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Viscous boundary layer effects on the Myers

impedance boundary condition
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This paper considers the effects of a thin laminar compressible viscous boundary layer
over acoustic linings.

The presence of a vanishingly-thin nonviscous boundary layer at a fluid–solid interface
is know to lead to the so-called Myers boundary condition of continuity of normal particle
displacement. This boundary condition is now known to lead to instability when applied
to an acoustically-lined duct with flow. Despite this, due to a lack of an alternative, the
Myers boundary condition is still widely used, with any instability artifacts being removed
by artificial smoothing.

In the last couple of years, efforts have been made to resolve these issues by modelling a
sheared mean flow, using the Pridmore-Brown equation. By satisfying the no-slip boundary
condition at the wall, the hydrodynamic instability is removed. However, introducing a
smoothly-varying mean flow leads to the presence of so-called critical layers, with their
own associated problems.

Very little work has included viscosity in such an analysis, which is the underlying
reason for the existence of the boundary layer in the first place. This paper builds on the
work of Aurégan, Starobinski & Pagneux (JASA 2001), who derived asymptotic results for
a viscous laminar boundary layer over an acoustic lining in the low-Mach-number limit.
They found the Myers boundary condition to be applicable only in the high-frequency limit,
while the low-frequency limit led to continuity of normal mass-flux. Their asymptotics
are here confirmed via a different method, and extended to non-small mean-flow Mach
numbers, for which new behaviour is seen. The viscous equations are shown to be regular
across the critical layers at which the inviscid equations become singular. Asymptotics
are presented that shown the Myers boundary condition is correct in the high-frequency
limit only in certain sectors of the frequency- and wave-number planes, and connections
are made between this behaviour and the inviscid critical layers.

I. Introduction

The effect of a vanishingly-thin nonviscous boundary layer is know to lead to the so-called Myers boundary
condition of continuity of normal displacement.1–3 Recently there have been several reports on issues of
stability when applying the Myers boundary condition to an acoustically-lined duct with flow.4–9 However,
owing to convenience and a lack of any alternative, the Myers boundary condition is still widely used, with
any instability artifacts being removed by artificial smoothing.9–14 In the frequency domain, the problem of
instability becomes that of choosing the direction of propagation of modes.7, 15–17 As a numerical example
in the frequency domain, using a pseudo-time method to converges to a solution,18 it is unclear which of the
many potential solutions is converged to, and whether that is the causal one.

In the last couple of years, efforts have been made to resolve these issues by including a nonuniform mean
flow that satisfies the no-slip boundary condition at the wall,19–21 using the Pridmore-Brown equation,22

since such profiles do not exhibit the possible hydrodynamic instability mode present with slipping mean
flow.17 However, these models introduce their own problems, such as the singularity in the Pridmore-Brown
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equation at the so-called critical layer, and the associated continuous spectrum. To the author’s knowledge,
the stability of sheared inviscid flow over an acoustic lining has not been studied.

Introducing viscosity into the model, the vanishingly-thin boundary layer limit (for a laminar boundary
layer of small mean-flow Mach number and small temperature change) has been shown to be nonuniform,23

with continuity of normal particle displacement or continuity of normal mass flux obtained in appropriate
limits depending on the ratio of the acoustic and mean-flow boundary layer thicknesses. These limits corre-
spond, for everything else being fixed, with low- and high-frequency limits. Adding weight to this, last year
remarkably good agreement was shown between the experimental results from NASA Langley24 and a lin-
earized Navier–Stokes code.25 These results suggest that viscosity in the boundary layer plays an important
role in the behaviour of acoustically-lined ducts. This is not surprising, since viscosity is the fundamental
reason for the existence of the boundary layer in the first place.

II. Governing equations

A. Geometry and nondimensionalization

We consider flow along a cylindrical duct, possibly with lined or oscillating walls, as shown in figure 1.
Lengths are nondimensionalized based on a length scale ℓ∗ (∗ denotes a dimensional variable), velocities

θ
x

r

U0

w

Figure 1. The geometry considered here, of uniform flow along a cylindrical duct.

based on a reference sound speed c∗0, and densities based on a reference density ρ∗0. In what follows, ℓ∗

will be taken as the radius of the cylindrical duct, and c∗0 and ρ∗0 will be taken as the speed of sound and
density of the mean flow along the centre of the duct. Based on this nondimensionalization, dimensionless
quantities are shown in table 1. Note that this nondimensionalization gives the mean-flow centreline pressure

Density ρ∗ = ρ∗0ρ Pressure & viscous stress p∗ = c∗0
2ρ∗0p

Velocity u
∗ = c∗0u Dynamic viscosity (shear & bulk) µ∗ = c∗0ℓ

∗ρ∗0µ

Distance x∗ = ℓ∗x Thermal conductivity κ∗ = c∗0ℓ
∗ρ∗0cp

∗κ

Time t∗ = ℓ∗/c∗0t Temperature T ∗ = c∗0
2/cp

∗T

Entropy s∗ = cp
∗s

Table 1. Nondimensionalization used, based on a lengthscale ℓ∗, velocity c∗0, density ρ∗0, and specific heat at
constant pressure cp∗.

as p0 = 1/γ and the mean-flow temperature as T0 = 1/(γ − 1), where γ = cp
∗/cv

∗ is the ratio of specific
heats.

Six dimensionless numbers govern the flow’s behaviour, of which all but one are independent. These are
given in table 2. The reference velocity U∗

0 is taken as the mean-flow velocity along the centreline. This gives
the nondimensional centreline viscosity as µ0 = 1/Re, the nondimensional centreline thermal conductivity
as κ0 = 1/Pe, and the nondimensional centreline velocity as U0 = M . Note that the Reynolds number Re
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Formula Typical value

Mach number M = U∗

0/c
∗

0 0.5

Reynolds number Re = c∗0ℓ
∗ρ∗0/µ

∗

0 2.6 × 107

Peclet number Pe = c∗0ℓ
∗ρ∗0cp

∗/κ∗0 1.8 × 107

Prandtl number Pr = Pe/Re = µ∗

0cp
∗/κ∗0 0.7

Ratio of bulk to shear viscosity µB
0 = µB

0

∗

/µ∗

0 0.7

Ratio of specific heats γ = cp
∗/cv

∗ 1.4

Table 2. Dimensionless numbers. U∗

0 is a reference fluid flow speed, µ∗

0 a reference shear viscosity, µB
0

∗

a
reference bulk viscosity, and κ∗

0 a reference thermal conductivity. The typical values are those of an aeroengine
intake during takeoff.

is based on the sound speed, not on the flow speed. For air in a typical aeroengine intake at takeoff, typical
values of these dimensionless parameters are given in table 2, based on viscosity data for N2 from.26

B. Full viscous compressible equations

The full equations for viscous compressible flow, after the nondimensionalization given in table 1, are:27

conservation of mass
∂ρ

∂t
+ ∇ · (ρu) = 0; (1a)

conservation of momentum

ρ
Du

Dt
= −∇p+ ∇ · σ, (1b)

where D/Dt ≡ ∂/∂t+ u · ∇, and the viscous stress tensor is given by

σij = µ

(

∂ui

∂xj
+
∂uj

∂xi

)

+

(

µB − 2

3
µ

)

δij∇ · u; (1c)

conservation of energy, in the form of entropy

ρT
Ds

Dt
= σij

∂ui

∂xj
+ ∇ ·

(

κ∇T
)

(1d)

or temperature

ρ
DT

Dt
=

Dp

Dt
+ σij

∂ui

∂xj
+ ∇ ·

(

κ∇T
)

; (1e)

and the equation of state for a perfect gas

s =
1

γ
log

(

γp

ργ

)

, T =
γ

γ − 1

p

ρ
. (1f)

For the range of temperatures and pressures to be considered here, we may take the dynamic shear
viscosity µ, the bulk viscosity µB, and the thermal conductivity κ to be linear in the temperature and
independent of the pressure.26 Hence, we set

µ = (γ − 1)Tµ0 µB = (γ − 1)TµB
0 κ = (γ − 1)Tκ0. (1g)

While this variation may seem insignificant, and is often neglected (for example by Ref. 23), when the
equations are linearized it introduces perturbations that are of a comparable size to the acoustic perturbation.
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III. Mean flow cylindrical Blasius boundary layer

We consider a fluid-containing cylinder (of radius 1) whose axis is along the x-axis. Across the majority
of the duct the mean flow is uniform with pressure 1/γ, temperature 1/(γ−1), density 1, and velocity Mex.
At the boundary, a boundary layer exists of characteristic width δ ≪ 1. We now make the change of variable

r = 1 − δy, u = u(x, y)ex − δv1(x, y)er δ2 = µ0 = 1/Re,

this choice of scaling being made so as to scale-out the viscosity from the equations. Henceforth, we will use
a subscript to denote differentiation, so that, for example, ∂ρ/∂t becomes ρt.

The θ-momentum equation is identically zero. The axial-momentum equation and the temperature
equation both balance, since we chose δ2/µ = O(1). The r-momentum equation then implies that py =
O(1/δ2), so that p = 1/γ + δ2p1(x, y). To leading order, therefore, 1/ρ = (γ − 1)T , and the governing
equations become

(

ρu
)

x
+

(

ρv1
)

y
= 0, (2a)

ρ
(

uux + v1uy

)

=
(

µ
δ2 uy

)

y
(2b)

ρ
(

uTx + v1Ty

)

=
(

κ
δ2 Ty

)

y
+ µ

δ2 (uy)
2. (2c)

We solve this using the standard compressible Blasius boundary layer method.28 We first introduce a
streamfunction ψ, so that ρu = ψy and ρv1 = −ψx. Introducing the similarity variable ζ,

√
M

y√
x

=

∫ ζ

0

1 + γ−1

2
M2τ(q) dq ψ =

√
M

√
xf(ζ) T = 1

γ−1
+ 1

2
M2τ(ζ).

gives

ff ′′ + 2f ′′′ = 0, τ ′ = −2Pr(f ′′)Pr

∫ ζ

0

(

f ′′(q))2−Pr dq, (3)

where ′ denotes d/dζ, with boundary conditions

f ′(ζ) → 1

τ(ζ) → 0
as ζ → ∞ f ′(0) = f(0) = 0.

Equation (3) is the classical Blasius boundary layer equation for incompressible fluid flow over a semi-infinite
plate. All of this has been derived correct to leading order, so that errors are of O(δ). Note that all effects
of the curvature of the cylinder wall have been neglected, as these occur at O(δ).

The solution for f from (3) was calculated numerically using a fourth-order finite difference iterative
method, following which τ was calculated by numerically integrating the right hand side of (3). Typically,
f(ζ) was calculated using 104 equally spaced values of ζ in the range [0, 11], which was found to be suitably
accurate for the acoustic calculations performed later. An example of the boundary layer calculated is shown
in figure 2.

A. Parallel flow assumption

To the author’s knowledge, all analyses of acoustics in acoustically lined ducts have assumed a locally parallel
flow profile.19–21, 23, 29 We now make the same assumption of a parallel boundary layer flow, so that we assume

v1 = 0
∂u

∂x
= 0

∂T

∂x
= 0.

This assumption may be justified by expanding x = x0 + ∆x with ∆x/x0 ≪ 1 and neglecting terms of
O(∆x/x0). Noting that v1 = O(1/

√
x0), we also require x0 ≫ 1 in order to neglect v1.

This means that there are two boundary layer parameters we can use to alter the boundary layer thickness.
The first is the Reynolds number since the boundary lengthscale over which viscosity is important, used to
rescale r to y above, is δ = Re−1/2. Provided the Reynolds number is large, the actual numerical value is
never used in this paper, since we are only concerned with the leading-order behaviour, and so Re is either
assumed infinite (within the uniform flow in the centre of the duct) or is scaled out (within the boundary
layer). The second parameter is the downstream location x, since the Blasius boundary layer is a function
of y/

√
x (refer to figure 2 above).
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Figure 2. The compressible Blasius boundary layer profile for M = 0.5, Pr = 0.7 and γ = 1.4. Scales are
nondimensionalized axial velocity u (left) and temperature T (right).

IV. Linearized sound

A. Linearized sound in uniform flow

We now consider a small time-dependent perturbation to a steady laminar boundary layer flow. Outside
the boundary layer, the mean flow is assumed to be axial and uniform, with nondimensionalized velocity
M , the Mach number. We assume that viscosity is negligible within this uniform flow. Linearizing, we
write, for example, ρ+ ρ̃ for the density, where ρ is as derived above and ρ̃ is the acoustic perturbation, of
small magnitude. Introducing an acoustic velocity potential φ, the standard convected acoustic perturbation
equation (see, e.g., Ref. 30) with the nondimensionalization used here is

(

∂

∂t
+M

∂

∂x

)2

φ−∇2φ = 0, p̃ = ρ̃ = −
(

∂

∂t
+M

∂

∂x

)

φ, ũ = ∇φ.

All time-dependent perturbations are assumed to have exp{iωt − ikx − imθ} dependence, giving modal
solutions in terms of Bessel’s functions,

φ = AJm(αr) exp{iωt− ikx− imθ}, α2 = (ω −Mk)2 − k2.

The exp{· · · } factor will be implicitly assumed from here on.
At the cylinder boundary (r = 1), the normal velocity (referred to as ṽ∞ because of what follows) and

the pressure acting on the boundary p̃ are

ṽ∞ = AαJ ′

m(α), p̃ = −i(ω −Mk)AJm(α). (4)

The boundary physics relates these two quantities, giving the dispersion relation for the allowable values of
k (given ω). We are interested in this paper in how the presence of a boundary layer affects this relation.
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B. Linearized sound within the boundary layer

The analysis in this section is general and independent of the boundary layer profile used, assuming that the
boundary layer is axial and parallel. Later in this paper, these equations will be applied to the Blasius profile
derived above. The method followed here is similar to that of Ref. 23. Setting u = (u+ ũ,−δ(v+ ṽ), w̃) and
neglecting terms quadratic in the perturbation amplitude or of order O(δ) gives

i(ω − uk)ρ̃+ vρ̃y + ρ
(

ṽy − ikũ− imw̃
)

+ ρ̃(ux + vy) + ρxũ+ ρy ṽ = 0,

i(ω − uk)ũ+ vũy + ũux + ṽuy +
ρ̃

ρ

(

uux + vuy

)

= 1
ρ ikp̃+ γ−1

ρ

(

T ũy + T̃ uy

)

y
,

p̃y = O
(

δ2
)

ρ
(

i(ω − uk)w̃ + vw̃y

)

= imp̃+ (γ − 1)
(

T w̃y

)

y

ρ
(

i(ω − uk)T̃ + vT̃y + ũTx + ṽTy

)

+ ρ̃
(

uTx + vTy

)

= i(ω − uk)p̃+ γ−1

Pr

(

T̃ Ty + T T̃y

)

y
+ (γ − 1)

(

T̃ (uy)2 + 2Tuyũy

)

,

s̃ = p̃− ρ̃/ρ = (γ − 1)
(

ρT̃ − p̃
)

, (γ − 1)ρ2T̃ = γρp̃− ρ̃.

Hence, as for the steady mean flow, p̃ is constant across the boundary layer to order O(δ2).
Balancing the orders of these terms and matching the boundary layer solution with the acoustic solution

outside the boundary layer gives p̃ and w̃ being O(1) while ũ, ṽ, ρ̃ and T̃ are O(1/δ). These assumptions
give, to leading order,

i(ω − uk)T̃ + Tyṽ − T ṽy + ikT ũ = 0, (5a)

i(ω − uk)ũ+ ṽuy = (γ − 1)2T
(

T ũy + T̃ uy

)

y
, (5b)

i(ω − uk)T̃ + ṽTy = (γ − 1)2T
[

1
Pr

(

T̃ T
)

yy
+ T̃ (uy)

2 + 2Tuyũy

]

, (5c)

ρ̃ = −(γ − 1)ρ2T̃ = −ρs̃. (5d)

Introducing the normal particle displacement x̃i = ṽ/
(

i(ω − uk)
)

and combining these equations gives

ξ̃y =
(γ − 1)2

i(ω − uk)

[

1
Pr

(

T T̃
)

yy
+ T̃ (uy)2 + 2Tuyũy +

ikT

i(ω − uk)

(

T ũy + T̃ uy

)

y

]

, (6)

which gives the change in normal particle displacement across the boundary layer as an integral of dispersive
terms. Equation (6) is the equivalent of equation (14) of Ref. 23. If we were to ignore dissipative effects
within the boundary layer, the right hand side of (6) would be zero, and so ξ̃ would be constant across the
boundary layer; that is, we would recover the Myers boundary condition of continuity of normal particle
displacement.1–3 Ref. 23 used this result as the basis of their asymptotics. Here, we will instead derive our
asymptotics from (5).

For an acoustically-lined boundary which is fixed and permeable, the boundary conditions on the acoustic
perturbation are

ũ(0) = 0, ṽ(0) = −ṽ0/δ, T̃ (0) = 0,

ũ(y) → 0, ṽ(y) → −ṽ∞/δ, T̃ (y) → 0, as y → ∞.

where ṽ0 is the velocity of fluid flowing through the permeable boundary and ṽ∞ is the apparent boundary
velocity seen by the acoustic perturbation outside the boundary layer (this is why the notation ṽ∞ was used
in (4) above). The boundary condition for T̃ assumes the boundary to have a far higher thermal conductivity
than the fluid. The solution will necessarily have ṽ, T̃ , and ũ of O(1/δ), as stated earlier, leading to the
stated boundary conditions as y → ∞.
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C. Application to acoustic lining

The response of the acoustic lining is governed by its impedance, Z = p̃/ṽ0, where a pressure p̃ exp{iωt}
yields a fluid velocity through the lining ṽ exp{iωt}. This gives the boundary condition

ṽ0 =
p̃

Z
.

We would like to know the effective impedance Zeff seen by the mean flow, given by

Zeff =
p̃

ṽ∞
= Z

ṽ0
ṽ∞

.

If we were to assume continuity of normal particle displacement across the boundary layer, we would find
ṽ∞ = (1 −Mk/ω)ṽ0, leading to the impedance boundary condition for the acoustics outside the boundary
layer

Zeff = Zdisp =
Z

1 −Mk/ω
, (7)

which is as derived by Eversman & Beckemeyer1 and Tester.2 Such a boundary condition is usually applied
using the Myers boundary condition3 directly using Z without considering the intermediary Zeff .

If instead we were to assume continuity of normal mass flux across the boundary layer (as suggested from
Ref. 23 in the low-frequency limit) we would find ṽ0 = (γ − 1)T (0)ṽ∞, leading to the impedance condition
for the acoustics outside the boundary layer

Zeff = Zmass = (γ − 1)T (0)Z.

Note that (γ − 1) = 1/T (∞) owing to the nondimensionalization used.
In general, we calculate Zeff here without any of these assumptions by numerically calculating ṽ0/ṽ∞

from (5), as described in §IV.E below.

D. Boundary conditions at infinity

Let us now assume that the boundary layer velocity and temperature profiles are constant at their mean-flow
values for some y > Y , so that u(y) = M and T (y) = 1/(γ − 1). This is true for the Blasius boundary layer
to computational precision for Y ≈ 20

√
x0. Equations (5a–c) simplify and uncouple in this case, to give

i(ω −Mk)(γ − 1)T̃ + ikũ = ṽy, (8a)

i(ω −Mk)ũ = ũyy, (8b)

i(ω −Mk)T̃ = 1
Pr
T̃yy. (8c)

For y > Y , we have ũ = ũ∞ exp{−ηy} and T̃ = T̃∞ exp{−σηy}, where σ2 = Pr and η2 = i(ω−Mk) and
both Re(σ) and Re(η) are positive, for unknown constants ũ∞ and T̃∞. For ũ and T̃ to have solutions that
decay to zero as y → ∞, we require i(ω −Mk) to not be both real and negative. For fixed ω, this gives a
branch cut in the k-plane along k = ω/M − iq for q ≥ 0. It is emphasized that this is different from the
inviscid critical layer, which would be in the k-plane along k = ω/M + q for q ≥ 0.

E. Numerical solution

Equations (5a–c) were discretized using a fourth-order symmetric finite-difference scheme applied on an
equally-spaced set of N points in the interval y ∈ [0, Y ]. This yielding a 3N × 3N banded matrix A with
less than 48N nonzero elements. The boundary conditions at y = 0 were specified as ũ(0) = T̃ (0) = 0 and
ṽ(0) = 1. The solutions for y > Y given in (8c) above were used to give numerical boundary conditions at
y = Y . These boundary conditions were

ũy + ηũ = 0, T̃y + σηT̃ = 0.

These initial conditions were encapsulated into a 3N -dimensional vector b, with b1 = 1 and bi = 0, i ∈ [2, 3N ].
The discretized problem was therefore to solve Ax = b for the solution x, which was performed using the
LAPACK ZGBSV routine.31 After this calculation, (8c) was used to interpolate ṽ at y = Y to y = ∞.

Typically, Y = 20
√
x and N = 4000 were used for the results that follow. One solution took about 10ms

on a standard desktop computer. Such a fast solution was necessary, since this calculation was used in a
Newton–Raphson root-finding iteration to find modal solutions, and was typically solved 20 times per mode.
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F. Frobenius expansion about the critical layer

In this subsection, we investigate the behaviour of (5a–c) about a point y0 at which ω − u(y0)k = 0. For
inviscid shear flows, the point y0 is referred to as the critical layer.20 We use the Frobenius method of
expanding locally about the potential singularity, and so we set z = y− y0 and pose the expansions for small
z

ṽ = zν
∞
∑

n=0

ṽnz
n, ũ = zµ

∞
∑

n=0

ũnz
n, T̃ = zτ

∞
∑

n=0

T̃nz
n,

u =

∞
∑

n=0

unz
n, T =

∞
∑

n=0

Tnz
n,

with nonzero leading coefficients. After some detective work, the leading-order powers (ν, µ, τ) for the five
linearly-independent solutions can be deduced; these coefficients are:

Specify ν µ τ Extra conditions

ṽ0 = ṽ(y0) 0 2 2

ũ0 = ũ′(y0) 2 1 2

T̃0 = T̃ ′(y0) 3 2 1

ũ0 = ũ(y0) 1 0 3 ũ1 = 0

T̃0 = T̃ (y0) 1 2 0 T̃1 = 0

The reason for the extra conditions in the fourth and fifth solutions is that, without these, these solutions
would contain an arbitrary multiple of the second and third solutions. Since the set of equations are fifth
order in total, these are all the solutions, and they are all regular at the critical layer z = 0, equivalently
y = y0. We have therefore shown that the inclusion of disipative terms regularizes the singularity in the
Pridmore-Brown equations, and so we can expect all our solutions to be smooth.

V. Asymptotics

A. The Low-frequency limit

Rewriting (5a–c) in a convenient form gives
(

ṽ

T

)

y

=
iω

T 2

[(

1 − uk

ω

)

T̃ +
k

ω
T ũ

]

, (9a)

(

T ũy + T̃ uy

)

y
− uyṽ

(γ − 1)2T
=

iω

(γ − 1)2T

(

1 − uk

ω

)

ũ, (9b)

1
Pr

(T̃ T )yy + T̃ (uy)2 + 2Tuyũy − Ty ṽ

(γ − 1)2T
=

iω

(γ − 1)2T

(

1 − uk

ω

)

T̃ . (9c)

For y > Y , we know that

ũ = ũ∞e−ηy

T̃ = T̃∞e−σηy

ṽ = ṽ∞ − η

σ
(γ − 1)T̃∞e−σηy − ik

η
ũ∞e−ηy.

Considering the low-frequency limit ω → 0 with k/ω = O(1), and setting η̄2 = i(1−uk/ω) with Re
(

η̄(∞)
)

>
0, expanding the exact result for y > Y in powers of ω gives

ṽ = ṽ∞ − ω1/2

[

η̄

σ
(γ − 1)T̃∞ +

ik

ωη̄
ũ∞

]

+ ωy

[

(γ − 1)η̄2T̃∞ +
ik

ω
ũ∞

]

+O
(

ω3/2
)

,

ũ = ũ∞ − ω1/2η̄yũ∞ + 1
2
ωη̄2y2ũ∞ +O

(

ω3/2
)

,

T̃ = T̃∞ − ω1/2ση̄yT̃∞ + 1
2
ωσ2η̄2y2T̃∞ +O

(

ω3/2
)

.
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We will match the inner solution to this expansion, and so look for an inner solution in powers of ω1/2, so
that ṽ = ṽ0 + ω1/2ṽ1 + · · · . Then (9a), to leading order, gives

ṽ0 = (γ − 1)T ṽ∞,

where ṽ∞ is a constant, chosen to match the outer expansion. This is continuity of normal mass flux across
the boundary layer. This result agrees with Ref. 23, who showed conservation of mass flux in the low-
frequency small-Mach-number limit. Here, the validity of this observation is extended, since we have not
needed to assumed a small Mach number.

The low-frequency analysis may be continued to ũ and T̃ , and to higher orders, but as yet has not yielded
a closed-form solution, and so will not be pursued further here.

B. The high-frequency limit

We now attempt to solve (5a–c) in the high frequency limit, using a Multiple Scales method. This is a
similar analysis to that used for the Pridmore-Brown equation in Ref. 20. Picking any branch for

√
ω and

introducing the variables

Γ = i

(

1 − uk

ω

)

η2 =
Γ

(γ − 1)2T 2
with Re

(√
ωη(∞)

)

> 0,

we pose the Multiple Scales WKB ansatz

d

dy
=

∂

∂y
+
√
ωη(y)

∂

∂θ
.

This yields the same system of equations when evaluated along y = y and

θ =
√
ω

∫ y

0

η(y′) dy′.

Moreover, in order to balance terms we find that ṽ = O(
√
ω), and so we introduce ṽ =

√
ω ˜̃v. Substituting

this into (5a–c) gives the system of equations

ΓT̃ − ηT ˜̃vθ +
ik

ω
T ũ =

T 2

√
ω

( ˜̃v

T

)

y

, (10a)

ũθθ − ũ =
˜̃vuy√
ωΓ

− (γ − 1)2T√
ωΓ

[

Tyηũθ + 2Tηũθy + Tηyũθ + ηuyT̃θ

]

− (γ − 1)2T

ωΓ

(

T ũy + T̃ uy

)

y
,

(10b)

1
Pr
T̃θθ − T̃ =

˜̃vTy√
ωΓ

− (γ − 1)2T√
ωΓ

[

1
Pr

(

2η
(

T T̃θ

)

y
+ ηyT T̃θ

)

+ 2Tuyηũθ

]

− (γ − 1)2T

ωΓ

[

1
Pr

(T T̃ )yy + T̃ (uy)
2 + 2Tuyũy

]

.

(10c)

We now solve this using the series ũ = ũ0 + ω−1/2ũ1 + · · · on the assumption that Γ 6= 0 for any y. At
O(1), setting σ =

√
Pr, we get

ũ0 = A0e
θ +B0e

−θ, T̃0 = C0e
σθ +D0e

−σθ,

˜̃v0 = E0 +
ik

ηω

(

A0e
θ −B0e

−θ
)

+
Γ

σηT

(

C0e
σθ −D0e

−σθ
)

.

At O(ω−1/2), preventing a “secular”a term arising in (10b) gives

(

ΓηTA0
2
)

y
= 0,

(

ΓηTB0
2
)

y
= 0,

aThis term is technically not secular, since the exponentials are exponentially increasing and decreasing. However, taking y
to be complex and such that Re(∆θ) = 0 justifies this being a secular term.
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and solving for ũ1 gives

ũ1 = A1e
θ +B1e

−θ − E0uy

Γ
− uy

σηT

(

C0e
σθ −D0e

−σθ
)

.

Similarly, preventing a secular term arising in (10c) gives
(

ηTC0
2
)

y
= 0,

(

ηTD0
2
)

y
= 0,

and solving for T̃1 (assuming Pr 6= 1) gives

T̃1 = C1e
σθ +D1e

−σθ − E0Ty

Γ
+

Pr

(1 − Pr)η

(

ikTy

ωΓ
− 2uy

)

(

A0e
θ −B0e

−θ
)

.

Finally, preventing a secular term arising in (10a) gives
(

E0

Γ

)

y

= 0 ⇒ E0 = ΓΞ0,

which is continuity of normal particle displacement Ξ0. This is as expected from Ref. 23, again extending
their result to non-small Mach numbers. Solving for ˜̃v1 gives

˜̃v1 = E1 +
ik

ηω

(

A1e
θ −B1e

−θ
)

+
Γ

σηT

(

C1e
σθ −D1e

−σθ
)

+
(γ − 1)2

PrΓ

(

(TΓC0)yeσθ + (TΓD0)ye−σθ
)

+

[

1

(1 − Pr)ηT

(

ikTy

ω
− 2PruyΓ

)

− ik

ηω

∂

∂y

]

(

(A0/η)e
θ + (B0/η)e

−θ
)

.

We may now apply the boundary conditions to the leading order solution, to find that A0 = B0 = C0 =
D0 = 0.

At O(ω−1), exactly the same secularity conditions as above occur. However, now the boundary condition
for ũ1(0) = 0 implies B1(0) = Ξ0uy(0), while the other boundary conditions imply A1 = C1 = D1 = E1 = 0.
Putting all this together, our high-frequency asymptotic solution is

(1 −Mk/ω)ṽ/ṽ∞ = 1 − uk/ω − 1√
ω

uy(0)k/ω

η(1 − uk/ω)3/4
e−θ +O(ω−1), (11a)

(1 −Mk/ω)ũ/ṽ∞ =
i

ω

[

uy − uy(0)(1 − uk/ω)−3/4e−θ
]

+O(ω−3/2), (11b)

(1 −Mk/ω)T̃ /ṽ∞ = O(ω−3/2), (11c)

giving

Zeff =
Z

1 −Mk/ω

[

1 − uy(0)k

ηω3/2
+O(ω−1)

]

. (12)

Equation 12 gives the first-order correction to the Myers impedance given in (7). It is interesting to note
that this correction term depends only on uy(0), and is otherwise independent of the boundary layer profiles
u(y) and T (y).

Note that the multiple scales asymptotics (11) has a caustic for values of y for which 1 − u(y)k/ω = 0,
which is exactly the critical layer. An inner scaling region is needed to correct the asymptotics in this case.
This situation is drastically different from the inviscid asymptotics of the Pridmore-Brown equation,20 since
the Pridmore-Brown equation is singular at the critical layer, whereas we have shown previously that (5)
are regular everywhere, even at this critical layer. The caustic is therefore a singularity of the asymptotics,
rather than the underlying equations, and is alleviated by considering an inner scaling region. This is not
pursued further here.

VI. Results

A. Comparison of boundary layer numerics with Myers boundary condition

This section has a dual purpose: to present some numerical results (as described by equations 5); and to
compare the numerical results with what would have been attained assuming continuity of normal particle
displacement, which is the so-called Myers boundary condition.
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For a boundary with impedance Z, the effect of the boundary layer is to present the effective boundary
impedance Zeff to the mean flow acoustics. Assuming continuity of normal particle displacement, the effective
boundary impedance would be Zdisp. To compare the two, we plot Zeff/Zdisp, which is given by

Zeff/Zdisp = (1 −Mk/ω)
ṽ0
ṽ∞

.

This is plotted in the k-plane in figure 3 for parameters applicable to aeroengine intakes: ω = 31, M = 0.5.
Throughout all the results presented here, Pr = 0.7 and γ = 1.4. The thickness parameter x = 1 was chosen
for the thickness of the boundary layer in an aeroengine intake, since this represents the thickness of a laminar
Blasius boundary layer one duct radius downstream of the intake lip. The branch cut predicted in §IV.D is
clearly visible. The majority of the k-plane is seen to have Zeff/Zdisp ≈ 1, which is as predicted1, 2, 23 and
agrees with the high-frequency asymptotics of §V.B. However, for Im(k) < 0 and behind the branch cut
(Re(k) > 62) the continuity of normal particle displacement is seen not to hold.

The critical layer would be along the real k-axis for k > 62; however, as predicted in §IV.F, no singularities
are present there.

The effect that this change in the effective impedance has on the duct modes is shown in figure 4, for
the same parameters as figure 3 and with a boundary impedance of Z = 2 + i. The background colours are
from figure 3. The majority of duct modes lie in the region well-predicted by the Myers boundary condition.
The potential hydrodynamic-instability surface mode17, 32 in the upper-right of the k-plane has moved by
a nontrivial amount. Most important, however, are three new modes inhabiting the region of the k-plane
where the Myers boundary condition is invalid.

B. Comparison of numerics and high-frequency asymptotics

In this section, we will compare the numerics, the high-frequency asymptotics derived in §V.B, and the
solution assuming continuity of normal particle displacement, for ṽ across the boundary layer for four different
points in the k-plane. These are: k = 1, for which Re(k) < ω/M , shown in figure 5; k = 51 + 5i, for which
Re(k) is close to ω/M = 62 but Im(k) > 0, shown in figure 6; k = 63i, for which Re(k) is close to but greater
than ω/M = 62 and Im(k) = 0, so that k lies on the “critical layer”, shown in figure 7; and k = 70 − 70i,
for which Re(k) > ω/M = 62 and Im(k) < 0, so that k lies in the region for which the Myers boundary
condition is invalid, shown in figure 8.

Figures 5 and 6 show that the asymptotics of §V.B and the numerics for ṽ coincide well, and that the
shape predicted by the asymptotics of §V.B fits better with the numerics than does the Myers boundary
condition assumption of continuity of normal particle displacement. Figure 7 shows the behaviour of the
asymptotics across the caustic (located at the same place as the “critical layer”), after which the numerics
and the asymptotics diverge. This is due to the lack of an inner scaling region to properly account for
the caustic in the asymptotics. Note that the numerical solution is smooth across the “critical layer”, as
predicted by in §IV.F.

Figure 8 also shows a disagreement between the numerics and the asymptotics, especially for y → ∞.
The asymptotics is predicting the correct kind of behaviour, which is highly oscillatory and an order of
magnitude greater than at either y = 0 or y → ∞. This behaviour is caused by the multiple scales WKB
coefficient η(y), which is defined so that Re(η(∞)) > 0, going around a branch point so that Re(η(y)) < 0
for y < y0 for some y0. Doing so invalidates the ordering of small terms in the asymptotic expansion, since
e−θ can no-longer be considered to be at most O(1). This behaviour could be indicative of some sort of
turbulence being generated within the boundary layer. The continuity of normal displacement assumption
is clearly incorrect in this case.

The behaviour at high frequency is sketched in figure 9. In the k-plane, the region of interesting non-
Myersian behaviour due to Re(η(y)) < 0 for y in some region can be shown to be bounded by the branch cut
k = ω/M − iq for q > 0 and the caustic k = qω/M for q > 1 (also referred to here as the “critical layer”). In
the ω-plane, these two boundaries map to ω = kM + iq for q > 0 and ω = qkM for 0 < q < 1 respectively.
The third boundary to the region of interesting behaviour in the ω-plane is the “Growth Limit” line ω = iq
for q > 0, since it can be shown that y0 → ∞ as Re(ω) → 0+ with Im(ω) > 0.

In conclusion, the interesting behaviour is seen in the k-plane in an infinite quarter plane bounded by
the caustic and the branch cut, and in the ω-plane in a strip bounded by the caustic, the branch cut, and
the positive imaginary axis. Within this interesting region, continuity of normal particle displacement does
not hold. All of this analysis is, however, limited to high frequencies.
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Figure 3. Zeff/Zdisp in the k-plane. Left: |Zeff/Zdisp| with logarithmic scale [10−2, 102]. Right: arg(Zeff/Zdisp).
ω = 31, M = 0.5, Pr = 0.7, γ = 1.4, x = 1.

Figure 4. Effects of the boundary layer on modes at high frequency. Plotted is arg(Zeff/Zdisp) (colour back-
ground), without boundary layer modes (+), and with boundary layer modes (×). ω = 31, m = 24, M = 0.5,
Pr = 0.7, γ = 1.4, x = 1, Z = 2 + i.
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Figure 5. Comparison of numerics and high-frequency asymptotics for ṽ for small k. k = 1, ω = 31, M = 0.5,
Pr = 0.7, γ = 1.4, x = 1.
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Figure 9. Sketch of high-frequency asymptotic region boundaries in the k-plane (left, ω = 31) and the ω-plane
(right, k = 10), together with arg(Zeff/Zdisp) (colour background). M = 0.5, Pr = 0.7, γ = 1.4, x = 1.

C. Comparison of numerics and low-frequency asymptotics

Figure 10 plots the argument of Zeff/Zmass, for k = 0.1. The colours and the scale are the same as the right
hand plot in figure 3. About the origin, the colour indicates that Zeff/Zmass is real, and indeed looking at
the raw data shows that Zeff/Zmass → 1 as ω → 0. This verifies the low-frequency predictions of Ref. 23 and
the low-frequency asymptotics of §V.A. Note, for comparison, that Zeff/Zdisp has a pole at ω = 0.

VII. Conclusion

In this paper, we have considered the effect of a laminar parallel viscous compressible boundary layer on
the impedance of a fixed permeable boundary. This follows on from the work of Aurégan, Starobinski &
Pagneux,23 extending their asymptotics to allow for non-small Mach numbers, and from the numerous works
using the Pridmore-Brown equation22 to investigate the effect of sheared mean flow in ducts.19–21 All such
works have assumed, as we have here, that the mean flow is laminar and parallel.

The main result of this paper is the discovery of a region of the k- and ω-planes in the high-frequency
limit where the Myers boundary condition does not hold. This region was not discovered previously, since
it requires both dissipative terms (which are neglected for Pridmore-Brown analyses) and |k| > |ω/M |, the
latter never being true in the low Mach number limit considered in Ref. 23. One of the boundaries of this
region is connected to the critical layer of the Pridmore-Brown equation, where the convective term vanishes
(so for y = y0 where ω − u(y0)k = 0). While the dissipative terms were shown in §IV.F to regularize the
exact solution across this critical layer, it still persists as a caustic in the high-frequency multiple scales
asymptotics. Another important boundary is the branch cut, which corresponds to undamped viscous waves
outside the boundary layer.

For all the examples given here, the boundary-layer flow profile used is a compressible Blasius boundary
layer (as shown in figure 2). However, the flow profile could be arbitrary, and the mathematics above would
hold true for any laminar parallel flow profile. One of the new results of this paper is the first order correction
to the Myers boundary condition in the high-frequency limit, given in (12). This correction term depends
only on the derivative of the mean-flow velocity profile at the boundary, uy(0), and is otherwise independent
of the boundary-layer flow profile.

The parallel flow assumption was justified here by considering a Blasius boundary layer far downstream
of the leading edge generating it, so that x ≫ 1; despite this, boundary layer thicknesses related to x = 1
have been used throughout for numerical examples, as this relates well to the flow in an aeroengine intake one
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Figure 10. Plot of arg(Zeff/Zmass) in the ω-plane: k = 0.1, M = 0.5, Pr = 0.7, γ = 1.4, x = 1.

duct radius downstream of the intake lip. The validity of the parallel assumption in this case is questionable.
The parallel assumption could be expected to be far more realistic for well-developed flow, such as in ducts
used for ground-based testing of acoustic linings,24 for which x ≃ 100.

The laminar flow assumption is mainly related to the difficulty (or impossibility) of modeling acoustics
across a turbulent boundary layer. The boundary layer in ground-based acoustic lining experiments is usually
well-developed and turbulent,24 though the nature of the boundary layer in aeroengine intakes is a more
difficult question.

It is interesting to note that the validity of these assumptions differs between ground-based acoustic lining
experiments, such as Ref. 24, and aeroengine intakes in flight. The different parameters and assumptions in
these two cases are contrasted in table 3.

In Flight Ground Test

Mach number ≈ 0.5 0 – 0.4

Reynolds number (based on c0) ≈ 3 × 107 6 × 105

Prandtl number 0.7 0.7

Frequency (ω) 2 – 200 0.2 – 1.6

BL Thickness (
√
x) ≈ 1 ? ≈ 10

BL Type ? turbulent

Duct cross-section cylindrical rectangular

Table 3. Comparison of nondimensional parameters and modelling assumptions between an aeroengine intake
in flight and a ground-based acoustic lining test (such as Ref. 24).

One major outstanding question from this paper is, when solving for duct modes using the boundary
impedance Zeff calculated from (5), what is the behaviour of ω(k) for real k? The problem of instability for
numerically modelling sound in acoustically-lined ducts with flow9–14 is caused by Im(ω(k)) being unbounded
below for real k.8 It is currently unclear whether the presence of a viscous boundary layer prevents this
unbounded behaviour, and work is ongoing on this.
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A., “Impedance Deduction Based on Insertion Loss Measurements of Liners under Grazing Flow Conditions,” AIAA paper
2008-3014, 2008.

14Tam, C. K. W., Ju, H., and Chien, E. W., “Scattering of Acoustic Duct Modes by Axial Liner Splices,” J. Sound Vib.,
Vol. 310, 2008, pp. 1014–1035.

15Nilsson, B. and Brander, O., “The Propagation of Sound in Cylindrical Ducts with Mean Flow and Bulk-reacting Lining:
I. Modes in an Infinite Duct,” J. Inst. Maths Applics, Vol. 26, 1980, pp. 269–298.
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