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In many situations, fluid flows over a surface, and small amplitude oscillations in the fluid flow are coupled to

small amplitude oscillations of the surface. This paper gives a brief review of recent advances in the understanding

of modelling such situations. One major application of this is to model sound within aeroengines with acoustically

lined walls. The emphasis of this paper is on mathematical modelling and frequency-domain computing, although

implications for time-domain computing are also be briefly mentioned.

1 Introduction

Consider a uniform flow of Mach number M over a

flat boundary. On top of this uniform flow we impose

small amplitude perturbations. These perturbations couple

with the boundary, so that a fluid pressure perturbation

p̃ exp{iωt − ikx} yields a boundary normal velocity

ṽ exp{iωt − ikx}. Since the perturbations are small, p̃ and

ṽ are related linearly, so that the response of the boundary

is totally characterised by its impedance Z(ω, k) = p̃/ṽ.

The boundary need not represent a physically impermeable

surface, but could be any boundary of the fluid such as a

porous plate or a boundary with another fluid. This paper

considers the boundary condition used to impose a particular

impedance on the fluid at such a boundary.

For definiteness in what follows, consider flow in a

cylinder in the x-direction. Nondimensionalizing by the

centreline density, the centreline sound speed and the

cylinder radius, the mean flow is given by U(r)ex and

the density by ρ(r), while the mean pressure is constant.

Considering perturbations to this, Fourier transforming

t → ω and x → k and expanding in a Fourier series θ → m

using the exp{iωt− ikx− imθ} sign convention for the inverse
transform yields the Pridmore-Brown [1] equation
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, (1)

where a prime denotes d/dr. If the flow is uniform, so that

ρ(r) ≡ 1 andU(r) ≡ M, then (1) reduces to Bessel’s equation,

the solution to which that is regular at r = 0 is p̃ = Jm(αr)

with α2 = (ω−Mk)2−k2. The impedance boundary condition

remains to be applied at r = 1.

Applying an impedance boundary condition without

flow is as simple as specify that p̃/ṽ = Z on the boundary.

However, if the mean flow is slipping at the boundary,

it is well known that this boundary condition must be

modified [2–7]. If the fluid velocity at the boundary is

U + u exp{iωt}, then the boundary condition becomes

iωu · n = (

iω + U · ∇ − (n · ∇U) · n)p/Z, (2)

where n is the boundary normal pointing out of the fluid.

This follows from matching fluid and boundary normal

displacement, rather than normal velocity, and is often

known as the Myers, or sometimes Ingard–Myers, boundary

condition. The form given in (2) is indeed due to Myers [7],

whose contributionwas the final term (n·∇U)·n representing
curvature of the boundary, which for straight boundaries

considered here is identically zero. Excluding this term, (2)

was first postulated by Miles [2, equation (3.3)’] and shortly

afterward by Ingard [4], although the incorrect boundary

condition was still in use a decade later [e.g. 8]. Again

without the final curvature term, (2) was shown to be the

correct asymptotic limit of a vanishingly-thin boundary layer

by Eversman & Beckemeyer [5] and Tester [6], although

the boundary layer needed to be extremely thin to attain

this limit in some cases [6, 9]; this is an important point

that we return to in §3. Using the boundary condition (2)

for uniform flow in a cylinder gives the dispersion relation

relating ω and k as

1 −
(ω − Mk)2

iωZ

Jm(α)

αJ′m(α)
= 0, (3)

where, as before, α2 = (ω−Mk)2−k2, and the branch chosen
for α does not matter.

When the impedance boundary condition (2) is used with

time domain numerics involving slipping flow the numerics

are found to be unstable at the grid scale for sufficiently

fine grids. In order to converge, such numerics always

include artificial damping to filter out the instability [e.g.

10–15]. For frequency domain numerics, the problem of

unstable numerics is replaced by the problem of choosing

the direction of propagation of modes [16]; i.e. of choosing

the causal solution, which is related to the mathematical

problem of analysing the stability of flow over linings [17–

19], discussed further in §4. Some experiments [20–22]

also show an instability being excited in certain, but not all,

situations, although this instability does not agree with that

predicted by (3) for uniform flow [22], as discussed in §5.
Before this, however, some simple models for the impedance

Z are discussed.

2 Some boundary impedance models

We first consider one of the most simple physically-

motivated models for an impedance Z(k, ω). Consider a

theoretical boundary with normal displacement w. Suppose

that the boundary is locally reacting, so that each position

on the boundary moves independently from each other

position (an assumption relaxed later), the motion being as

if a damped spring acted on it. Then the equation of motion

would be

d
∂2w

∂t2
+ R
∂w

∂t
+ bw = p,

where d is the mass/density of the boundary,R is the damping

constant, b is the spring constant, and p is the fluid pressure

acting on the boundary. Fourier transforming, using ṽ = iωw̃,

and dividing by ṽ gives

Z(k, ω) = R + idω − ib/ω. (4)

This is know as a mass–spring–damper impedance, or

equivalently, as the three-parameter model [10].

Suppose now that in addition to the damped spring

forcing the boundary also feels a tension T and a simplified

bending stiffness B (see [23] for details). Then the same

procedure gives

Z(k, ω) = R + idω − ib/ω − iTk2/ω − iBk4/ω. (5)

Note that the boundary is no longer locally reacting, and

hence the impedance depends on k as well as ω.



Acoustic linings in aeroengines typically consist of a

perforated sheet over a honeycomb core of resonators with

a rigid backing plate [e.g. 8]. This is often modelled using

a Helmholtz Resonator impedance model that accounts for

resonators of a depth L. Rienstra [24] gave a more adaptable

model that he showed was just as easy to use numerically,

which he termed the Extended Helmholtz Resonator (EHR)

model, given by

Z = R + idω − iν cot(ωL − iε/2),

where ν = 1 and ε = 0 for the standard Helmholtz Resonator.

Other models, including empirically and semi-

empirically fitted models, also exist [e.g. 25, 26]. However,

it turns out many of these do not correspond to physically

possible impedances, as discussed next.

2.1 Admissibility of impedances

Rienstra [24] pointed out that not all locally-reacting

impedances Z(ω) represent physically-realisable boundaries,

and gave four conditions on an impedance Z(ω) to be

physically-realisable. Since p̃(ω) = Z(ω)ṽ(ω), in the time

domain

p(t) =

∫ ∞

−∞
z (t − τ) v(τ) dτ,

where z(t) is the inverse Fourier transform of Z(ω). Since p(t)

cannot depend on v(τ) for τ > t, Rienstra argued, z(t) ≡ 0

for t < 0, implying that Z(ω) is analytic for Im(ω) < 0.

Note that this is due to our choice of the exp{iωt} convention.
Similarly, v(t) cannot depend on p(τ) for τ > t, so Z(ω) must

also be nonzero for Im(ω) < 0. Moreover, as p(t) and v(t)

are both real, so is z(t), implying that Z(ω) = Z(−ω), where a
bar denotes the complex conjugate. Finally, for the boundary

not to be a source of energy, Re(Z(ω)) ≥ 0 for real ω. These

four points are given as theorem 1 of [24].

Rienstra [24] went on to show that several empirical and

semi-empirical impedance models do not adhere to these

conditions, and so are not physically realisable. However,

he also stated that these conditions do not preclude other

unwanted or unphysical behaviour of the impedance model,

such as, for example, a Kelvin–Helmholtz-type instability of

the flow over the boundary. We now see that this is in fact

inherent in the boundary condition applying the impedance

model, rather than the impedance model itself.

3 A wellposed boundary condition

Since the impedance boundary condition (2) is the limit

of an infinitely thin boundary layer, when applied with

slipping mean flow it exhibits a comparable instability to the

Kelvin–Helmholtz free shear layer instability. This can be

seen by considering a cylindrical lined duct with a mass–

spring–damper boundary (4) and uniform flow and solving

the initial value problem; that is, given an axial wavenumber

k and azimuthal wavenumberm, solving (3) for the allowable

frequencies ω of the duct modes. Figure 1 shows a plot

of the complex values of ω as k is varied with k real using

the same parameters as [27, figure 3]. The majority of

the trajectories have small but slightly positive Im(ω) and

correspond to damped almost-propagating acoustic modes.

The two modes with Im(ω) < 0 are the Kelvin–Helmholtz

equivalent modes and represent instabilities. In fact, these

modes have −Im(ω) = O(k1/2), as shown in [19], and thus

arbitrarily short wavelengths are unstable with arbitrarily

large exponential growth rates. This is the cause of the

numerical time domain instabilities when using (2), as

mentioned in §1.
This unboundedness leads to further problems [19].

It not only means that no correct Briggs–Bers stability

analysis [28, 29] is possible, but also that the mathematical

problem is illposed. The solution is to find a wellposed

problem, which has been achieved simultaneously by

Rienstra & Darau [30, 31] and Brambley [27, 32]. Here

we follow the more general [27], while noting that both

approaches are reasonably comparable for linear shear

layers. [27] follows Eversman [5, 9, 33] by considering a

thin nonslipping boundary layer of width δ in otherwise

uniform flow over an acoustic lining, to which (2) is the

leading order solution, and finding the O(δ) correction terms.

In a cylindrical geometry, this gives the boundary condition

iωZ

[

ṽ+
k2 + m2

i(ω − Mk)
δI1 p̃

]

= i(ω−Mk)

[

p̃+i(ω−Mk)δI0ṽ

]

, (6)

where the integrals δI0 and δI1 give the O(δ) corrections, so

that setting them to zero recovers the leading order boundary

condition (2). These integrals are given by

δI0 =

∫ 1

0

1 −
(

ω − U(r)k
)2
ρ(r)

(ω − Mk)2
dr,

δI1 =

∫ 1

0

1 − (ω − Mk)2

(

ω − U(r)k
)2
ρ(r)

dr,

and since the integrands are only nonzero within the

boundary layer, they indeed give a contribution of O(δ). [27]

goes on to interpret δI0 in terms of the mass, momentum and

kinetic energy thicknesses of the boundary layer, δmass, δmom

and δke, which for a mass–spring–damper impedance (4)

leads to an effective modified impedance Ẑ, where

iωẐ = −ω2(d − δmass) + iωR + b + k
2M2δke − 2ωkMδmom.

The penultimate term represents a tension along the

boundary (c.f. (5)), while the last term may be interpreted

as a convection term. The importance of this effective

impedance Zmod is that it is nonlocal even though the

underlying mass–spring–damper impedance is locally

reacting. All of this is due to the δI0 term. The physical

interpretation of the δI1 term remains illusive, but it is known

that it is this δI1 term that is responsible for making the

problem wellposed, and it may well have connections with

the critical layer in sheared flow [34–36].

The duct modes calculated using the boundary

condition (6) are plotted in figure 1, together with a

numerical solution to the Pridmore–Brown equation (1)

without any other approximation. The only modes to be

significantly affected by the change of boundary condition

are the unstable ones, which still represent unstable modes

but nowwith bounded growth rate (in this case, Im(ω) > −4).
The problem is therefore well posed, allowing a stability

analysis to be performed.

4 Stability and surface modes

Most disturbances within the fluid over an impedance

boundary are acoustic modes damped as energy is absorbed
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Figure 1: Trajectories in the ω-plane of ω(k) for k ∈ R for solutions to the Pridmore–Brown equation (1). Plotted are the exact

numerically-calculated solutions and solutions using the modified boundary condition (6), both using U(r) ≈ M tanh
(

(1 − r)/δ
)

,

and the original boundary condition for uniform flow with U(r) ≡ M given by (3). M = 0.5, m = 0, δ = 2 × 10−3 and
Z = 3 + 0.15iω − 1.15i/ω, the same parameters as in figure 3 of [27].

by the boundary. However, Rienstra [18, 37] noticed there

also exist surface modes which are disturbances localized

near the impedance boundary and strongly connected with

the motion of the boundary. For any given frequency

ω, surface modes are mostly easily noticeable in having

unexpected axial wavenumbers k which do not correspond to

an equivalent acoustic mode. This is illustrated in figure 2,

which shows two cut-on acoustic modes, an infinite discrete

number of evanescent acoustic modes, and (for uniform

flow given by the × symbols) four surface modes. The

position of surface modes can be predicted using a surface

mode dispersion relation proposed by Rienstra [18] and

generalized in [39]. For uniform flow in a cylinder the

surface mode dispersion relation of [39] equivalent to (3) is

√

k2 + m2 − (ω − Mk)2 −
(ω − Mk)2

iωZ
= 0 (7)

with Re(
√· · ·) > 0. For a locally reacting impedance, this

allows up to four surface modes, as discussed in detail in [18,

39], and figure 2 is a case with all four present. Rienstra

[18] went on to tentatively identify the surface mode in the

upper-right k-plane quadrant as a hydrodynamic instability,

although from §3 we now know that any instability analysis

with slipping flow cannot be fully correct.

Using the wellposed boundary condition (6) leads to

more complicated surface mode behaviour, with now up to

six surface modes being possible (and five being shown for

+ and ◦ in solutions in figure 2). One of the two possible

surface modes in the upper-right k-plane quadrant turns out

to indeed be a convective instability [38], although another

surface mode in this quadrant is stable. Further investigation

of this is ongoing.

Both Rienstra & Darau [30, 31] and Brambley [27, 32]

find that for very thin boundary layers (i.e. very small δ) an

absolute instability is present, while for thicker (though still

relatively thin) boundary layers only convective instability

is present; whether there is a stable regime is still an open

question. As δ → 0 the absolute instability growth rate

tends to infinity, recovering the illposed behaviour for δ = 0.

Very recently, Marx [40] showed that two different types

of absolute instability may be present in a rectangular duct,

depending on whether the surface mode on one wall is

affected by the opposite wall or not.

In sheared flow, as well as modal instabilities mentioned

above there may also exist nonmodal instabilities which

grow algebraically rather than exponentially due to the

critical layer [34–36]. For the case of linear shear in a

cylindrical duct, [36] showed that the effect of the critical

layer is negligible provided the fluid is not forced within

the critical layer, with the critical layer itself producing an

algebraic decay of O(1/x4). However, for nonlinear shear

[35] suggests the decay may be only of O(1/x), and indeed

the mathematics of [36] are acknowledged to break down for

nonlinear shear. Even so, neither predict algebraic growth,

as occurs for swirling flow [e.g. 41].

5 Experiments and viscous effects

Experimental results suitable for validating any of

the above are rather scarce, with experiments more often

being used to back out values of the impedance Z for

which numerical or mathematical models give the closest

agreement with experiment (so called impedance eduction,

e.g. [42, 43]). The existence of an instability has only

recently been shown experimentally [21], although other

previous experimental results do suggest instability [20,

e.g.]. However, Renou and Aurégan [22] performed

experiments suggesting that even fully accounting for

sheared flow using (1) is not enough to accurately predict

experimental results. Using an impedance boundary

condition different from (2) inspired by accounting for

viscosity within a boundary layer [44], they showed good

agreement between experiment and the mathematical

uniform flow solution. This strongly suggests viscosity

is necessary within the impedance boundary model for

accuracy.

Aurégan et al. [44] considered a thin viscous sheared

flow over a rigid perforated surface. They found the

inviscid impedance boundary condition (2) was attained
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Figure 2: Comparison of axial wavenumbers (k) in the complex k-plane for (+) numerically-calculated solutions to (1) and (◦)
the surface mode dispersion relation of [38], both for U(r) ≈ M tanh

(

(1 − r)/δ), and (×) solutions to (3) and (�) the

corresponding surface mode dispersion relation of [39], both for uniform flow with U(r) ≡ M. ω = 10, m = 5, M = 0.5,

δ = 10−3 and Z = 1 − 2.5i, the same parameters as in figure 3 of [38].

only for high frequencies, while for low frequencies they

predicted normal mass-flux to be constant across the

boundary layer (equivalent to matching normal velocity

in the absence of temperature gradients), while for mid

frequencies the whole nature of the boundary condition

was different. More recently, [45] extended [44] to avoid

certain assumptions, and found a significant difference (at

least in the low frequency limit) between a rigid permeable

surface such as a rigid perforated sheet and a compliant

impermeable surface such as a thin elastic sheet. Moreover,

[45] showed that viscosity alone was not enough to yield

a wellposed boundary condition, with presumably the next

order terms in the boundary layer thickness being necessary

for wellposedness, as in the inviscid case.

6 Conclusion

For slipping flow over an impedance boundary, the

standard Myers, or Ingard–Myers, impedance boundary

condition (2) assumes an infinitely-thin inviscid shear

layer at the impedance boundary, leading to Kelvin–

Helmholtz-type instabilities, difficulty with time domain

numerical convergence and frequency domain causality,

and a mathematically illposed problem. The problem is

regularized by assuming the boundary layer is of width δ

and accounting for the O(δ) correction terms, leading to

a modified Myers boundary condition [27, 31]. Despite

viscosity on its own not regularizing the problem [45],

viscosity within the boundary layer appears essential to

accurately predict experimental results [22]. Independently

of the boundary condition used, a locally reacting impedance

Z(ω) must satisfy Rienstra’s four requirements to be

physically realisable [24].

Using a wellposed modified Myers boundary condition,

flow over an impedance boundary is predicted to be

absolutely unstable for extremely thin boundary layers and

only convectively unstable for thicker (though still relatively

thin) boundary layers [27, 31], with the convective instability

being one of the ones predicted by Rienstra [18, 38]. Such

a boundary condition is expected to also regularize time

domain numerical instabilities, although this is currently

work in progress [46].
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