Myers (1980) boundary
condition for a lined duct,

iωn · ∇φ =
{

iω + U · ∇ −
[
(n · ∇)U

]
· n
}

(p/Zj) on r = aj(S) for j = 1, 2 , (A 2)

where Z1,2(S) are the wall impedances and n is the corresponding wall normal pointing
out of the fluid.

We pose the multiple-scales WKB ansatz (see for instance Hinch 1991, chapter 7)

φ = A(S, r, θ) exp

{

iωt− i

ε

∫ S

0

k(S′) dS′

}

. (A 3)

For brevity, define the linear operators

Λ = ω − kU0

hs
D =

U0

hs

∂

∂S
+ V1

∂

∂r
+W1

1

r

∂

∂θ
,

so that D/Dt = iΛ+ εD +O(ε2). Substituting (A 3) into (A 1) gives

1

hsD0

[
1

r

∂

∂r

(

rhsD0
∂A

∂r

)

+
1

r2
∂

∂θ

(

hsD0
∂A

∂θ

)]

+

(
Λ2

C0
2 − k2

hs
2

)

A

= iε

[
2Λ

C0
2DA+AD

(
Λ

C0
2

)

+
2k

hs
2

∂A

∂S
+

A

hsD0

∂

∂S

(
D0k

hs

)]

+O(ε2), (A 4)

subject to the boundary conditions (from A2)

± ∂A

∂r
− Λ2D0

iωZj
A

= −ε
[

± ik

hs
2

daj

dS
A+

1

A
D
(
ΛD0A

2

ωZj

)

+
D0Λ

Zjω

(
daj

dS

∂

∂r

(
U0

hs

)

− ∂V1

∂r

)

A

]

+O(ε2) (A 5)

at r = aj , where the positive sign is taken for j = 2 and the negative sign for j = 1.

For ray-tracing applications, (A 4) may be rearranged to give

1

r

∂

∂r

(

r
∂A

∂r

)

+
1

r2
∂2A

∂θ2
− κ

hs

(

1 +
U0

2

C0
2

)[
∂A

∂r
cos θ − 1

r

∂A

∂θ
sin θ

]

+

[
ω2

C0
2 − 2ωU0k

hsC0
2 − k2

hs
2

(

1 − U0
2

C0
2

)]

A

=
iε

hsD0A

[

hsD0D
(
A2Λ

C0
2

)

+
∂

∂S

(
D0kA

2

hs

)]

,
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and then, by making the substitution ψ =
√
hsD0A,

1

r

∂

∂r

(

r
∂ψ

∂r

)

+
1

r2
∂2ψ

∂r2

+

[
ω2

C0
2 − 2ωU0k

hsC0
2 − k2

hs
2

(

1 − U0
2

C0
2

)

+
κ2

4hs
2

(

1 + 4
U0

2

C0
2 + (2γ − 3)

U0
4

C0
4

)]

ψ

=
iε

ψ

[

hsD0D
(

ψ2Λ

hsD0C0
2

)

+
∂

∂S

(
kψ2

hs
2

)]

. (A 6)

Returning to (A 4) and expanding A = A0 + εA1 +O(ε2) gives, to leading order,

LA0 ≡ 1

hsD0

[
1

r

∂

∂r

(

rhsD0
∂A0

∂r

)

+
1

r2
∂

∂θ

(

hsD0
∂A0

∂θ

)]

+

(
Λ2

C0
2 − k2

hs
2

)

A0 = 0 , (A 7)

subject to the boundary conditions (from A5)

∂A0

∂r
= ±Λ

2D0

iωZj
A0 at r = aj , j = 1, 2. (A 8)

Equations (A 7) and (A8) are exactly the leading order equations (3.3) and (3.4).

At O(ε), (A 4) gives

LA1 =
i

hsD0A0

[

hsD0D
(
A0

2Λ

C0
2

)

+
∂

∂S

(
D0kA0

2

hs

)]

, (A 9)

where L is the operator defined in (A 7), subject to the boundary conditions (from A5)

± ∂A1

∂r
− Λ2D0

iωZj
A1 = ∓ ik

hs
2

daj

dS
A0 −

1

A0
D
(
ΛD0A0

2

ωZj

)

− D0Λ

Zjω

(
daj

dS

∂

∂r

(
U0

hs

)

− ∂V1

∂r

)

A0

(A 10)
at r = aj , with ± being + at r = a2 and − at r = a1 (this convention will be assumed
from here on). Note that, by using integration by parts to move derivatives from A1 onto
A0 and the fact that LA0 = 0,

∫ 2π

0

∫ a2

a1

A0L(A1)hsD0 rdrdθ =

[∫ 2π

0

(

A0
∂A1

∂r
−A1

∂A0

∂r

)

rhsD0 dθ

]a2

a1

,

where the [· · · ]2π

0 terms that would have appeared above are zero owing to 2π periodicity.
Multiplying (A 9) by A0hsD0r and integrating over r and θ, and then substituting for
∂A0/∂r and ∂A1/∂r using the boundary conditions (A 8) and (A10) therefore gives

− i

∫ 2π

0

[(
k

hs
2

daj

dS
A0

2 ±D
(
ΛD0A0

2

iωZj

)

± D0ΛA0
2

iωZj

(
daj

dS

∂

∂r

(
U0

hs

)

− ∂V1

∂r

))

rhsD0

]a2

a1

dθ

= i

∫ 2π

0

∫ a2

a1

rhsD0D
(
A0

2Λ

C0
2

)

+ r
∂

∂S

(
D0kA0

2

hs

)

drdθ. (A 11)

Note that, since ∇ · (DU) = 0, for any function f(S, r, θ), ∇ · (DUf) = εDDf , and
hence

rhsD0Df = r
∂

∂S
(D0U0f) +

∂

∂r
(rhsD0V1f) +

∂

∂θ
(hsD0W1f).

Using this to eliminate the D operator from (A 11), substituting V1 = (daj/dS)(U0/hs)
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from the mean flow boundary conditions at r = aj and rearranging gives

Q1 +Q2 +

∫ 2π

0

∫ a2

a1

∂

∂S

(
D0kA0

2

hs
+
A0

2D0U0Λ

C0
2

)

rdrdθ

+

∫ 2π

0

[

r
daj

dS

(
D0kA0

2

hs
+
A0

2D0U0Λ

C0
2

)]a2

a1

dθ = 0, (A 12)

where, setting fj = ΛD0
2A0

2r/(iωZj),

Qj =

∫ 2π

0

[
∂

∂S
(U0fj) +

∂

∂r
(hsV1fj) + hsfj

(
daj

dS

∂

∂r

(
U0

hs

)

− ∂V1

∂r

)]

dθ

∣
∣
∣
∣
r=aj

,

where a term involving W1 integrates to give zero owing to 2π periodicity. Expanding
the ∂/∂r terms and again using V1 = (daj/dS)(U0/hs) gives

Qj =

∫ 2π

0

[
∂

∂S
(U0fj) +

daj

dS

∂

∂r
(U0fj)

]

dθ

∣
∣
∣
∣
r=aj

=
d

dS

(
∫ 2π

0

U0ΛD0
2A0

2

iωZj
rdθ

∣
∣
∣
∣
r=aj

)

︸ ︷︷ ︸

Ij(S)

. (A 13)

Hence, (A 12) may be rearranged, moving the ∂/∂S derivative to the other side of the
integrals as we just have done for Qj above, to finally get

d

dS

(

I1 + I2 +

∫ 2π

0

∫ a2

a1

D0A0
2

(
ωU0

C0
2 +

k

hs

(

1 − U0
2

C0
2

))

rdrdθ

︸ ︷︷ ︸

F (S)

)

= 0,

with I1,2 defined in (A 13). Setting A0(S, r, θ) = Â0(S, r, θ)N(S) gives the secularity
condition as written in (3.6)
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