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Abstract.

This paper considers the low-frequency limit of the reflection coefficient for downstream-propagating sound
in a cylindrical duct with uniform mean flow at a sudden hard—soft wall impedance transition. The scattering
at such a transition for arbitrary frequency was analysed by Rienstra (2007, J. Engng Maths 59, pp. 451-475),
who, having derived an exact analytic solution, also considered the plane-wave reflection coefficient, Roi11, in
the low-frequency limit, and it is this result that is reconsidered here. This reflection coefficient was shown
to be significantly different with or without the application of a Kutta-like condition and the corresponding
inclusion or exclusion of an instability wave over the impedance wall, assuming an impedance independent of
frequency. This analysis is here rederived for a frequency-dependent locally-reacting impedance, and a dramatic
difference is seen. In particular, the Kutta condition is shown to have no effect on Rpi1 in the low-frequency
limit for impedances with Z(w) ~ —ib/w for some b > 0 as w — 0, which includes the mass—spring-damper
and Helmholtz resonator impedances, although, interestingly, not the enhanced Helmholtz resonator model. This
casts doubt on the usefulness of the low-frequency plane-wave reflection coefficient as an experimental test for
the presence of instability waves over the surface of impedance linings.

The plane-wave reflection coefficient is also derived in the low-frequency limit for a thin shell boundary, based
on the scattering analysis of Brambley & Peake (2008, J. Fluid Mech. 602, pp. 403-426), who suggested the
model as a well-posed regularization of the mass—spring-damper impedance. The result might be interpretable
as evidence for the nonexistence of an instability over an acoustic lining.

Keywords: Impedance boundary, acoustic lining, Myers’ boundary condition, scattering, low-frequency asymp-
totics.

1. Introduction

Rienstra [1] considered a cylindrical duct containing mean flow in the positive z-direction,
which for x < 0 had a rigid boundary and for x > 0 had an acoustically lined boundary. The
scattering of a downstream-propagating mode was considered as it encountered the sudden
impedance change at x = 0, and a full analytic solution was derived using the Wiener—Hopf
technique. Due to the debate over whether one of the surface modes constituted a downstream-
propagating instability or an upstream-propagating evanescent mode, both were allowed for
using a factor I': setting I' = 1 gave the “full Kutta condition” of smooth O(x3/ 2) behaviour of
the surface streamline at x = 0 by including the surface mode as an instability, whereas setting
I' = 0 assumed the surface mode to be stable and upstream-propagating and gave an O(wl/ 2)
cusp in the surface streamline at x = 0.

The situation we consider is exactly that analysed by Rienstra [1], and is shown schematically
in figure 1. We consider a straight cylindrical duct with centreline along the z-axis and constant
radius ¢* (* is used throughout to denote a dimensional variable), the cross-section being
described by polar coordinates (r*,#). Along this duct flows a uniform inviscid compressible
mean flow in the positive z-direction of velocity U*, with constant sound speed c¢*, constant
density pg, and constant pressure pj. On top of this mean flow we consider acoustic waves, so
that the total velocity is U* = U*ex + V¢*, the total pressure is P* = pj + p* and the total
density is D* = p{, + p*, where p*, p* and ¢* are a small acoustic perturbation and have time
dependence exp{iw*t*}.

* Supported by a research fellowship from Gonville & Caius College, University of Cambridge, UK.

';:‘ © 2009 Kluwer Academic Publishers. Printed in the Netherlands.
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Figure 1. Sketch of the geometry

In order to reduce the number of constants, we now nondimensionalize based on c*, £*, and
py- That is, we set

x* = al*, r* =rl*, t* = tl*/c*, U* = Mc*,
=gy P =palch = gcl, W —wel,

Here, M is the Mach number and w is the Helmholtz number. The nondimensionalized mean
flow pressure then becomes py = 1/, where + is the ratio of specific heats.

Substituting U, P, and D into the Euler equation and taking only terms linear in the small
quantities yields the convected Helmholtz equation

0 \? 0
<iw+M%>¢—V2¢:0, p:p:—<iw+M8—x>¢. (1)
The boundary condition at the duct wall is continuity of particle displacement [2]. If the
outward radial deflection of the surface streamline is w* = wf* (as indicated in figure 1), this
boundary condition is

0 0
For z < 0, the duct wall is hard, and so w = 0, implying d¢/9r = 0 at r = 1. For > 0 the
boundary is modelled by an impedance Z*(w*) = Z(w)p§c*, where a harmonic pressure forcing
p* excites a harmonic wall velocity iw*w* = p*/Z*. Eliminating w from (2) gives the Myers
boundary condition [3] (as applied to a flat boundary with uniform mean flow)

.09 (. d\ p

This is exactly the situation considered in [1].

Some common models for the dependence of Z on w will be considered here. The first is
the mass—spring-damper model, as used by Rienstra [1, 4], which treats the boundary as a
locally-reacting simple harmonic oscillator with mass per unit area a*, spring constant per unit
area b*, and damping constant per unit area R*. Hence, when forced by the fluid pressure p*,
the boundary behaves according to

82 * 8 *
a* w2 + R et = P, = Z(w) = R+ iaw — ib/w, (4)
ot* ot*
where
a* = apyl”, R* = Rpyc”, b* = bpicter.

The justification of this model is that it captures three physical quantities: the inertia or mass
a, the springiness b, and the damping R.
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Another model is the enhanced Helmholtz resonator model [5], which is an extension of
a model of a typical acoustic lining consisting of an array of Helmholtz resonators behind a
perforated facing sheet. For this model

Z(w) = R+ iaw — 1Y cot(wL — ic/2), (5)

where L is the depth of the Helmholtz resonators', Y is a parameter scaling the cavity reactance,
and ¢ is a damping within the fluid in the cavity. Setting ¥ = 1 and € = 0 yields the original
Helmholtz resonator model.

Separable (modal) solutions of (1) subject to (3) for a duct uniform for all x are of the form

Gmp = Ampdm () exp{ivt — ikpy,,x — imb}, where am,ﬂ = (w— Mknw)2 - km,f,
where J,,, is the mth order Bessel function of the first kind. The boundary condition places the
restriction on k,,, that

1w Z () = (W — M) * I (Cmp)-

There are an infinite discrete set of solutions (modes) ki, to this condition, which we index
by the integer = 1,2, .... Taking the limit Z — oo regains the hard-wall boundary condition
Jm/(amu) = 0. For finite Z, most modes are acoustic modes and have nearly real a,,,. Rien-
stra [4] identified and characterized surface modes localized close to the duct boundary, for which
amy has a large imaginary part (this analysis having been subsequently extended in [6]). Using
the mass—spring—damper lining model, Rienstra tentatively suggested that one of these surface
modes, present only with nonzero mean flow, might be interpreted as a downstream-growing
instability, and termed this mode a hydrodynamic instability (HI) mode. It is this mode whose
inclusion or exclusion was shown in [1] to have a significant effect on the plane-wave reflection
coefficient Rp11 in the low-frequency regime.

In this paper (as seems to have been considered in [1]) we consider the low-frequency limit to
be w* — 0 with £* and ¢* fixed. This is subtly different from a general small-Helmholtz-number
limit2. The distinction is that the Helmholtz number may be made small by reducing ¢* while
holding w* and ¢* fixed. For a mass—spring—damper boundary, if the boundary were unaltered
during this radius change then a*, b* and R* would remain fixed, and so the nondimension-
alized variables a, b and R would vary with the Helmholtz number (the same is true for the
nondimensionalized variables in the Enhanced Helmholtz Resonator model). Here we exclude
this possibility. To give a physical perspective, what is imagined is an experiment in which we
are given a lined duct that is to be investigated. This duct has a fixed radius (which is used
to nondimensionalize). An acoustic wave is excited, say by loudspeakers, and the properties of
the lining are then experimentally investigated by varying the frequency of the acoustic wave.
This experiment is of a type that is commonly performed [7, 8, 9].

Introduced in [4] and used in [1], Rienstra defines the reduced variables

BP=1-M%  Q=w/f, o=M+Fkw, P=1-0"=((w-Mk)?-k?)F?

where Im(v) < 0 is taken. (Note that v is not the ratio of specific heats defined earlier.)

2. The scattering problem and its solution

This section gives a brief review of the parts of the scattering analysis given in [1] that we will
use subsequently. Consider a downstream-propagating mode incident from x < 0 of the form

Pin = Im(ampr) exp{iwt — ik, x — imé}, where amuz = (w— Mknw)2 — kmuz,

! Note that wL = w*L*/c*, where L* = L£*, and so is independent of the duct radius, as expected.
2 The author is grateful to a referee for pointing out this distinction.
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where the hard-wall boundary condition places the condition on k,,, that Jm/(amu) = 0 with
solutions indexed by the integer u. We now consider w, m, and p as given and fixed. Since pi,
does not satisfy the boundary condition for x > 0, it scatters into waves propagating outward
from = = 0. Rienstra [1] gave an exact analytic solution to this problem, using a Wiener—Hopf
technique. For = < 0, the solution is given as a sum of hard-wall duct modes [1, equ. 34],

P = pin + Z Ry I m (amyr) exp{ivt — ik, x — im},

v=1

where k,;,, are the upstream-propagating modes in the hard-wall duct which therefore satisfy
Jm!(qtmy) = 0. The reflection coefficient of a downstream-propagating plane wave (m, 1) = (0,1)
into an upstream-propagating plane wave is given by [1, equ. 36]

C1+M N_(1) |1 r
%H_l—MNﬂ%Ub_1+qJ’ (6)

where oy is the value of o for the surface mode that is a potential candidate for an instability [4],
and I' is a Kutta-condition factor. I' = 0 corresponds to ofy being considered stable and not
present in x > 0, and leads to a boundary streamline cusp at z = 0 of w = O(x1/2). I'=1
corresponds to a Kutta-like condition giving w = O(az?’/ 2), and necessitates the inclusion of the
opr mode as an instability in z > 0. Ny (o) are the split functions of the Wiener—Hopf kernel
K(c) = Ni(0)/N_(0), defined following [10] as

1 [>® logK

log Ni(o) = — / log K(u) du, (7)
2m J_ o u—o0

where the integration contour is deformed above ¢ for N_ and below o for N. The Wiener—-Hopf

kernel K (o) is given by [1, equ. 21]

= %5(1 - MU)QL@

where o? = (w — Mk)? — k? = (1 — 0?)w?/ 3.
In §6 of [1], Rienstra considered the low-frequency asymptotics of Rp11. In doing so, it was
assumed [1, equ. 59] that

K(o) —lwZ, (8)

= — 7(1_MJ)2 w as w —
K(o) = =22 g rye + 0W) 0, (9)

which assumes that Z(w) = O(1) as w — 0. In this limit3, K (o) can be factorized by inspection
(taking care to attribute the poles and zeros of K (o) to the correct halves of the o-plane), to
give [1, equ. 61]

1- Mo l1+o

K(o) = Nt (o) = —QW, N~ (o) = T Mo

Rienstra identified one of the modes of the double-root at ¢ = M ! as the opy mode. Substi-
tuting oy = M~ and N* and N~ from above into (6) gives [1, equ. 62]

as w — 0.

1+M 2MT
Roi1 — — < )

1- M\ 1+M

Hence, Rp1; — —1 for the full Kutta condition of I' = 1 (including an instability), whereas
Roin — —(1+ M)/(1 — M) for the stable solution I" = 0.

3 The validity of deriving approximations to N4 (o) using approximations for K (o) was proven by Koiter [11].
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However, in §5 of [1] concerning causality, Rienstra used the mass—spring-damper impedance
Z = R+iaw —ib/w, so that Z = O(1/w) as w — 0. For this type of impedance, (9) is no longer
valid. In order to investigate what happens in this case, we now rederive the behaviour of Rg11
as w — 0 for such an impedance.

3. Low-frequency asymptotics for a frequency-dependant impedance

Using either the mass—spring-damper model (4) or the Helmholtz resonator model (5, with
e=0,Y =1, L=1/b) gives Z(w) = —ib/w + O(1) as w — 0. Physically, this is saying that at
low frequency the boundary’s response is dominated by a spring-like force. For either of these
models, (9) should be replaced with

(1 - Mo)?
K(o) = —2——F— —-b+0(w). 10
()= 250 @) (10)
Factorizing this by inspection, and taking care to attribute the poles and zeros of K (o) to the
correct halves of the o-plane, leads to the split kernels

K(o) = | N+(U):_2<1 52b>Ma+—Ma l+o

CoM? ) BR(1-o) N @) = 3

ot — 2M F (2+b)0
2M?2 — (32b
Note that this reduces to the split kernels in the previous section on setting b = 0. Substituting
these into (6) gives

1+ M
1-M

-1 2r
Ry — — (1 +b4+4/(2+ b)b) (1 - ) as w — 0. (11)

1+ onr

Following the same argument as used above to deduce ogr would give oy — 0~ as w — 0.
However, it turns out that this is not true if b # 0, at least in the case we consider below.
Using the asymptotics of Bessel functions [12, p. 364] that Jo(«)/Jo(a) — 1 as |a| — oo with
Im(a) > 0, the full Wiener—Hopf kernel (8) may be expanded to leading order to gives a different
balance of terms when b # 0, yielding a root when

B3b
M2w

as w — 0.

g

This we identify as ogy, which is verified numerically for the case given below. Since oy =
O(1/w), the term involving I in (11) tends to zero as w — 0, so that, to leading order, there is
no effect of I' on Rp11. We conclude that the value of Rp1; in the limit w — 0 is not sufficient
to differentiate between stable and unstable behaviours of the HI surface mode for impedances
of mass—spring—-damper or Helmholtz-resonator type.

As an example to illustrate this, figure 2 compares the impedances Z = 1 — 2i (reproducing
exactly figures 9 and 10 of [1]) and a typical low-frequency impedance Z = 1 — 2i/w, calculated
by numerically integrating the exact analytic solution derived in [1] and given here by (6), (7),
and (8). Plotted are |Rp11| and the end correction dp11, defined as [1, equ. 64]

)7T — arg(R011)

So11 = (1 — M?
011 = ( e

The values predicted by (11) are Ry ~ —0.5147 irrespective of I'. This agrees well with the
numerics plotted in figure 2, which for w = 0.025 gives Ry11 &~ —0.5204 4+ 0.0017i for I' = 0, and
Rp11 = —0.5150 + 0.0016i for I' = 1.
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Figure 2. Plane-wave reflection coefficients for small w for M = 0.5 and two impedance models: (a)
7Z =1 —2i (reproducing figures 9 and 10 of [1]); (b) Z =1 — 2i/w.

In a previous paper [13], the author argued that the mass—spring—damper impedance is
illposed, leading to several apparent paradoxes including the stability nature of the oz surface
mode. A suggested resolution of this problem was to use the wellposed model of a cylindrical
thin shell, which recovers the mass—spring—-damper behaviour in the limit of the shell thickness
h — 0. We now investigate the low-frequency scattering for this boundary.

4. Low-frequency asymptotics for a thin-shell impedance

In [13], a cylindrical duct was considered which for < 0 had a rigid boundary and for = > 0 had
a boundary modelled as a thin shell clamped at = 0. An exact analytic solution was given to
the scattering of a wave in the hard section encountering the sudden boundary change at x =0
using a Wiener—Hopf technique, in a similar manner to [1]. Here we are interested in plane-wave
modes for which the azimuthal order is m = 0. Substituting this into equations 4.4 and 4.8
of [13], the Wiener—Hopf kernel we are interested in factorizing in this case (c.f. equation 8)
becomes

(w — ME)*Jo(a)
aJp ()

K(kw) =

. h2k2/12)
- (b +iwR — dw? + BE* + cﬁdkzM> ,

WQ/CIQ — k2

where b = b + ¢;% is the spring force, R is the damping, B = ¢;dh?/12 is the bending stiffness,
¢y is the speed of sound in the thin shell, A is the thin shell thickness, d = psh is the thin shell
density per unit area, and v is the Poisson ratio of the thin shell. All of these constants are con-
sidered to be nondimensional, as in previous sections. By analogy with the mass—spring-damper
impedance, (d, 5, R) here play the role of (a, b, R) for the mass—spring—damper impedance, while
the bending stiffness B regularizes the problem and the final term describes the interaction
between the fluid and waves in the thin-shell boundary. The mass—spring—damper impedance
is recovered by taking v = 0 and the limit as h — 0 with d = O(1).

The reflection coefficients are given by equation 4.13 of [13]. We are interested in the plane-
wave reflection of a plane incident wave, and so we set m = 0, kj, = —w/(1 — M) and
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kin =w/(14+ M), to get

011 =

(1+ MK~ (w/(1+ M) . ey +42)”
2(1 = M)K*+( = w/(1 = M)) (02 + 20+ 82) (B — Jo2d(v + 525)%)
(12)
As it stands, this equation is exact, but difficult to interpret. We therefore look at the limit
w — 0, in order to derive the comparable result to (6) and (11). To do this, we must evaluate
the factorized kernels K™ and K~ in the low-frequency limit. As in the previous section, we do
this by looking at the asymptotics of K (k;w) as w — 0 and then factorize. Here, there are two
regimes we must consider in order to give a uniformly-valid asymptotic approximation? for all

k,

K(qw;w) = Ki(g) + O(w), K(k;w) = Ka(k) + O(w),
—2(1 — Mq)? . “dv?
Kile) = 1= Q(Mq - 2)2612 - (b_ %) :
a?q?
Ko(k) = W — (b— o Ww? — 2vBK? + B(1 - h¥/12)k*).
0

Naively, one might have expected to be able to use only K7 as the asymptotic kernel, as in the
previous sections. However, note that the bending stiffness term involving B only occurs in Ks.
It was the bending stiffness term that was shown in [13] to be important for the wellposedness
of the thin shell scattering problem, and so we will be reluctant to discard it here. Instead,
we follow Crighton [14] and use a multiplicative composition, giving the uniform composite
asymptotic expansion

K(kw) = Kl(k/szQ(k) O(yw) as w — 0, (13)
2M?/3%2 — b+ ¢;%dv?
where we assume the constant denominator is nonzero. We may therefore split K = K1/K ™,
with K* being analytic and nonzero in the upper- and lower-half k-planes respectively, using
the multiplicative splits of K7 and Ks.
In calculating Ry11 in the limit w — 0, we would like to assume that, for arbitrary ¢; and

q2,

+ +
lim K (qw) _ K (q1)

=0 K~ (gow)  Kj (q2) (14)

This is not obvious a priori, as we would like to take the limits of K2+ and K, independently
and at different rates ¢q; and gs. Is it true, nevertheless, and this is shown in appendix A. Making
use of this in (12) leads to the plane-wave reflection coefficient given, as might naively have
been expected without this technicality, by

o (1+M)E, (1/(M+1)) |, c3dv? (15)
+ F(=1/c
21 - MK (1/(M —1)) (012 +2¢; + BQ)(% — cﬂdlﬂ/ll)

In order to calculate K; (¢) and K (q), we locate the poles and zeros of Ki(q) and then
factorize by inspection. In general, the poles of K;(q) are at ¢ = 1/(M £ 1) and ¢ = +1/¢,
while the zeros of Kj(g) are the solutions of a quartic equation. In general, therefore, (15)
differs from the locally-reacting reflection coefficient (11). However, if the Poisson ratio v = 0,
then K1 (g) becomes the locally-reacting kernel K (o) given in (10) with o = M + §%¢, and (15)
becomes (11) with I' = 0 and b replacing b.

4 A uniform approximation is also technically necessary for the case considered in §3, although it turns out
there, as it will do here, that neglecting the k = O(1) factor (equivalently the o = O(1/w) factor) is justified.
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This shows that, using the (wellposed) thin-shell boundary model with v = 0, exactly the
same low-frequency reflection coefficient is derived as for the mass—spring-damper model if no
Kutta condition is applied (I' = 0), even in cases where b = b = 0 for which Rienstra’s original
analysis [1] is valid and the Kutta and no Kutta condition cases give different results. The
surface streamline in this case is O(x?) [13], giving smoother behaviour than either the Kutta
or no Kutta condition locally-reacting cases. Despite the bending stiffness B being the cause of
the wellposedness of the thin-shell mode, the low-frequency reflection coefficient is independent
of B.

5. Conclusion

In this paper, we have shown that the low-frequency analysis of the plane-wave reflection coef-
ficient Rp1; by Rienstra [1] is only valid provided the impedance satisfies wZ(w) — 0 as w — 0.
In the case of a mass—spring-damper or Helmholtz resonator impedance, Z ~ —ib/w for some
b > 0, and so this is not the case. We have shown, in §3, that for such models the Kutta condition
factor I' disappears from the formula for Ryi; in the low-frequency limit, due to qualitatively
different behaviour of the hydrodynamic “instability” mode ogr. We therefore conclude that the
suggestion in [1] of experimentally investigating Rp1; in the low-frequency limit is not sufficient
to determine the nature of the potential instability, at least for the impedances considered here.

In [1], Rienstra comprehensively analysed the scattering of sound in a duct encountering a
sudden transition from hard-walled to acoustically lined, including the derivation of an exact
analytical result. One section of this analysis [1, §6] was an investigation of the plane-wave
reflection coefficient Rgq1 in the low-frequency limit. It is emphasized that this paper is only
concerned with that section of [1], and does not take issue with the significant remainder of
that paper.

The limit considered here is motivated by a notional physical experiment in which the
acoustic frequency w* is reduced to zero, with the other parameters remaining fixed. Due to the
nondimensionalization of the lining parameters used here, the physics would be considerably
different if the small Helmholtz number limit were reached by varying the duct radius £*, and
may well give results closer to those originally predicted by [1].

It is notable that, for the enhanced Helmholtz resonator with € # 0 given in (5), Z(w) —
R+ 2Y/e as w — 0, and so this impedance is bounded and the original analysis of [1] is valid;
this behaviour being seen for w < €/2L. The dramatic effect of a small but nonzero ¢ in the
zero-frequency limit is surprising, and we do not pretend to explain here physically why this
should be so. Indeed, the validity of any of the impedance models considered here (including
the fixed-impedance model) in the zero-frequency limit remains, to the author’s knowledge,
unverified.

From the results of this analysis, it is interesting that the reflection coefficient Rpi1 is
independent of the lining resistance R, at least to leading order. This appears to indicate
that the only relevant lining physics involved in plane wave reflection in the low-frequency limit
is the spring-like behaviour of the lining. This could be expected to change if the liner were
only of finite, rather than infinite, extent, since the resistance would then affect the standing
waves within the lined section, some of which would bleed through the upstream impedance
transition and contribute to the reflected wave.

If the mass—spring—damper model were to be considered as a thin shell of zero Poisson ratio
in the limit of small bending stiffness (a singular limit of a wellposed boundary model), then
we have seen in §4 that the no Kutta solution (I' = 0) is the correct one, even for cases when
b = b = 0 for which the analysis of [1] is valid and varying I would have a large effect on Rp1;.
This could be interpreted as evidence towards the hydrodynamic “instability” surface mode oy
actually being stable. However, this evidence is tentative at best, and it is the author’s view
that illposed problems such as these are paradoxical and can not be rigorously analysed.

The analysis of §4 was complicated by the need for a uniform asymptotic approximation to
the Wiener—Hopf kernel. The solution was as one might naively have expected, but this was
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Low-frequency acoustic reflection at a hard-soft lining transition in a cylindrical duct with uniform flow 9

only because KQi(k‘), which are not expressible in closed form, could be proven to be finite and
nonzero at k = 0. Had they had either a pole or a zero at the origin, this conclusion would not
have held. A pole or zero at the origin would not have been unexpected, since Ks(k) is only a
valid asymptotic representation of the true Wiener—Hopf kernel K (k) for k > w, and we know
from the inner expansion of K (qw) = K;(q) + O(w) that K (k) does indeed have poles and zeros
in the neighbourhood of the origin (k = O(w)).

Appendix
A. Asymptotics of the Kernel Factorization

We are given the Wiener—Hopf kernel K (k;w), with asymptotics

K(quw;w) = Ki(q) + O(w), K(kw) = Ka(k) + O(w),
—2(1 — Mq)? - X2
) = M (- ),
c°q
Ky (k) = W - (E — ¢%dv? — 2vBk* 4+ B(1 — h2/12)/<:4),
0

and, following Crighton [14], we form the uniform composite asymptotic expansion

K — Kb/ (8)

= = 0] — 0,
MY P b1 s (Vw) as w

where
lim K;(q) = lim Ka(k) = 2M?/6% — b+ ¢;%dv?
Jim Ki(q) = lim K(k) /B —b+cdv®,
which we assume to be nonzero.

Part of the Weiner—Hopf procedure involves forming the split functions K+ (k;w) and K~ (k;w),
where K is analytic and nonzero in the upper-half k-plane and along the real k axis, and K~
is analytic and nonzero in the lower-half k-plane and along the real k axis. In general, K+ and
K~ must be calculated numerically, as in [13]. Here, however, we are only interested in the
low-frequency limit w — 0, and the value of Rgj; given by (12) in this limit. We are therefore
not interested in general in K™ and K, but in

i K @wiw) Ky (1) Ky (quw) 1
wo0 K= (qewiw) Ky (g2) Ky (qow) (2M2%/82 — b + ¢,2dv?)

We now show that this is equal to K; (¢q1)/K7 (g2), justifying (14), by showing that K5 (0) and
K, (0) are finite and nonzero. If they were not, then the limit above may have had a different
numerical value than K; (q1)/K; (g2), or may not have existed at all.

As |k| — 00, Ka(k) — —o0, whereas Ko(0) = 2M?/ 3% —b+c;%dv?. Therefore, if b is sufficiently
small, Ko(k) has a zero on the real k axis. Note also that Ky(k) = Kao(—k). We set

. — Ko (k)
Lik) = log <3(1 “h12) (R + X2)2>

for some positive real constant X, so that L(k) — 0 as |k| — oo and L(0) is finite. If Ko(k)
has zeros on the real axis, we take the branch cuts of L(k) to be in the upper-half k-plane for
zeros with k£ < 0 and in the lower-half k-plane for zeros with k& > 0, taken symmetrically so
that L(k) = L(—k). Then we may form the additive decomposition of L(k) (following [10, 13]),
L L) 1L

Lk) = — 8 ge - =8) g
(k) 2m ) ois € — K $ 2711 ) ootis £ — K &
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where [Im(k)| < § < X and the contours are deformed around the branch cuts symmetrically.
We call the first integral Lt (k) and the second L~ (k), so that L = L™ — L~ forms the additive
decomposition, and hence setting K3 = Fiexp{L*}(B(1 — h2/12))i1/2(/<: + iX)*2 gives the
multiplicative decomposition Ky = K5 /K, . Since L(k) = L(—k), and since the contours were
chosen symmetrically, L*(0) = L~(0) = L(0)/2 and so are finite. Hence, K5 (0) and K, (0) are
finite and nonzero, and by definition K5 (0)/K; (0) = K(0). Therefore, we finally arrive at the
identity (14).
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