
rspa.royalsocietypublishing.org

Comment

Cite this article: Brambley EJ. 2016

Correction to “On the acoustics of an

impedance liner with shear and cross

flow”, by Campos, Legendre &

Sambuc.

Proc R Soc A 472:20160153.

http://dx.doi.org/10.1098/rspa.2016.0153

Received: 28 February 2016

Accepted: 20 July 2016

Subject Areas:

acoustics, fluid mechanics, wave

motion

Keywords:

aeroacoustics, acoustic liners, shear

flow, cross flow, sound propagation,

flow noise

Author for correspondence:

E. J. Brambley

e-mail:

E.J.Brambley@damtp.cam.ac.uk

Correction to “On the

acoustics of an impedance

liner with shear and cross

flow”, by Campos, Legendre &

Sambuc

E. J. Brambley1

1DAMTP, University of Cambridge, CMS, Wilberforce

Road, Cambridge, CB2 1TA, UK

Campos, Legendre, and Sambuc [1] derived an

acoustic-vortical wave equation for the study of

acoustics within a sheared flow U0(y)ex over an

acoustic lining with a constant cross flow V0ey
through the lining. Unfortunately, their derivation

makes inconsistent assumptions, and the resulting

wave equation is therefore incorrect. This comment

points out the error, and derives a corresponding

equation using the same approximations as [1].

The situation considered is as shown in figure 1(a). A

mean flow v0 =U0(y)ex + V0ey flows across an acoustic

liner located along y =0. This mean flow should satisfy

the inviscid governing equations of conservation of mass,

momentum, and entropy,

v0 · ∇ρ0 + ρ0∇ · v0 =0, (0.1a)

ρ0v0 · ∇v0 +∇p0 = 0, (0.1b)

v0 · ∇p0 − c20v0 · ∇ρ0 = 0, (0.1c)

where c20 =
∂p0

∂ρ0

∣∣∣
s0

is the square of the (local) speed of

sound. The given velocity v0 is solenoidal, ∇ · v0 = 0,

and hence conservation of mass (0.1a) gives v0 · ∇ρ0 = 0.

The momentum equation (0.1b) implies that

∂p0
∂x

=−ρ0V0
dU0

dy
,

∂p0
∂y

= 0, (0.2)

so that the entropy equation (0.1c) is not satisfied:

−ρ0U0V0
dU0

dy 6= 0 since U0, V0 and dU0/dy are all

supposed nonzero. Therefore, the base flow assumed

by Campos et al. [1] does not satisfy the governing

equations. This leads to ambiguity in deriving a wave

equation based on this mean flow, as will be seen below.

c© 2016 The Author(s) Published by the Royal Society. All rights reserved.
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U0(y)

V0 V0
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U0(y) =U∞y/L

p0(y) = p∞

p0(y)

x

y

L

(a) (b)

Figure 1. (a) The general situation considered both here and by Campos et al. [1]. The total mean flow is v0 =

U0(y)ex + V0ey . (b) The specialization considered by Campos et al. [1]. The mean pressure within the shear layer

is p0(y) = p∞ − ρ0V0U∞x/L.

The expressions for the partial derivatives of p0 given in (0.2) are in general incompatible,

meaning that (assuming 1

ρ0

dU0

dy
is not everywhere constant) there is no function p0 satisfying (0.2).

In the linear shear case specifically considered by Campos et al. [1], shown in figure 1(b), p0 =

p∞ − ρ0V0U∞x/L for y <L but p0 = p∞ for y >L, leading to a mean pressure jump across y =L

for x 6= 0. In order to proceed, the approximation made by Campos et al. [1] is that

|x|≪
p0(0)

ρ0V0dU0/dy
, (0.3)

so that the variation of p0 with x may be considered to be small, and therefore p0 may be

approximated as constant. While this is true for the numerical value of p0, it is not true for

the derivative ∂p0/∂x, which remains nonzero and potentially of significant magnitude. This

is in effect a Boussinesq approximation where both p0 and ∂p0/∂x are considered constant

and nonzero. Unfortunately, Campos et al. [1] assume both that ∇p0 = 0 (in deriving their

equation 2.18) and that v0 · ∇v0 = V0dU0/dyex (in deriving their equation 2.21a), which are

inconsistent with conservation of x-momentum (0.1b above). Their derived wave equation (2.25

of ref. 1) is therefore incorrect, as seen in §2 below.

Even with the Boussinesq assumption (0.3), the mean flow entropy equation (0.1c) remains

unsatisfied. The mean flow assumed by Campos et al. [1] therefore requires a rather unphysical

steady external cooling in order to be realized, as will be seen next.

1. A consistent (albeit artificial) mean flow

In order to have a consistent mean flow, and therefore a unique linearization of the governing

equations about that mean flow, we will assume here a steady heat source Q0. While this is

certainly not the only possible consistent extension of [1], it is the simplest extension that allows

the same velocity and density as Campos et al. [1, equations (2.5) and (2.11a)]. The full governing

equations are then

Dρ̃

Dt
+ ρ̃∇ · ṽ =0, ρ̃

Dṽ

Dt
+∇p̃= 0,

Dp̃

Dt
− c̃2

Dρ̃

Dt
=

c̃2β̃Q0

c̃p
, (1.1)

where D/Dt= ∂/∂t+ ṽ · ∇ is the material derivative, and

c̃2 =
∂p̃

∂ρ̃

∣∣∣∣
s̃

, β̃ =−
1

ρ̃

∂ρ̃

∂T̃

∣∣∣∣
p̃

, c̃p = T̃
∂s̃

∂T̃

∣∣∣∣
p̃

(1.2)

are respectively the square of the speed of sound, the coefficient of thermal expansion, and the

specific heat at constant pressure respectively. For a perfect gas, c̃2 = γp̃/ρ̃ and c̃2β̃/c̃p = γ − 1,

where γ = cp/cv is the ratio of specific heats.

Tildes here denote a total quantity, which is considered as a sum of a steady mean flow and a

small unsteady perturbation, e.g. ρ̃= ρ0 + ρ′. Substituting the mean flow assumptions above into

these full governing equations (1.1) and assuming a Boussinesq approximation for p0 gives the
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consistent solution v0 =U0(y)ex + V0ey with ρ0 constant, p0 approximated as constant, and

∇p0 =−ρ0V0
dU0

dy
ex, Q0 =−

ρ0cp0
β0

U0

c0

V0
c0

dU0

dy
. (1.3)

Hence, a rather unphysical external cooling −Q0 is needed for this flow to exist in practice.

It should be noted that the sound speed c20 = c20(p0, ρ0) has a nonzero gradient,

∇c20 =−αV0
dU0

dy
ex, where α= ρ0

∂c20
∂p0

∣∣∣∣
ρ0

, (1.4)

(where for a perfect gas α= γ), and thus we may not neglect gradients of c20 in deriving our wave

equation. Unfortunately, Campos et al. [1, equation (2.13)] did neglect gradients of c20 in deriving

their wave equation.

2. Derivation of the “wave equation” following ref. [1]

Linearizing the governing equations (1.1) about the steady mean flow (1.3) gives

D0ρ
′

D0t
+ ρ0∇ · v

′ =0, (2.1a)

ρ0

(
D0v

′

D0t
+ v′

dU0

dy
ex

)
+ ρ′V0

dU0

dy
ex

︸ ︷︷ ︸
∗

+∇p′ = 0, (2.1b)

D0p
′

D0t
− u′ρ0V0

dU0

dy︸ ︷︷ ︸
†

−c20
D0ρ

′

D0t
=Q0

[
p′

∂

∂p0

∣∣∣∣
ρ0

+ ρ′
∂

∂ρ0

∣∣∣∣
p0

]
c20β0
cp0

≡Q0, (2.1c)

where D0/D0t= ∂/∂t+ v0 · ∇ is the material derivative with respect to the mean flow, the

velocity perturbation is v
′ = u′ex + v′ey , and Q0 ≡ 0 for a perfect gas. The term marked † was

erroneously omitted by Campos et al. [1], and originates from ∂p0/∂x given in (0.2). Were it true

that ∇p0 ≡ 0, as assumed by Campos et al. [1], then both the term marked ∗ in (2.1b) and the term

marked † in (2.1c) would be identically zero. Campos et al. [1] included the term marked ∗ and

excluded the term marked †, showing that their wave equation is inconsistently derived.

We now follow the procedure of Campos et al. [1]. Noting that

∇·
D0v

′

D0t
=

D0

D0t

(
∇ · v

′
)
+

dU0

dy

∂v′

∂x
, (2.2)

using (2.1a) to eliminate D0ρ
′/D0t from (2.1c) and then taking D0/D0t

(
(2.1c)/c20

)
−∇·(2.1b)

leads to

D0

D0t

(
1

c2
0

D0p
′

D0t

)
− ρ0V0

D0

D0t

(
u′

c2
0

dU0

dy

)
− 2ρ0

dU0

dy

∂v′

∂x
−

∂ρ′

∂x
V0

dU0

dy
−∇2p′ =

D0

D0t

Q0

c2
0

, (2.3)

which is the equivalent of (2.22) of ref. 1. Using the x-momentum perturbation equation (2.1b) to

substitute for D0u
′/D0t and then taking D0(2.3)/D0t yields

D0

D0t

(
D0

D0t

(
1

c2
0

D0p
′

D0t

)
−∇2p′

)
− 2ρ0

∂

∂x

D0

D0t

(
v′
dU0

dy

)
− V0

∂

∂x

D0

D0t

(
ρ′
dU0

dy

)

+ V0
D0

D0t

(
1

c2
0

dU0

dy

[
ρ0v

′ dU0

dy
+ ρ′V0

dU0

dy
+

∂p′

∂x

]
− ρ0u

′ D0

D0t

(
1

c2
0

dU0

dy

))
=

D2
0

D0t2
Q0

c2
0

. (2.4)

After a significant amount of algebra, this becomes
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D0

D0t

(
D0

D0t

(
1

c2
0

D0p
′

D0t

)
−∇2p′

)
+ 2

dU0

dy

∂2p′

∂x∂y
− (α− 1)

V 2
0

c4
0

(
dU0

dy

)2
D0p

′

D0t

+ 2V0
∂p′

∂x

D0

D0t

(
1

c2
0

dU0

dy

)
−

V0
c2
0

(
dU0

dy

)2
∂p′

∂y

= V0
dU0

dy

[
V0
c2
0

dU0

dy
−

∂

∂x

][
u′ρ0

V0
c2
0

dU0

dy
+

Q0

c2
0

]

− (ρ0v
′ + ρ′V0)V0

dU0

dy

[
V0
c2
0

d2U0

dy2
+ 2

D0

D0t

(
1

c2
0

dU0

dy

)]

+ u′ρ0V0
D2

0

D0t2

(
1

c2
0

dU0

dy

)
+ V 2

0

d2U0

dy2
∂ρ′

∂x
+ 2ρ0V0

d2U0

dy2
∂v′

∂x
+

D2
0

D0t2
Q0

c2
0

, (2.5)

where
D0

D0t

(
1

c2
0

dU0

dy

)
=

V0
c2
0

d2U0

dy2
+ U0V0

α

c4
0

(
dU0

dy

)2
, (2.6)

1

V 2
0

D2
0

D0t2

(
1

c2
0

dU0

dy

)
=

1

c2
0

d3U0

dy3
+ 3U0

α

c4
0

dU0

dy

d2U0

dy2
+

1

c4
0

(
dU0

dy

)3[
α+ 2α2U

2
0

c2
0

− ρ0U0

∂α

∂p0

∣∣∣∣
ρ0

D0p0
D0t

]
.

(2.7)

This is the equivalent of (2.23) of ref. 1. Setting V0 = 0 recovers1 the Pridmore-Brown equation [2],

while setting U0(y) to be constant recovers the convected wave equation. By assuming a linear

shear U0(y) = κy and a perfect gas, equation (2.5) “simplifies” to

D0

D0t

(
D0

D0t

(
1

c2
0

D0p
′

D0t

)
−∇2p′

)
+ 2κ

∂2p′

∂x∂y
− (γ − 1)κ2

V 2
0

c4
0

D0p
′

D0t
+ 2κ2U0V

2
0

γ

c4
0

∂p′

∂x
− κ2

V0
c2
0

∂p′

∂y

=−κ2ρ0
V 2
0

c2
0

∂u′

∂x
− 2κ3U0V

2
0

γ

c4
0

(ρ0v
′ + ρ′V0) + ρ0κ

3 V
3
0

c4
0

(
1 + 2γ2

U2
0

c2
0

)
u′, (2.8)

which does not rearrange to the wave equation derived by Campos et al. [1, equation (2.25)]. We

must therefore conclude that the wave equation ref. 1 is based on is erroneous.

It may, in certain cases, be possible to rearrange (2.5) or (2.8) into a wave equation in only

one variable, say p′; however, doing so would yield an unhelpfully complicated equation of even

higher order for this rather artificial mean flow, and is therefore not pursued further here.

3. A linear shear boundary layer

Campos et al. [1] considered a linear boundary layer of thickness L between the liner and a region

of uniform flow, as shown in figure 1(b). As already commented, the mean flow pressure p0 is

discontinuous at y =L. Moreover, equation (2.5) includes second and third derivatives of U0(y),

so that delta functions δ(y − L) and δ′(y − L) would be introduced in this case, which would

cause p′ to have a discontinuous derivative when crossing y =L. This flow profile is therefore

not equivalent to solving a uniform flow U0(y) =U∞ and an infinite linear shear U0(y) = κy and

matching the solutions together at y =L, as was done by Campos et al. [1, equation (3.19)].

Funding. The author is funded by a Royal Society University Research Fellowship (UF100844), and

gratefully acknowledges their support.

References

1 L. M. B. C. Campos, C. Legendre, and C. Sambuc. On the acoustics of an impedance liner with

shear and cross flow. Proc. R. Soc. A, 470(2163):20130732, 2014. doi: 10.1098/rspa.2013.0732.

2 D. C. Pridmore-Brown. Sound propagation in a fluid flowing through an attenuating duct.

J. Fluid Mech., 4:393–406, 1958.

1Although note that V0 multiplies the highest y-derivative of p′ in (2.5), and so the limit V0 → 0 may be a singular limit.


	1 A consistent (albeit artificial) mean flow
	2 Derivation of the ``wave equation'' following ref. [1]
	3 A linear shear boundary layer

