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Abstract

Surface modes, being duct modes localized close to the duct wall, are analysed within a lined cylindrical
duct with uniform flow apart from a thin boundary layer. As well as full numerical solutions of the Pridmore-
Brown equation, simplified mathematical models are given where the duct lining and boundary layer are
lumped together and modelled using a single boundary condition (a modification of the Myers boundary
condition previously proposed by the author), from which a surface mode dispersion relation is derived. For
a given frequency, up to six surface modes are shown to exist, rather than the maximum of four for uniform
slipping flow. Not only is the different number and behaviour of surface modes important for frequency-
domain mode-matching techniques, which depend on having found all relevant modes during matching, but
the thin boundary layer is also shown to lead to different convective and absolute stability than for uniform
slipping flow. Numerical examples are given comparing the predictions of the surface mode dispersion relation
to full solutions of the Pridmore-Brown equation, and the accuracy with which surface modes are predicted
is shown to be significantly increased compared with the uniform slipping flow assumption. The importance
of not only the boundary layer thickness but also its profile (tanh or linear) is demonstrated. A Briggs–Bers
stability analysis is also performed under the assumption of a mass–spring–damper or Helmholtz resonator
impedance model.
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1 Introduction

As a simplified mathematical model for the propagation of sound in an aeroengine intake or bypass, consider
an acoustically-lined cylindrical or annular duct with an axial mean flow. The acoustic lining is represented by
a impedance Z(ω) = p/v, where an oscillatory pressure p exp{iωt} produces an oscillating normal fluid velocity
v exp{iωt} at the lining. The simplest mean axial flow is a uniform flow (a flow constant across the duct), which
would at first seem to be a good approximation for aeroengines owing to the high Reynolds numbers at which
they operate. This situation has been extensively studied using the Myers [2], or Ingard–Myers [3], boundary
condition, which incorporates both the impedance of the boundary and the effect of slipping mean flow. This
boundary condition has been shown by Eversman & Beckemeyer [4] and Tester [5] to correspond to the limit of
a vanishingly-thin inviscid non-slip boundary layer over the impedance boundary.

We note two important features of a uniform flow over an impedance boundary using the Myers boundary
condition. The first is that, in addition to the acoustic modes (expected to be only slightly perturbed from
their hard-wall counterparts due to the boundary impedance), modes of a different nature localized close to the
boundary are also supported. These modes were investigated initially by Rienstra [6], who aptly named them
surface modes, and subsequently by Brambley & Peake [7]. For a locally-reacting boundary, meaning that Z is a
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Figure 1: Sketch of the geometry considered here: a cylindrical lined duct in the x-direction containing mean axial flow of
velocity U(r) and density R(r), uniform except within a thin boundary layer of width O(δ). The mean flow temperature
T0(r) ∝ 1/R(r).

function only of the frequency ω and is independent of wavelength, at any frequency there are up to four surface
modes, one of which was tentatively suggested by Rienstra [6] as being a hydrodynamic instability. The second
important feature of this uniform flow over an impedance boundary using the Myers boundary condition is that
it yields an illposed problem [8], meaning that numerical simulations become unstable at the grid scale, that a
rigorous stability analysis is not possible, and that frequency-domain simulations are of ambiguous accuracy.

Recently, progress has been made on correcting this illposedness by incorporating a thin-but-nonzero thick-
ness boundary layer over the impedance boundary, leading to so called modified Myers boundary conditions by
Rienstra & Darau [9, 10], Joubert [11], and Brambley [12, 13], some of which are compared by Gabard [14].
These boundary conditions aim to remove the illposedness while still retaining the simplicity of a uniform flow,
with the thin-but-nonzero-thickness boundary layer being incorporated within the boundary condition. These
modified Myers boundary conditions lead to a modified impedance Zmod which is in general a function of both
frequency ω and axial wavenumber k even when the underlying impedance of the boundary is locally-reacting
and is therefore independent of k. This extra dependence is expected to cause an increase in the number of
surface modes above the four previously predicted; a similar effect has been seen for a thin cylindrical shell
whose impedance includes a k4 term, leading to up to ten surface modes for any given frequency [15]. It should
be noted that these modified Myers boundary conditions are restricted to having thin inviscid boundary lay-
ers, and also ignore the possible presence of a critical layer within the boundary layer. Indications are that
critical layers may be neglected provided there are no sound sources within the boundary layer [16], while the
effect on the duct modes of viscosity within the boundary layer is small at the high frequencies of interest in
aeroacoustics [13, 17]. However, Renou & Aurégan [18, 19] showed that in some circumstances accounting for
viscosity within the boundary layer is necessary for accuracy reproducing experimental results, while here we
will occasionally see hints of the presence of a critical layer.

The number and behaviour of the surface modes is of the utmost importance for verifying that a mode-
matching scheme is considering all appropriate modes, and for stability analysis. For stability analyses this is
particularly pertinent, since an absolute instability is given using the Briggs–Bers criterion [20, 21] by the collision
of two modes in the k-plane as Im(ω) is varied, and hence if there are more surface modes there is more potential
for an absolute instability to be present. Therefore, after first deriving in §2 the surface mode approximation
that will be used throughout, we analyse the possible number of surface modes and their locations in §3. The
accuracy of the surface mode approximation is verified by comparison with less approximate analytical and exact
numerical solutions in §4, following which we consider the stability of the surface modes, including any possible
absolute instabilities, in §5.

2 Mathematical derivation

While what follows is applicable to a cylindrical, annular, or planar impedance boundary, for definiteness here
we will consider the cylindrical case only. The geometry we consider is shown in figure 1. The cylinder axis is in
the x-direction with the cross-section defined by polar coordinates r, θ, and the cylinder contains a compressible
fluid of density R(r) flowing with a mean velocity U(r)ex at a pressure p0. Since p0 is necessarily constant,
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the mean flow temperature T0(r) ∝ 1/R(r), so that one can think of specifying a mean flow temperature
distribution 1/R(r) instead of specifying a mean flow density distribution R(r). Nondimensionalizing by the
duct radius, the centreline mean-flow sound speed and the centreline mean-flow density gives R(0) = 1 and
the mean-flow centreline velocity as the Mach number M = U(0). On top of this mean flow we consider small
perturbations governed by the linearized Euler equations. Eliminating all variables but the pressure perturbation
gives solutions of the form p = p0+pm(r;ω, k) exp{iωt− ikx− imθ}, where pm satisfies the cylindrical Pridmore-
Brown equation [22]

p′′m +

(

1

r
+

2kU ′

ω − Uk
− R′

R

)

p′m +

(

(ω − Uk)2R− k2 − m2

r2

)

pm = 0, (1)

where a prime denotes d/dr. For a uniform flow, where R(r) ≡ 1 and U(r) ≡ M , equation (1) simplifies to
Bessel’s equation, so that

pm(r;ω, k) = Jm(αr) with α2 = (ω −Mk)2 − k2, (2)

where Jm is the mth Bessel function of the first kind. In this case, the boundary condition at the impedance
boundary at r = 1 is given by the Myers boundary condition,

1− (ω −Mk)2

iωZmod

Jm(α)

αJ′m(α)
= 0, (3)

with Zmod = Z, which is the dispersion relation giving, for example, the allowable axial wavenumbers k given ω
and m.

In this paper we consider non-slipping axial flows with U(r) and R(r) constant outside a thin boundary
layer of width of order δ ≪ 1, as depicted in figure 1. We model this using a modified Myers boundary
condition incorporating the boundary layer into the boundary condition at r = 1, which therefore retains the
simplicity of solutions in terms of Bessel functions given by (2). Here, the modified Myers boundary condition
of Brambley [Eq. 9 of 13] is used, chosen in light of its good agreement [14] with full numerical simulations of
the Pridmore-Brown equation (1). This boundary condition is also of the form of (3), but with

iωZmod = iωZ

[

1−
(

k2 +m2
)

δI1
Jm(α)

αJ′m(α)

]

+ ω2δ0 − 2ωkMδ1 + k2M2δk +O
(

δ2
)

, (4a)

where

δ0 =

∫ 1

0

1−R(r) dr, δ1 =

∫ 1

0

1− R(r)U(r)

M
dr, δk =

∫ 1

0

1− R(r)U(r)2

M2
dr, (4b)

δI1 =

∫ 1

0

1− (ω −Mk)2
(

ω − U(r)k
)2
R(r)

dr ∼ δsMk

ω
for k/ω ≫ 1, where δs =

−M

R(1)U ′(1)
. (4c)

Note that all δ quantities are of the order of the boundary layer thickness and so are small: δ1 is the displacement
thickness of the boundary layer; the momentum thickness is δ2 = δk − δ1; and δs is also a measure of boundary
layer thickness based on the mean flow surface shear stress. Here, we will use the asymptotic result of Ref. 13
for δI1 given in (4c), while noting that this approximation of δI1 is arguably in the relevant regime for surface
modes (see §5.1 and [8]) and is exact for a linear boundary layer profile (such as was assumed by Rienstra &
Darau [10] for their modified Myers boundary condition). The validity of this approximation may be inferred
from the generally good match with numerical results that follow.

In this paper we are particularly interested in surface modes, for which the solution (2) and the dispersion
relation (3,4) can be further simplified. The surface mode dispersion relation used here is that of Brambley &
Peake [7], which is an extension of that given by Rienstra [6] to account for nonzero m. In slightly different
notation to Ref. 7, the surface mode dispersion relation is

µ− (ω −Mk)2

iωZmod
= 0 where µ2 = k2 +m2 − (ω −Mk)2, (5)

and Re(µ) is required positive, since the eigenfunction for this surface mode is asymptotically pm(r)/pm(1) ∼
exp{−(1−r)µ} and is required to decay away from the surface. (Note that iµ may be regarded as an approximate
radial modal wave number.) Since Jm(α)/

(

αJ′m(α)
)

= pm(1)/p′m(1) ∼ 1/µ, incorporating the modified Myers
boundary condition (4) into (5) gives

µ− (ω −Mk)2

iωZ
(

1− δs
(

k2 +m2
)

Mk/(ωµ)
)

+ ω2δ0 − 2ωkMδ1 + k2M2δk
= 0, (6)
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which may be rearranged to give

(

iωZ + ω2δ0 − 2ωkMδ1 + k2M2δk
)2(

k2 +m2 − (ω −Mk)2
)

ω2

−
(

iωZδs
(

k2 +m2
)

Mk + ω(ω −Mk)2
)2

= 0. (7)

Assuming that Z is locally reacting, so that Z is independent of k and m, equation (7) gives a polynomial in
k of degree six, so that there are six surface modes, although due to the restriction that Re(µ) > 0 not all of
these may be physical for all values of Z; a similar argument was used in Refs. 6 and 7. Indeed, the results of
these two papers are recovered by setting the δ-quantities in (7) to zero, yielding a polynomial of degree four
and therefore leading to four surface modes. If Z is given by a mass–spring–damper model, so that iωZ is a
polynomial of degree two in ω, then for fixed k equation (7) gives a polynomial in ω of degree eight, so that there
are eight possible surface modes in ω for fixed k. This compares to the unmodified Myers result of six surface
modes, obtained by setting the δ-quantities in (7) to zero. Examples of the results of (7) are given in sections 3,
4 & 5.

The limitations of (7) should be borne in mind: that δI1 is evaluated using the asymptotics given in (4c)
which are only valid for k/ω ≫ 1; that the surface mode dispersion relation (5) is only valid for Re(µ) & O(1);
that, since the surface modes have Jm(αr)/Jm(α) ∼ exp{−(1−r)µ}, the modified Myers boundary condition (4)
is only valid for surface modes provided |µ| . O(1/δ), where δ is a typical boundary layer thickness; and that
the modified Myers boundary condition (4) ignores the critical layer within the boundary layer. These last two
limitations are the most serious, and to avoid them requires a different analysis, such as given by Brambley,
Darau & Rienstra [16] for a constant-then-linear boundary layer profile of constant density.

2.1 The thin-boundary-layer limit

We have seen above that, for any given frequency ω, for a nonzero-thickness boundary layer there are up to
six surface modes, while for a zero thickness boundary layer there are a maximum of four surface modes. It is
therefore interesting to consider the behaviour of the surface modes in the limit of a thin boundary layer δ → 0,
where δ0/δ, δ1/δ, δk/δ and δs/δ are held fixed. Writing the dispersion relation (7) as a0 + a1k + · · ·+ a6k

6, by
calculation it can be seen that a6 = O(δ2) and a5 = O(δ), while all the other coefficients are O(1). There are
therefore two distinguished limits, being k = O(1) and k = O(1/δ). As δ → 0, four of the surface modes tend to
their zero-thickness boundary layer values and remain O(1), while the other two surface modes follow the other
distinguished limit and tend to infinity as

k =
−ωM

iωZδs ± ωδkM
√
1−M2

+O(1). (8)

For Re(Z) > 0 and real ω these are both in the upper-half k-plane. Although either may have a corresponding
Re(µ) < 0 and therefore not be substantiated, it can be show that both are present for real ω and sufficiently
small δ provided |ω Im(Z)| > 2. Since, for large k to leading order, µ = ±k

√
1−M2 +O(1), this in effect means

that as δ → 0 and the boundary layer disappears, two of the surface modes disappear within it. This should be
contrasted with, for example, the analysis of §5.1, which demonstrates important stability behaviour in a regime
where the surface modes extend well beyond the boundary layer thickness.

2.2 Rescaling the surface mode dispersion relation

We may simplify the dispersion relation (7), reducing the number of free parameters by one, by introducing
renormalized variables

µ̃ = µ/m, β = +
√

1−M2, σ = M + β2k/ω, λ = ω/(mβ),

h̃ = 2ωδ1, ∆0 = δ0/(2δ1), ∆k = δk/(2δ1), ∆s = δs/(2δ1). (9)

The reduced axial wavenumber σ was introduced by Rienstra [6] to remove the mean flow dependence from the
axial wavenumber k, while (µ̃, β, σ, λ) are the same as (µ, β, σ, λ) of Brambley & Peake [7]. Using these, and
assuming m > 0, gives

µ̃2 = 1− λ2
(

1− σ2
)

with Re(µ̃) > 0, (10)

while (6) gives the rescaled dispersion relation

µ̃

βλ
−

(1 −Mσ)2 + iZh̃∆sM(σ −M)
(

(σ −M)2/β2 + 1/λ2
)

iZβ4 + h̃
[

∆0β4 −Mβ2(σ −M) +M2∆k(σ −M)2
] = 0. (11)
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The free parameters governing the behaviour of the surface modes are therefore the boundary impedance Z, the
acoustic spinning parameter λ, the flow parameters M and h̃, and the boundary layer shape parameters ∆0,
∆k, and ∆s. (Note that ∆k = (1 + 1/H)/2, where H = δ1/δ2 is the shape factor of the boundary layer.) A
constant-then-linear boundary layer profile with constant density,

U(r) =

{

M r < 1− h
M(1− r)/h r > 1− h

R(r) ≡ 1, (12)

gives ∆0 = 0, ∆k = 2/3 and ∆s = 1, with h̃ = ωh.

In what follows, the rescaled variables (9) will be used for analysing the number and location of surface
modes, as they remove the shift due to the mean flow and give results directly comparable with the previous
results of Rienstra [6] and Brambley & Peake [7]. However, when analysing stability by taking Im(ω) 6= 0 we
return to the unscaled variables, since then the dependence of ω on k becomes important.

2.3 Collision points

When solving the dispersion relation (7) for the allowable values of k (the surface modes), as the other
parameters are varied the roots of the dispersion relation move, and it may happen that two surface modes collide
for particular values of the parameters. For example, we might fix all parameters except for the impedance, and
then ask what values of the impedance Z lead to a collision of surface modes, and where in the k-plane the
collision take place. Equivalently, we may consider the rescaled dispersion relation (11) and ask for which values
of Z there is a collision in the σ-plane. Rearranging (11) leads to

iZ − (1−Mσ)2 −Aµ̃/λβ

β3µ̃/λ−B
= 0, (13a)

with

A = h̃β4∆0 − h̃Mβ2(σ −M) + h̃M2∆k(σ −M)2, (13b)

B = h̃∆sM(σ −M)
(

(σ −M)2/β2 + 1/λ2
)

. (13c)

Differentiating (13) with respect to σ and setting the result equal to zero gives, after rearranging and squaring
to eliminate terms involving µ̃ to an odd power,

λ2
[

2M(1−Mσ)β4µ̃2 −ABσλ2 − 2Mµ̃2BC + (1−Mσ)2σλ2β4 +Mµ̃2AD
]2

−M2β2µ̃2
[

2B(1−Mσ)λ2 − 2µ̃2Cβ2 +D(1 −Mσ)2λ2
]2

= 0 (14a)

where

C = Mh̃∆k(σ −M)− h̃β2/2, D = h̃∆s

(

3(σ −M)2/β2 + 1/λ2
)

, (14b)

and µ̃2 is given by (10). Since (14) is a twelfth order polynomial in σ, there are therefore at most twelve such
collision points, although some of these will correspond to Re(Z) < 0 or Re(µ̃) < 0 and must therefore be
discounted. Only the actual collision points satisfying both Re(Z) > 0 and Re(µ̃) > 0 are plotted in the figures
that follow (for example, figures 2 and 3). Note that these collision points are different to double roots, as
described in §5, since the impedance Z will in general be a function of frequency ω.

3 The number and location of surface modes

In this section, we investigate the number and position of surface modes for a given frequency ω, and how
these vary with varying impedance Z. The procedure we follow is similar to that proposed by Rienstra [6] and
also followed by Brambley & Peake [7].

For a locally-reacting impedance, the surface mode dispersion relation (7) (or equivalently (11)) is of sixth
order in k (or σ), and therefore there are six possible surface modes for a given frequency ω. However, not all of
these potential surface modes will satisfy the requirement that Re(µ) > 0. The number of actual surface modes
will therefore change when one of the potential surface modes moves from having Re(µ) < 0 to Re(µ) > 0. We
may therefore map the curve Re(µ) = 0 into the complex Z-plane to determine regions of the Z-plane that
have the same number of actual surface modes. Moreover, since only impedances that satisfy Re(Z) > 0 remove
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Figure 2: Plots of Re(µ) = 0 (dashed lines) and Re(Z) = 0 (solid lines) in the Z- and σ-planes using the surface mode
dispersion relation (7), for a tanh boundary layer profile given by (15) with δ = 10−3 and M = 0.5, for ω = 31 and
m = 24 (giving λ ≈ 1.49 and h̃ ≈ 0.043). Collision points (+) where two surface modes collide are given by (13) and (14).
Crossing a dashed line in the direction of an arrow labelled i leads to an increase in the number of actual surface modes
in region Ri.

energy from the fluid and are hence physical, we may map the curve Re(Z) = 0 into the complex σ plane to
separate regions of the σ plane that can and cannot contain surface modes.

Figure 2 plots Re(µ) = 0 and Re(Z) = 0 in the complex Z and σ planes. The parameters used were chosen
to correspond to rotor-alone tones in a typical aeroengine at takeoff, with M = 0.5, ω = 31 and m = 24, with a
boundary layer of thickness δ = 10−3 and a tanh boundary layer profile, as used by Rienstra & Vilenski [23],

U(r)/M = tanh

(

1− r

δ

)

+
(

1− tanh(1/δ)
)

(

1 + tanh(1/δ)

δ
r + (1 + r)

)

(1− r), (15)
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with constant density R(r) ≡ 1. The boundary layer parameters for this situation are

δ1 = 6.9315× 10−4 δk = 10−3 δs = 10−3 δ0 = 0

h̃ ≈ 4.3× 10−2 ∆k ≈ 0.72135 δs ≈ 0.72135 ∆0 = 0

For large |Z| there are two actual surface modes present, located in regions Ra and Rb of the σ-plane, as shown
in figure 2c. As Z varies and crosses the lines of Re(µ) = 0 in figure 2a,b, other actual surface modes appear. In
total, there are a maximum of two surface modes possible in each of regions Ra and Rc, and a maximum of one
surface mode possible in each of regions Rb and Rd. In each of regions Ra and Rc, the two actual surface modes
collide for particular values of Z given by (13) and (14). These values of Z, and the corresponding locations in
the σ-plane where the collisions occur, are labelled as sa and sc in figure 2. If Z were to be varied in a closed
loop around one of the collision points in the Z-plane, the two corresponding surface modes in the σ-plane would
exchange places. This makes it difficult to consistently label the surface modes. One option, adopted by Ref. 7,
would be to introduce a branch cut in the Z-plane from each of these collision points, artificially preventing the
two modes from exchanging places. However, no choice of branch cut would give a labelling of the two modes
consistent with simultaneously whether the modes exist (as plotted in figure 2) and whether they are stable or
unstable (as discussed in section 5), and hence no further labelling is given here.

Since figures 2a,c do not look like their equivalent with uniform flow (see, for example, figure 2 of Ref. 7),
it is interesting to see how the uniform flow results are recovered in the limit h̃ → 0 by making the boundary
layer progressively thinner. Figure 3 shows the comparable diagrams to figures 2a,c for the same parameters but
for a tanh boundary layer with thicknesses δ = 3 × 10−4, δ = 2.5 × 10−4 and δ = 5 × 10−5, by which time the
corresponding λ = 1.5 solution from figure 2 of Ref. 7 is becoming recognisable.

This section has described the position and number of surface modes for the particular values λ ≈ 1.5,
M = 0.5, h̃ ≈ 0.043, and a tanh boundary layer profile. It is not possible to give a complete catalogue
of all possible parameter regimes here, as was done in Ref. 7 for the uniform case, owing to the number of
free parameters. However, it is expected that the situation described here is indicative of a relatively large
and aeroacoustically-useful range of parameters, and the same analysis as used here may be applied without
modification to other set of parameters.

4 Numerical comparison

In this section, we consider the frequency ω to be given and solve for the axial wavenumber k. We will
compare the predictions of the modified Myers surface mode (MMSM) dispersion relation (7), as discussed in
the previous section, with a number of progressively less approximate dispersion relations. The first of these
is the Short Wavelength Modified Myers (SWMM) dispersion relation, consisting of the dispersion relation (3)
with Zmod given by (4) and with the short wavelength approximation δI1 ∼ δsMk/ω, which is exact for a
linear-then-constant boundary layer profile given by (12). Similarly, the Full Modified Myers (FMM) dispersion
relation is given by (3) with Zmod given by (4) but with the δI1 integral being computed numerically.

As a check on the accuracy of these approximations, we also consider the dispersion relation given by solving
the full Pridmore-Brown equation (1) numerically, since the Pridmore-Brown equation is a direct rearrangement
of the linearized Euler equations. The appropriate boundary conditions are regularity of pressure pm at r = 0
and the impedance boundary condition at r = 1 (assuming U(1) = 0),

Zp′m(1) + iωR(1)pm(1) = 0. (16)

The Pridmore-Brown dispersion relation (labelled PB in the figures) is given by finding the value of k such
that (1) subject to these boundary conditions possesses a nonzero solution. Equation (1) is solved using a 12th
order implicit central finite difference method, with grid points clustered so as to provide sufficient resolution
within even very thin boundary layers (the same code was used for the numerical results of Ref. 13); typically
4000 radial points were used. The boundary condition at r = 1 was then satisfied using a Newton-Raphson
iteration to find the axial wavenumber k, with iteration starting points chosen close to predicted positions of
modes and on an evenly spaced grid to find unpredicted modes.

Since the asymptotics of Brambley [13], leading to the modified Myers boundary condition given in (3)
and (4), are based on the Pridmore-Brown equation to first order in the boundary layer thickness, what follows
also provides a useful comparison of the accuracy of this boundary condition. For comparison, we also include
here the results of the unmodified Myers boundary condition (labelled Myers in the figures), given by the
dispersion relation (3) with Zmod = Z, and the unmodified surface mode dispersion relation which follows from
it [6, 7] (labelled as UMSM in the figures).
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Figure 3: The curves Re(Z) = 0 (solid lines) and Re(µ) = 0 (dashed lines), and the collision points (+), plotted in the
complex Z- and σ-planes for the same parameters as figure 2 but with different boundary layer thicknesses. The boundary
layer has a tanh profile given by (15) with thickness δ and M = 0.5, for ω = 31 and m = 24 (giving λ ≈ 1.49). The
collision point in e) and f ) at Z ≈ 4.7 + 0.4i and σ ≈ 5.1 + 25.1i is not shown owing to the scale used.
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Figure 4: Axial wavenumbers (k) in the complex k-plane for a boundary impedance Z = 1− 2.5i and various dispersion
relations, for ω = 10, m = 5, and a tanh boundary layer profile (15) with δ = 10−3. Dispersion relations: UMSM =
Unmodified Myers Surface Mode, FMM = Full Modified Myers, SWMM = Short Wavelength Modified Myers, MMSM =
Modified Myers Surface Mode, PB = Pridmore-Brown numerical modes.

We consider here two different sets of parameters, namely (ω,m) = (31, 24) and (ω,m) = (10, 5). For most
cases here, the boundary layer thickness is 10−3 and the centreline Mach number is M = 0.5. Two boundary
layer profiles are used: the linear profile given by (12), with the thickness defined to be h, and the tanh profile
given by (15), with the thickness defined to be δ; note that this gives δs = 10−3 in both cases.

4.1 Comparison of predicted surface mode accuracy

Figure 4 shows the allowable axial wavenumbers for (ω,m) = (10, 5) with a tanh boundary layer profile and
an impedance boundary with Z = 1− 2.5i. In this case, the modified Myers surface mode (MMSM) dispersion
relation (7) correctly predicts the existence and location of five actual surface modes: two in region Rc (the
top-left quadrant of the k-plane) and one in each of regions Ra, Rb and Rd. The unmodified Myers surface
mode (UMSM) dispersion relation predicts only four actual surface modes, of which the locations of only two
are predicted accurately. Figure 4 also demonstrates the general features that the best approximation to the
exact Pridmore-Brown (PB) numerical solutions is the FMM solution, followed by the more-easily-computed
SWMM approximation. The MMSM results, being a surface mode approximation of SWMM, agree almost
exactly with the surface modes found using the SWMM method. Similarly, the UMSM results, being a surface
mode approximation of the Myers boundary condition, agree almost exactly with the surface modes found using
the Myers approximation. These observations continue to be borne out in the following numerical examples.

Figure 5a uses similar parameters to figure 4 but for the impedance Z = 1.6 + 0.2i. In this case, the MMSM
approximation correctly predicts the existence of two surface modes in region Ra. This is significant, as UMSM
approximation predicts only one in this quadrant, which Rienstra [6] tentatively predicted to be a hydrodynamic
instability, and which appears to be confirmed by recent investigations [10, 13]. (In fact, we will see in §5 that
one of the two surface modes in this region is indeed an instability, while the other is stable.) A similar plot to
figure 5 for the parameters (ω,m) = (31, 24), motivated by their relevance to rotor-alone noise in an aeroengine
intake, is show in figure 6 for Z = 0.6 − 2i. The MMSM approximation correctly predicts the existence of
two actual surface modes in region Rc, one in Rb and none in Rd, while the UMSM approximation incorrectly
predict a surface mode in region Rd and fail to predict the second surface mode in region Rc. However, the most
interesting behaviour is seen in region Ra (the upper-right quadrant of the k-plane). The UMSM approximation
predict a surface mode in this region, but inaccurately predict its location, while the MMSM approximation
predicts a surface mode much closer to the real k axis; this surface mode, however, is actually only actually
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Figure 5: Axial wavenumbers (k) in the complex k-plane for a boundary impedance Z = 1.6+0.2i and various dispersion
relations, for ω = 10, m = 5, and a) a tanh boundary layer profile (15) with δ = 10−3, and b) a linear boundary layer
profile (12) with h = 10−3. “Track” refers to the motion of one particular PB numerical mode as the boundary layer
profile is smoothly deformed from tanh to linear. Dispersion relations: UMSM = Unmodified Myers Surface Mode, FMM
= Full Modified Myers, SWMM = Short Wavelength Modified Myers, MMSM = Modified Myers Surface Mode, PB =
Pridmore-Brown numerical modes.
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Figure 6: Axial wavenumbers (k) in the complex k-plane for Z = 0.6−2i, ω = 31, m = 24, and a) a tanh boundary layer
profile (15) with δ = 10−3, and b) a linear boundary layer profile (12) with h = 10−3. “Track” refers to the motion of one
particular PB numerical mode as the boundary layer profile is smoothly deformed from tanh to linear. Dispersion relations:
UMSM = Unmodified Myers Surface Mode, FMM = Full Modified Myers, SWMM = Short Wavelength Modified Myers,
MMSM = Modified Myers Surface Mode, PB = Pridmore-Brown numerical modes. CL indicates the critical layer branch
cut.
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Figure 7: Axial wavenumbers (k) in the complex k-plane for four different boundary layers: a tanh profile with δ = 10−3,
a linear profile with h = 10−3 (matching the δs of the tanh profile), a linear profile with h = 1.39× 10−3 (matching the δ1
of the tanh profile), and a linear profile with h = 1.5× 10−3 (matching the δk of the tanh profile). a) numerical solutions
to the Pridmore-Brown equation (labelled PB in figure 6); b) full modified Myers solutions (labelled FMM in figure 6).
Other parameters are as for figure 6: M = 0.5, ω = 31, m = 24, and Z = 0.6 − 2i.

present for a linear boundary layer profile (as shown by the numerical PB results), and is not present for the
tanh boundary layer profile. Motivated by this difference, we next investigate the effect of the boundary layer
profile.

4.2 Comparison of tanh and linear boundary layer profiles

Figures 5a and 5b compare respectively a tanh and linear boundary layer profile for (ω,m) = (10, 5) and
Z = 1.6 + 0.2i. For the linear boundary layer profile, the δI1 short wavelength approximation (4c) becomes
exact, and so the FMM and SWMM results coincide for a linear boundary layer profile. While the surface
modes (both numerically-calculated and predicted) move a moderate amount when the boundary layer profile is
changed, what is most striking is that there is one surface mode in region Ra (the upper-right quadrant of the
k-plane) that is present for the tanh case (figure 5a) and not present for the linear case (figure 5b), despite all
the approximations predicting it to be present in both cases. The track taken by this mode as the flow velocity
U(r) is linearly interpolated between the tanh and linear profiles is shown in both figures 5a and b, clearly
demonstrating that this mode has disappeared and become an ordinary cut-off acoustic mode, and eliminating
the possibility that the numerics has failed to find this mode for the linear profile.

Figures 6a and 6b similarly compare a tanh and linear boundary layer profile for (ω,m) = (31, 24) and
Z = 0.6−2i. In this case the MMSM and SWMM approximations predict a surface mode close to the real k axis,
which in fact is only actually present for a linear boundary layer profile (as seen by the numerical PB solution).
Tracking this mode as the mean velocity U(r) is linearly varied from a linear to a tanh profile shows that this
mode disappears behind the critical layer branch cut located on the real k axis (see Ref. 16 for further details of
the critical layer). Note that the FMM results also predict the same behaviour as the PB results.

The tanh profile used in figures 5 and 6 has δ0 = 0, δ1 ≈ 7× 10−4, δk = 10−3 and δs = 10−3, while the linear
profile used in these figures has δ0 = 0, δ1 = 5× 10−4, δk ≈ 7× 10−4 and δs = 10−3. One might think, therefore,
that the differences between the linear- and tanh-profiles are due to the two boundary layer profiles have different
effective thicknesses. However, figure 7 compares the numerical Pridmore-Brown modes (figure 7a) and the Full
Modified Myers approximation (figure 7b) for a tanh boundary layer profile with δ = 10−3 and linear profiles
with h = 10−3, h = 1.39× 10−3, and h = 1.5× 10−3; these three linear profiles match respectively the δs, δ1 and
δk values of the tanh profile. While it is interesting to note the significant variation of the surface modes in region



E.J. Brambley/ Journal of Sound and Vibration 332 (2013) 3750-3767 12

-400

-200

 0

 200

 400

 600

 800

-400 -300 -200 -100  0  100  200  300  400

-200

-150

-100

-50

 0

 50

 100

 150

 200

-80 -60 -40 -20  0  20

a) Full view b) Zoomed view

FMM
SWMM
MMSM

PB
CL

Figure 8: Trajectories of axial wavenumbers (k) in the complex k-plane as Im(Z) is varies with Re(Z) = 0.75. Parameters
are as for figure 6: a tanh boundary layer profile with δ = 10−3 and M = 0.5, with ω = 31 and m = 24. Solutions are for
FMM = Full Modified Myers, SWMM = Short Wavelength Modified Myers, MMSM = Modified Myers Surface Mode,
and PB = Pridmore-Brown numerical modes, with CL labelling the critical layer branch cut.

Rc (the upper-left quadrant of the k-plane), for both the numerical PB solution and the FMM approximation
all three linear profiles support a surface mode in region Ra (the upper-right quadrant of the k-plane) while the
tanh profile does not. This demonstrates that the shape of the boundary layer profile can have an important
effect on the presence or absence of this unstable surface mode.

4.3 The effect of varying reactance

Here, as considered by, for example, Vilenski & Rienstra [24], we consider the motion of modes as the reactance
Im(Z) varies with the resistance Re(Z) fixed. This is the typical situation that occurs with, for example, a
Helmholtz Resonator impedance [25] where Re(Z) is fixed and Im(Z) varies strongly with frequency and tuning
parameters (such as the depth of the resonator cell). Figure 8 shows such a situation with Re(Z) = 0.75, again for
the parameters (ω,m) = (31, 24). The value of Re(Z) = 0.75 was chosen to demonstrate a range of behaviours
of surface modes, informed by figure 2; for example, this range of Z passes close to both collision points in
figure 2a. Of the five surface modes shown in figure 8, the two closest to the origin are accurately predicted
by all methods. The surface mode in the Rc region (the upper-left of the k-plane) is notably less accurately
predicted, though is still arguably well-predicted quantitatively. In the Ra region (the upper-right quadrant of
the k-plane), one surface mode is accurately predicted and the other is qualitatively well predicted by both the
surface mode dispersion relation (7) and the short wavelength modified Myers dispersion relation, both of which
agree very closely with one another. However, both of these methods fail to predict the disappearance of these
surface modes behind the critical layer branch cut — a feature demonstrated by the numerical Pridmore-Brown
solution and also captured by the full modified Myers boundary condition. This shows that the δI1 integral is
strongly connected with the behaviour of the critical layer branch cut, as predicted in Ref. 13. The fact that the
full modified Myers solution and the numerical Pridmore-Brown solution show different trends in the upper-right
k-plane is explained by the close proximity of collision point sa in figure 2, which the full modified Myers solution
has placed on the wrong side of the line Re(Z) = 0.75.

4.4 Results for thicker boundary layers

All the results above have involved a relatively thin boundary layer of thickness of the order of 10−3. Figure 9
compares the motion of the modes of the full modified Myers and the numerical Pridmore-Brown dispersion
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Figure 9: Motion of modes in the complex k-plane for a linear boundary layer profile with h ∈ [0.001, 0.05], M = 0.5,
ω = 10, m = 2, and Z = 2 − i. Dispersion relations: PB = Pridmore-Brown numerical modes, FMM = full modified
Myers, MMSM = Modified Myers Surface Mode.

relations to the surface mode prediction of (7) for a linear boundary layer profile as the thickness is varied for
10−3 ≤ h ≤ 0.05, for (ω,m) = (10, 2) and Z = 2− i, enabling comparison with Ref. 16. Indeed, figure 9 supports
Ref. 16 by demonstrating that, while four surface modes are supported for these parameters for a thin boundary
layer with h = 10−3 (two in region Rc, and one each in regions Ra and Rb), only three survive for h = 0.05.
Moreover, the instability surface mode in region Ra moves along and very close to the critical layer branch cut
as the boundary layer is thickened, in line with the findings of Ref. 16. The instability found in Ref. 16 may
therefore be identified with the unstable surface mode in region Ra.

5 Stability

Dispersion relations such as (7) may be solved for k given ω, corresponding to the boundary value problem
of sound generated by an oscillator of frequency ω at a particular axial location, or may be solved for ω given k,
corresponding to the initial value problem of the temporal evolution of an initial perturbation of axial wavelength
2π/k. In the latter case, usually k is real (corresponding to a bounded initial perturbation), and − Im(ω(k))
gives the exponential temporal growth rate of an initial perturbation of wavenumber k. The maximum temporal
growth rate, −mink(Im(ω(k))), is also important for a Briggs–Bers [20, 21] stability analysis, similar to that
performed in Ref. 13. This stability analysis involves smoothly varying ω, with the imaginary part going from
being large and negative to zero with the real part held fixed; modes are considered to be left-propagating
(upstream propagating) if they originate in the upper-half k-plane for negative Im(ω), and right-propagating
(downstream propagating) if they originate in the lower-half k-plane. As described, for example, in Ref. 8, this
deformation is because the initial contour Cω along which an ω → t Fourier inversion should be performed must
be taken below all roots of the dispersion relation ω(k) for real k in order to satisfy causality. We first consider the
surface mode approximations for ω(k) for real k, before then searching for absolute and convective instabilities
using a Briggs–Bers stability analysis.

5.1 Temporal instability

In this section, we investigate ω(k) asymptotically for the surface modes, with an emphasis on temporally-
unstable modes for which Im(ω) < 0. We assume that ω/k ≪ 1, m/k ≪ 1, kδ ≪ 1, and that the impedance Z is
locally reacting (so that Z contains no k dependence) and at least mass like at high frequencies (so that |ω/Z|
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is bounded as |ω| → ∞). Then, using the approximation

√

k2 +m2 − (ω −Mk)2 = ±
(

βΛk +Mω/β
)

+ kO
(

ω2/k2,m4/k4
)

, where Λ =

(

1 +
m2

2β2k2

)

(17)

and ± = sgn(Re(k)), the leading and first order terms in the surface mode dispersion relation (7) turn out to be

∓
(

βΛkω +Mω2/β
)(

iωZ +M2k2δk
)

+M2k2ω − 2Mkω2 + iωZδsMk
(

k2+m2
)

= 0. (18)

Under the assumptions about Z given above, to leading order in ω/k equation (18) is

iωZ
(

δsM
(

k2+m2
)

∓ βΛω
)

+M2kω = 0. (19)

Balancing these three terms gives the distinguished scaling

k ∼ iωZ ω ∼ δsk
2, (20)

from which it may be checked that (18) is indeed correct to leading and first order. Rearranging (19) gives

∓iωZMω2/β =
−iωZδsM

2ω
(

k2+m2
)

Λβ2
− M3kω2

Λβ2
, (21)

meaning that (18) may be rewritten, still correct to first order in ω/k, as

∓βΛω
(

iωZ +M2k2δk
)

+M2kω − 2Mω2 + iωZδsM
(

k2+m2
)

− iωZδsM
2ω
(

k2+m2
)

kΛβ2
− M3ω2

Λβ2
= 0. (22)

While (22) is valid for any impedance that is at least mass-like for large frequencies, to progress further we
must choose a model for the impedance Z. The model chosen here is the commonly-used mass–spring–damper
model,

iωZ = −dω2 + b+ iRω. (23)

Expanding (22) then gives a cubic polynomial for ω,

(

±dβΛ +
dδsM

2
(

k2+m2
)

kΛβ2

)

ω3 +

(

−dδsM
(

k2+m2
)

− 2M − M3

Λβ2
∓ βΛiR− iRδsM

2
(

k2+m2
)

kΛβ2

)

ω2

+

(

M2k ∓ βΛb− bδsM
2
(

k2+m2
)

kΛβ2
∓ βΛM2k2δk + iRδsM

(

k2+m2
)

)

ω + bδsM
(

k2+m2
)

= 0. (24)

The predictions of (24) are investigated in §5.2, and an example is shown in figure 10. For this mass–spring–
damper impedance, equation (20) gives two scalings. For the first scaling, ω ≪ 1, so that iωZ ∼ O(1) and (20)
gives k ∼ O(1) and ω ∼ O(δs). This case is reasonably uninteresting, with (24) reducing to the quadratic
equation in ω,

(

∓iRβΛ− 2M ∓ bM

βk

)

ω2 +
(

∓ bβΛ +M2k ∓ βΛM2k2δk + iRδsM
(

k2+m2
)

)

ω + bδsM
(

k2+m2
)

= 0. (25)

The range of k for which this solution is accurate is rather small, and this solution is included here only for
completeness. The second scaling, ω ≫ 1, is the most useful for stability analysis. In this case, since iωZ ∼ O(ω2),

equation (20) gives ω ∼ O(δs
−1/3) and k ∼ O(δs

−2/3), so that (22) becomes a quadratic equation for ω,

(

±dβ + dδsM
2k/β2

)

ω2 +
(

−dδsMk2 − 2M −M3/β2 ∓ βiR− iRδsM
2k/β2

)

ω

+
(

M2k ∓ βM2k2δk + iRδsMk2
)

= 0, (26)

where, since only terms of order O(δs
−2/3) and O(δs

−1/3) have been retained, no m-dependence remains. Note
that, strictly speaking, the term ωiRδsM

2k/β2 should also have been omitted since it is O(1), although here we

retain this term since it turns out to lead to fortuitous behaviour when kδs
−2/3 becomes larger.

The cubic and quadratic approximations (24) and (26) are compared to a full numerical solution of the
Pridmore-Brown equation, the modified Myers boundary condition and the surface mode approximation in
figure 10, showing the curves of ω(k) for real k for a mass–spring–damper impedance for the two cases of a
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Figure 10: Trajectories of modes in the complex ω-plane for real k, for m = 24, a mass–spring–damper impedance
Z = 3 + 0.15iω − 1.15i/ω, and a tanh boundary layer profile given by (15) with M = 0.5 and a) δ = 10−3 or b)
δ = 10−4. Dispersion relations: PB = Pridmore-Brown numerical solution, FMM = Full Modified Myers, SWMM =
Short Wavelength Modified Myers, MMSM = Modified Myers Surface Mode, SM = Surface Mode.

tanh boundary layer profile with δ = 10−3 and δ = 10−4. As can be seen, both (24) and (26) give a good
qualitative agreement with the more exact methods in both cases, while also giving a good quantitative match
with the short wavelength modified Myers solution they are approximating in the δ = 10−4 case. Note that the
qualitative agreement in figure 10a is surprisingly good considering that the asymptotically-small parameter used
to derive (26) is δs

1/3 = 0.1, which in this case is of the same order as the assumed O(1) quantity d/b ≈ 0.13.

We now consider the maximum temporal growth rate −mink(Im(ω(k))) for real k. To leading order (26)
gives the two roots,

ω =
δsMk|k|

2β
± iM

2β

√

4β|k|/d− δs
2k4. (27)
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Choosing k such that dIm(ω)/dk = 0 gives a prediction for the maximum temporal exponential growth rate,

Im(ωmax) ∼
−M

√
3

2
(

δsβd2
)1/3

Re(ωmax) ∼
±M

2
(

δsβd2
)1/3

kmax ∼ ±
(

β

dδs
2

)1/3

. (28)

In practice, (28) tends to over-predict− Im(ωmax), and hence it provides a sufficient value to take for Im(ω) during
a Briggs–Bers stability analysis. For example, in figure 10a, Briggs–Bers trajectories starting from Im(ω) = −5.7
would be sufficient to ascertain the convective stability of the modes, while (28) gives the approximate lower
bound Im(ω) ≈ −16.1. In figure 10b, trajectories starting from Im(ω) = −22.1 would be sufficient, while (28)
gives the approximate lower bound Im(ω) ≈ −34.7. Note that (28) also shows: that the relevant boundary layer
thickness for stability is δs; that the relevant impedance parameter is the mass of the boundary d; that the growth
rate is proportional to the Mach number of the mean flow for low to medium subsonic Mach numbers; and that
increasing the mass of the boundary could be used to counter the destabilizing effect of a thin boundary layer.
Moreover, (28) suggests that for any parameters there will always be a surface mode for which Im(ω(k)) < 0 for
some real values of k, and that at the most negative value of Im(ω(k)) it will have dω/dk ∼ M(β2d2/δs)

−1/3 > 0.
Hence, for any value of ω underneath the curve ω(k) for real k, the corresponding surface mode will be in the
lower-half k-plane, and for any ω above the curve ω(k) for real k, the corresponding surface mode will be in the
upper-half k-plane. This strongly suggests that for real ω > 0, one of the surface modes in the upper-right k-
plane (the Ra region) is always convectively unstable for any parameters, adding weight to the original tentative
classification of a surface mode in this region as a hydrodynamic instability by Rienstra [6]. This conclusion will
be backed up with numerical evidence for specific examples in §5.3.

5.1.1 Asymptotics for other impedance models

In deriving (24)–(28), the impedance Z(ω) has been assumed to be of a mass–spring–damper type (23). The
same analysis could be repeated for other impedance models provided the impedance is expressed as a sum of
powers of ω (possibly including negative powers), and so for more complex impedances a Laurent expansion could
be used about a particular frequency of interest; however, the analysis would be significantly more complicated
if iωZ were to contain more terms than the mass–spring–damper model.

An alternative is to asymptotically expand Z(ω) for Im(ω) ≪ 0, as this is the range of interest for temporal
and absolute instability. For example, consider the Helmholtz resonator impedance model [25] of the form

Z(ω) = R+ iωdL− i cot(ωL), (29)

where d is the added mass of the facing sheet nondimensionalized by the mean flow centreline density and
the resonator depth, and L is the resonator depth nondimensionalized by the duct radius. For Im(ω) ≪ 0,
equation (29) reduces to

Z(ω) ∼ R+ 1 + iωdL+O
(

e2 Im(ωL)
)

, (30)

so that the temporal stability of flow over a Helmholtz resonator impedance boundary given by (29) may be
approximated by (24)–(28) by substituting dL for d, R+ 1 for R, and setting b = 0.

5.2 Absolute instability

An absolute instability, being an instability which grows exponentially in time at all spatial locations, is given
by a value of ω such that solving the dispersion relation for k gives a double root. In this section, we investigate
values of ω leading to a double-root in k of the asymptotic surface mode dispersion relation (18). First, assuming
m2/k2 ≪ 1, to leading order (18) gives

iωZδsMk3 +M2ωk2 ∓ βωiωZk = 0, (31)

which may be rearranged to give

∓ωiωZm2

2βk
= − iωZδsMm2k

2β2
− M2m2ω

2β2
. (32)

Substituting (32) into (18) and expanding to leading and first order gives the dispersion relation

a3k
3 + a2k

2 + a1k + a0 = 0, (33)
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where
a3 = iωZδsM∓βωM2δk a2 = M2ω

a1 = ∓βωiωZ−2Mω2+iωZδsMm2

(

1− 1

2β2

)

a0 = ∓Mω2iωZ

β
−M2m2ω

2β2
.

(34)

We now solve simultaneously (33) and the equation 3a3k
2 + 2a2k + a1 = 0 obtained from differentiating (33)

with respect to k. Combining these two equations and eliminating k finally leads to the condition on ω that

(

4a3a
2
1 − a22a1−3a3a0

)(

a2a1−9a3a0
)

+
(

6a3a1 − 2a22
)2
a0 = 0, giving k =

a2a1−9a3a0
6a3a1 − 2a22

. (35)

For a mass–spring–damper impedance (23), after cancellation equation (35) is a polynomial in ω of degree 13
for m 6= 0 and of degree 10 for m = 0. However, not all of the double roots given by (35) represent absolute
instabilities; only double roots with Im(ω) < 0 for which one of the colliding modes originates in the lower-half
k-plane and the other originates in the upper-half represent absolute instabilities, as they pinch the k-Fourier
inversion contour (see Ref. 8 for details). Figure 10 plots such double roots given by (35) alongside double
roots calculated numerically using the Pridmore–Brown equation, which can be seen to correspond closely in
both figures 10a,b. In figure 10b, two double roots are present with Im(ω) < 0, and therefore this situation is
absolutely unstable, while in figure 10a, the two double roots satisfy Im(ω) > 0 and therefore correspond to
exponentially decaying disturbances. For the parameters used in figure 10, the critical thickness for which these
double roots have Im(ω) = 0 is found using the Pridmore–Brown numerical solution to be δ = 8.474 × 10−4,
occurring at ω = 4.678 and k = 26.77 + 93.93i, while the approximation (35) gives δ = 8.260× 10−4 occurring
at ω = 4.822 and k = 31.26 + 89.30i. These double roots were also found in Ref. 13; the fact that they are well
predicted by the polynomial (35) shows that these double roots involve the collision of two surface modes in the
k-plane, which turn out to be the two surface modes in region Ra (the upper-right quadrant of the k-plane).

5.3 Convective instability

Here, we consider the convective stability of the various surface modes by smoothly varying Im(ω) with Re(ω)
fixed. In this section a Helmholtz resonator impedance model (29) is used with d = 4/7 (as in Refs. 10 and 13),
with the cavity depth L varied to give the required impedance at the given frequency. We take Im(ω) = −100 as
the starting point for the Briggs–Bers deformation, although (28) together with (30) indicates that Im(ω) = −62
would have been sufficient for all examples shown here. It should be remembered that in addition to this
convective instability analysis, we must also consider the possibility of an absolute instabilities which, if present,
would dominate any convective instability at large times.

Figure 11 shows the Briggs–Bers trajectories as Im(ω) is varied from −100 to 0 with Re(ω) = 10 fixed, for
the same parameters as figure 4. Four of the five surface modes and all the acoustic modes are seen to be stable,
with the surface mode in region Ra (the upper-right quadrant of the k-plane) being a downstream-propagating
convective instability, as expected. This is in line with Refs. 6, 10 and 13, and also with the observations of
Ref. 16 for thicker linear boundary layers.

Figure 12 shows the Briggs–Bers stability analysis for the modes in figure 5a. This figure shows the lower
surface mode in region Ra (the upper-right quadrant of the k-plane) as being a downstream-propagating con-
vective instability and the other surface mode as being an upstream-propagating stable mode. However, note
that a small change in either the impedance model or parameters could cause Z(ω) to pass the other side of the
the collision point in the complex Z-plane (similar to collision point sa in figure 2) which would cause the two
Ra surface modes to exchange places, swapping their stability. As mentioned previously, this make it difficult
to identify which of these two surface modes is unstable in general without resorting to this stability analysis in
each case.

Even more confusingly, figure 13 shows the Briggs–Bers stability analysis for the modes in figure 6a. In this
case, for the full modified Myers and the numerical Pridmore-Brown dispersion relations, the surface mode in
region Ra is hidden behind the branch cut, while for the short wavelength modified Myers dispersion relation and
the modified Myers surface mode dispersion relation this surface mode would be predicted to be a downstream-
propagating convective instability. Note that this surface mode does exist if the boundary layer profile is taken as
linear (see figure 7), and in this case a similar analysis shows this surface mode to be a downstream-propagating
convective instability.
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Figure 11: Briggs–Bers trajectories of modes in the complex k-plane for Im(ω) ∈ [−100, 0] with Re(ω) = 10 for various
dispersion relations. Parameters are as for figure 4: m = 5, a tanh boundary layer profile (15) with δ = 10−3 and M = 0.5,
and a Helmholtz resonator impedance (29) with R = 1, d = 4/7 and L = 3.544024 × 10−2. Dispersion relations: PB =
Pridmore-Brown numerical modes, FMM = Full Modified Myers, SWMM = Short Wavelength Modified Myers, MMSM
= Modified Myers Surface Mode.
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Figure 12: Briggs–Bers trajectories of modes in the complex k-plane for Im(ω) ∈ [−100, 0] with Re(ω) = 10 for various
dispersion relations. Parameters are as for figure 5a: m = 5, a tanh boundary layer profile (15) with δ = 10−3 and
M = 0.5, and a Helmholtz resonator impedance (29) with R = 1, d = 4/7 and L = 0.11446. Dispersion relations: PB =
Pridmore-Brown numerical modes, FMM = Full Modified Myers, SWMM = Short Wavelength Modified Myers, MMSM
= Modified Myers Surface Mode.
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Figure 13: Briggs–Bers trajectories of modes in the complex k-plane for Im(ω) ∈ [−100, 0] with Re(ω) = 31 for various
dispersion relations. Parameters are as for figure 6a: m = 24, a tanh boundary layer profile (15) with δ = 10−3 and
M = 0.5, and a Helmholtz resonator impedance (29) with R = 1, d = 4/7 and L = 0.109365. Dispersion relations: PB =
Pridmore-Brown numerical modes, FMM = Full Modified Myers, SWMM = Short Wavelength Modified Myers, MMSM
= Modified Myers Surface Mode.

6 Conclusion

This paper considers the problem of determining the modes, and in particular the surface modes, of a
cylindrical lined duct with coaxial flow and a thin sheared boundary layer. The surface mode approximation
developed by Rienstra [6] and Brambley & Peake [7] is extended, with the thin boundary layer accounted for
using a modified Myers boundary condition in the form proposed by Brambley [13]. The resulting dispersion
relation is given in its most readily-useable form in (7), although a rescaled version of this reduces the number of
free parameters by one. These free parameters are: the lining impedance Z; the centreline Mach number M ; the
acoustic spinning parameter λ = ω/

(

m
√
1−M2

)

; the boundary layer thickness measured on the length-scale of

a far field wavelength h̃ = 2ωδ1; and the boundary layer shape parameters ∆0 = δ0/(2δ1), ∆k = δk/(2δ1), and
∆s = −M/

(

2R(1)U ′(1)δ1
)

. The first three parameters, Z, M and λ, are the same as for the uniform flow surface
mode approximation [7]. Rather than the four surface modes supported by a uniform flow, a sheared boundary
layer flow is shown to support up to six surface modes, as described for particular parameters in figures 2 and 3.
This helps explain the patterns seen numerically by Vilenski & Rienstra [24] (for example, figure 8b of Ref. 24).
For stability analysis, to leading order the only important measure of boundary layer thickness is δs, while to first
order the boundary thickness scale δk also becomes important. While it is not possible to give here a complete
catalogue of the behaviour of the surface modes in all possible parameter regimes (as was done in for the uniform
case in Ref. 7) owing to the additional number of free parameters in the nonuniform case, the same analysis as
presented here may be applied for other parameters without modification.

The fact that a sheared boundary layer flow supports a maximum of six surface modes, rather than the four
supported by uniform flow, is important not only for finding all the modes for a given set of parameters, but
also for ascertaining stability. Indeed, there are two modes in a region of the k-plane (labelled Ra in figure 2)
that was predicted for uniform flow to contain only one, possibly unstable, surface mode. The stability analysis
of section 5 suggests that one of these surface modes is indeed always a downstream-propagating convective
instability while the other is a stable upstream-propagating evanescent wave, with the uniform flow surface mode
usually not closely approximating either. Since these two modes will interchange places as the impedance varies
around any collision point (as shown in figure 2), it is difficult to attach labels to these modes and say one
is stable and the other unstable. Moreover, for sufficiently thin boundary layer thicknesses these two surface
modes collide, as determined by (35), leading to an absolute instability that will dominate the behaviour of any
convective instabilities.
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The differential equation governing the pressure in a sheared flow is the Pridmore-Brown equation (1).
Approximate solutions to this equation are found in this paper using a number of methods, being (in order
of complexity and accuracy): directly numerically integrating the Pridmore-Brown equation (the PB results in
figures); solving the modified Myers boundary condition of Brambley [13], derived asymptotically to include
first order effects in the boundary layer thickness (the FMM results in figures); solving a short wavelength
approximation to this modified Myers boundary condition (the SWMM results in figures); and assuming the
flow to be constant and applying the Myers [2], or Ingard–Myers [3], boundary condition (the Myers results
in figures). One result of this paper is therefore a comparison of these four methods for a number of different
parameters, provided throughout §4. Unsurprisingly, the more complicated the method the more accurate the
results, although the results here confirm the conclusions of Ref. 13 that the Myers boundary condition with
uniform flow is a good approximation for the acoustic modes and a rather poor approximation for surface
modes (although Gabard [14] also finds cases in which the uniform flow approximation is fairly inaccurate even
for situations relevant to acoustic modes, while the modified Myers boundary condition of Ref. 13 remains
accurate). The surface modes are predicted using a further surface-mode approximation [6] of the SWMM and
Myers approximations (labelled MMSM and UMSM respectively in figures), with the MMSM and UMSM surface
mode approximations being almost indistinguishable from the respective SWMM and Myers models they are
approximating.

Section 4 gives a range of examples for particular parameters. While all of these examples have M = U(0) =
0.5 and R(r) ≡ 1, the analysis presented here is valid for general U and R. Two boundary layer profiles are used:
the constant-then-linear profile (12) and the tanh profile (15), as used by Vilenski & Rienstra [24]. In general,
these two boundary layer profiles are found to give similar results, in agreement with Gabard [14]. However, as
shown in §4.2, it is possible to find parameters for which the linear profile supports an unstable surface wave
while the tanh profile does not; moreover, this effect is shown to be due to the difference in boundary layer shape
and not because one boundary layer is effectively thinner than the other.

While this paper has predominantly considered a mass–spring–damper or Helmholtz resonator impedance
model, the numerical results can be expected to be indicative of general acoustic linings. For the majority of
acoustic linings, the resistance Re(Z) remains nearly constant while the reactance Im(Z) varies significantly; for
example, a Helmholtz resonator’s reactance varies strongly with frequency and tuning parameters such as the
depth of the resonator cell. The results of §4.3, therefore, demonstrate the range of surface mode behaviours for
a general such acoustic lining, together with the accuracy of the predictions of this paper. The limit of a hard
wall (|Z| → ∞) is particularly interesting. For uniform flow, as Im(Z) → −∞ four surface modes are present,
with two surface modes tending to infinity in the k-plane, while as Im(Z) → ∞ no surface modes are present.
This caused Rienstra (section 6 of Ref. 6) to propose a method for finding all modes by tracking modes from
their hard-walled values as Im(Z) is reduced from +∞. With a boundary layer present, we find that there are
two surface modes tending to two finite values of k as |Z| → ∞ in any direction (provided Re(Z) > 0), with
at least one of these values not corresponding to a hard-walled mode. It would seem, therefore, that for thin
boundary layers this tracking procedure need not be restricted to reducing Im(Z) from +∞ but does need to be
augmented by finding at least one of the surface modes by independent means.

The examples of §4 show very good agreement between the full modified Myers solutions and the direct
numerical solutions of the Pridmore-Brown equation, and generally very good agreement in the majority of
cases between these and the short wavelength solution and the surface mode solution given by (7). While this
good accuracy for the modified equations might be thought to be due to the very thin boundary layer used
(h = 10−3), in fact the small parameter of interest is the scaled boundary layer thickness h̃ given in (9), which
for the examples given in the majority of §4 is h̃ ≈ 0.04, which is not very small. Moreover, section 4.4 shows
qualitatively correct surface mode behaviour predicted by the modified equations even for h̃ = 0.5, which is
certainly not small. This suggests that the asymptotics that the modified equations are based on are relatively
robust.

One aspect ignored by the current work is the presence of a critical layer and its associated branch cut in
the complex k-plane. This branch cut is hinted at in figure 6 and shown explicitly in figure 8, since numerical
solutions of the Pridmore-Brown equation and solutions of the full modified Myers dispersion relation are seen to
“hide” behind this branch cut for certain values of the impedance Z. Investigation of the critical layer necessitates
a different approach, as considered for linear boundary layer profiles in Ref. 16.
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