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Computational AeroAcoustics (CAA) simulations often use finite difference schemes optimized

to require relatively few points per wavelength; such schemes are often referred to as Dispersion

Relation Preserving (DRP) schemes. Recently, it was shown that such optimized schemes perform

poorly when applied to waves with an increasing or decreasing amplitude. Here, we investigate

the performance of asymmetric stencils used at the boundaries of the computational domain, by

considering a 1D model wave-propagation problem involving damping, propagation over large

distances, and reflection by boundaries. Existing optimized boundary stencils are found to be

totally unstable for this model problem. A new DRP scheme with the Summation By Parts (SBP)

property is derived and proved to be stable. However, as expected, its behaviour is poor for non-

constant-amplitude waves, and existing maximal order SBP schemes are shown to be preferable.

Consequences for realistic 3D CAA simulations are also discussed.
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1. Introduction

Computational AeroAcoustics (CAA) form an important tool in the design of quiet aircraft en-

gines. Owing to the complicated geometry and flow in aircraft engines, these simulations are compu-

tationally demanding, and so it is desired to use as low a numerical resolution as possible to accurately

resolve the behaviour of the waves. In the interior of a domain, considering an equi-spaced grid of

points xj = j∆x and function evaluations fj = f(xj), a symmetric finite difference scheme of width

w with coefficients dm and βm numerically approximates the derivative f ′(xj) by

f ′

j +
B
∑

m=1

βm

(

f ′

j+m + f ′

j−m

)

=
1

∆x

(w−1)/2
∑

m=1

dm
(

fj+m − fj−m

)

. (1)

Schemes with B = 1 are termed tri-diagonal, and schemes with B = 0 are termed explicit. Ex-

plicit schemes are numerically simpler to calculate, although require more points per wavelength

to accurately resolve waves. The finite difference coefficients dm and βm are chosen such that f ′

j

is a good approximation to f ′(xj). Classically one would consider the limit ∆x → 0 and require

f ′

j = f ′(xj)+O(∆xw+2B−1), and such schemes are referred to here as Maximal Order (MO) schemes

since they give the maximum order of asymptotic accuracy for a given w and B. An alternative for

wave propagation problems is to choose the coefficients dm such that waves are well resolved with

few points per wavelength [e.g. 1–5], and such schemes are frequently referred to as Dispersion Rela-

tion Preserving (DRP) schemes [2]. Unfortunately, it was recently pointed out that such DRP schemes

perform poorly when simulating non-constant-amplitude waves [6].
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At the boundaries of a domain we run out of points, and symmetric stencils can no longer be

used. However, care is needed when using asymmetric stencils, as doing so often leads to instability.

Provided certain conditions are met, the order of accuracy of the boundary derivatives may be one

order less than that of the interior derivatives without affecting the global accuracy of the scheme [7].

As an example, considering the explicit 7-point 6th order symmetric stencil given by B = 0 and

(d1, d2, d3) = (3
4
, −3
20
, 1
60
), we require a different formula to calculate f ′

0, f
′

1, and f ′

2. Using 5th order

asymmetric stencils to give a global 6th order scheme would result in the derivative



















f ′

0

f ′

1

f ′

2

f ′

3

f ′

4
...



















=
1

∆x















−137/60 5 −5 10/3 −5/4 1/5
−1/5 −13/12 2 −1 1/3 −1/20
1/20 −1/2 −1/3 1 −1/4 1/30
−1/60 3/20 −3/4 0 3/4 −3/20 1/60

. . .
. . .

. . .
. . .

. . .
. . .

. . .

































f0
f1
f2
f3
f4
...



















. (2)

This scheme is referred to as “mo7” in what follows, and it will be seen to be completely unstable. A

common alternative is to use symmetric stencils of decreasing width near the boundary, with only f ′

0

being calculated using an asymmetric stencil. For the example above, this might be given by
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This scheme is referred to as “mo7s” in what follows, and it will be seen to be stable, but of rather

low accuracy, and asymptotically only of global accuracy O(∆x3).
Asymmetric optimized (DRP) stencils for use at boundaries have been investigated by Berland,

Bogey, Marsden & Bailly [8] for explicit schemes, and by Turner, Haeri & Kim [9] for implicit

schemes. Here, we consider the 7-point 4th order DRP scheme of Tam & Shen [10] with the 7-point

4th order optimized boundary derivatives of Ref. 8, labelled as “DRP7+BBMB”, which we will find

to be totally unstable. We also consider the 11-point 4th order FDo11p scheme of Bogey & Bailly [4]

with the 11-point 4th order optimized boundary derivatives of Ref. 8, labelled as “BB11+BBMB”,

which we will also find to be totally unstable. Finally, we consider the 7-point tri-diagonal 4th order

optimized scheme of Kim [5] with the 4th order optimized boundary derivatives of Ref. 9, labelled as

“K+THK3,7”, which we will also find to be totally unstable, both in its basic and pseudo-boundary

forms [9, Section 6]. A summary of these schemes is given in Table 1.

As asymmetric stencils are necessary at boundaries, but in general lead to instability, we also

consider a recent class of schemes which are provably stable. A brief overview of these Summation

By Parts (SBP) schemes is given in Section 2, before we select three such schemes to compare with

those above solving a test problem. The test problem, involving wave propagation, damping, and

reflection from boundaries, is described in Section 3, with the results presented in Section 4.

2. Summation by Parts

For full details, see the excellent review articles by Svärd & Nordström [11] and Del Rey Fernán-

dez, Hicken & Zingg [12]. Here, we consider the domain [0, L] discretized by N + 1 equally-spaced

points x0, . . . , xN . In the interior of the domain a symmetric derivative is used. A different derivative

is used for the n points near the boundary, x0, . . . , xn−1 and xN−n+1, . . . , xN . In vector form, writing

f = (f0, . . . , fN) and f ′ = (f ′

0, . . . , f
′

N), the derivatives are given implicitly by ∆xPf ′ = Qf , so
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Table 1: Summary of finite difference schemes considered

Scheme Reference w acc n accuracy SBP Type

mo7 Equation (2) 7 6 3 5 Expl

mo7s Equation (3) 7 6 3 2,2,4 Expl

BB11+BBMB [4, FDo11p] &[8, Table 10] 11 4 5 4 Expl

DRP7+BBMB [10] & [8, Table 9] 7 4 3 4 Expl

DRP7sbp Appendix A 7 4 4 3 y Expl

CGA7sbp [13, appendix 2] 7 6 6 5 y Expl

FHZ7sbp [12, D
(6,3,:)
1 , appendix A] 7 6 6 3 y Expl

K+THK3,7 [5, Table 1] & [9, Table 2] 7 4 3 4 Tri

K+THKp3,7 [5, Table 1] & [9, Section 6] 7 4 6 4 Tri

Key: w = width of interior stencil; acc = order of accuracy of interior stencil; n = number of points near

boundaries not using the interior stencil; accuracy = order of accuracy within n points of the domain boundary;

Expl = explicit in the domain interior; Tri = tri-diagonal in the domain interior.

that the differentiation matrix is D = P−1Q/∆x. The finite difference scheme P,Q is said to have the

summation by parts (SBP) property if

P = symmetric, positive definite and Q+ QT = eNeN
T − e0e0

T , (4)

where e0 = (1, 0, . . . , 0) and eN = (0, . . . , 0, 1); i.e. Q is anti-symmetric except for its (0, 0) and

(N,N) elements. The SBP scheme is explicit if P is the identity apart from its first and last n rows.

We define the discrete inner product 〈u, v〉P = uTPv∆x. This is the discrete equivalent of

〈u, v〉 =
∫ L

0
u(x)v(x) dx, and using Eq. (4) we deduce the discrete analogue to integration by parts,

〈u,Dv〉P = uNvN − u0v0 − 〈Du, v〉P, implying 〈1,Du〉P = uN − u0 (5)

where 1 = (1, 1, . . . , 1)T . The theory then proves long-time stability in the sense that 〈f , f〉P remains

bounded for all time, although this is proved on a case-by-case basis, as we do here in Section 3.1.

It is emphasized that having the SBP property is a strong requirement, and that most boundary

schemes are not SBP (including those of Refs. 8 and 9). The SBP stability properties also only hold

provided the boundary conditions are implemented appropriately, as discussed in Section 3.

We consider three SBP schemes here. The first is a new SBP scheme given in appendix A which

uses the 7-point 4th order DRP stencil of Tam & Shen [10] as the interior stencil, and is denoted

“DRP7sbp”. The second, denoted “CGA7sbp”, is a 7-point 6th order internal scheme which is 5th

order within 6 points of the boundary, given by Carpenter, Gottlieb & Abarbanel [13, appendix 2].

The third, denoted “FHZ7sbp”, is an SBP scheme with P diagonal that uses the same 7-point 6th order

internal scheme but is only 3rd order within 6 points of the boundary, and is given by Del Rey Fernán-

dez, Hicken & Zingg [12, D
(6,3,:)
1 , appendix A]. A summary of all schemes used is given in Table 1.

3. Problem description

The example we consider here is that of Ref. 6, only with reflecting boundaries instead of periodic

boundaries. We consider on the domain x ∈ [0, L], t ≥ 0 the coupled PDEs

∂p

∂t
+

∂v

∂x
= −µ(x)p,

∂v

∂t
+

∂p

∂x
= −ν(x)v, (6)

with boundary conditions v(0, t) = v(L, t) = 0 and initial conditions p(x, 0) = p0(x) and v(x, 0) =
v0(x). For the case µ(x) = ν(x) these may be solved analytically; in that case, at time T = 2L

ICSV24, London, 23-27 July 2017 3
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it can be shown that p(x, T ) = e−2ap0(x) and v(x, T ) = e−2av0(x), where a =
∫ L

0
µ(x) dx is the

cumulative damping seen by a wave traversing the domain.

We discretize Eq. (6) in space by dividing [0, L] into (N + 1) equally spaced points, xj = j∆x.

Introducing the derivative operator D given by ∆xPD = Q gives the discretized equations

∆xP
∂p

∂t
+ Qv = −∆xPMp, ∆xP

∂v

∂t
+ Qp = −∆xPNv, (7)

where M and N are diagonal matrices with diagonals µ(xj) and ν(xj) respectively.

One way to apply the boundary conditions v(0, t) = v(L, t) = 0 is by directly setting v0 = vN =
0. However, this may break the SBP property that we use below to ensure long-time stability. As an

alternative, we enforce the boundary conditions in a weak sense by forcing the right hand side of the

Eq. (7) with Simultaneous Approximation Terms (SATs [13]), derived by considering the incoming

and outgoing characteristics at the domain edges [12]. This leads to

∆xP
∂p

∂t
+ Qv = −∆xPMp− σ0v0e0 + σLvNeN , (8a)

∆xP
∂v

∂t
+ Qp = −∆xPNv − σ0v0e0 − σLvNeN , (8b)

where σ0 and σL dictate the strength of the forcing and are determined below.

3.1 Proof of stability of the SBP/SAT discretized problem

By using integration by parts on Eq. (6) we find a “conserved” energy,

d

dt

∫ L

0

1
2
p2 + 1

2
v2 dx = −

∫ L

0

µp2 dx−

∫ L

0

νv2 dx. (9)

For an SBP operator, by applying the inner product 〈u, v〉P to Eq. (8) and using the SBP prop-

erty (Eq. 5) we may derive the discrete analogue of Eq. (9),

d

dt

(

1
2
〈p,p〉P + 1

2
〈v, v〉P

)

= −〈p,Mp〉P − 〈v,Nv〉P − (1− σL)pNvN + (1− σ0)p0v0 − σ0v
2
0 − σLv

2
N . (10)

For guaranteed long-time stability we require the right hand side of Eq. (10) to be always non-positive,

and therefore we have no choice but to take the SAT strengths to be σ0 = σL = 1.

3.2 Filtering

It is common in CAA simulations to use low-pass filters to remove spurious under-resolved waves

from the solution that can lead to instability. While the SBP derivatives give provable stability, as

shown above, for a fair comparison all results here use filtering, with the filtering strength tuned to

give the best numerical accuracy. The two filters used here are described in detail in Ref. 6. A wide

19-point 16th order symmetric filter labelled s164 is used as a “perfect” filter with errors far smaller

than those of the derivative. A standard 7-point 6th order symmetric filter labelled s7 is also used as

an example of a filter used in practice. These are applied every timestep with a strength S∆t, so that

the unfiltered solution f becomes the filtered solution (1− S∆t)f + S∆tFf , where F is the filter.

Since these filters are symmetric, they cannot be applied at the boundaries of the domain. Rather

than complicating matters by using asymmetric or optimized filtering [e.g. 14], no filtering was per-

formed close to the boundaries. This should still give sufficient filtering, as waves move with velocity

1 and therefore spend very few timesteps close to the boundary in the unfiltered region.

4 ICSV24, London, 23-27 July 2017
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Figure 1: Plot of error (defined in Eq. (11)) against points per wavelength for the “perfect” filter s164 and

time integration RK45. (a) applies the boundary conditions directly, while (b) applies the boundary conditions

weakly using SATs. The derivative schemes are listed in Table 1. Only schemes which are stable are plotted.

3.3 Parameters and Error Quantification

We use the same parameters as in Ref. 6: the domain length is L = 24, and the damping µ(x) =

ν(x) is smooth and such that µ(x) 6= 0 only for x ∈ (201
2
, 231

2
) with

∫ L

0
µ(x) dx = 6. Initial

conditions are p0(x) = v0(x) with a wave packet of wavelength 1 with amplitude smoothly varying

and nonzero initially only for x ∈ (0, 20). As described in Ref. 6, these parameters are chosen to

be indicative of decay rates and propagation distances typically found in CAA simulations. Since

µ(x) = ν(x), at time T = 48 the wavepacket should have reflected from both ends of the domain,

and comparing with the analytic solution gives an L∞ error measure

E = sup
x∈[0,L]

{

∣

∣p(x, T )e12 − p0(x)
∣

∣,
∣

∣v(x, T )e12 − v0(x)
∣

∣

}

. (11)

4. Results

To isolate errors due to the spatial derivative, we first use a “perfect” time integrator and a “perfect”

spatial filter. The spatial filter used is the 19-point s164 filter referred to in Section 3.2 above, while

an adaptive timestep Runge–Kutta (RK45) with a required accuracy of 10−8 was used for the time

integration. Figure 1(a) plots the error E from Eq. (11) against the number of points per wavelength

N/L when applying the boundary conditions directly. Results were calculated for all derivatives listed

in Table 1, with only the three plotted converging. The only non-SBP derivative that converged is the

mo7s scheme, which uses lower-order symmetric stencils near the boundaries, although it gives the

worst convergence rate of only O(∆x3), as expected. The diagonal SBP derivative FHZ7sbp gives

the best performance with an O(∆x6) convergence rate, which is better than the theoretical O(∆x4)
rate expected, possibly due to errors being dominated by the interior of the domain in this case. The

CGA7sbp SBP operator failed to converge due to the use of directly applied boundary conditions.

Figure 1(b) shows the results when the boundary conditions are applied in the weak SAT sense.

All SBP derivatives converged for this case, as expected from the stability proof in Section 3.1. Again

the mo7s is the only non-SBP derivative to converge, with a poor O(∆x3) convergence rate. The

DRP7sbp scheme converge at its expected O(∆x4) rate, while the FHZ7sbp and CGA7sbp schemes

ICSV24, London, 23-27 July 2017 5
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Figure 2: Error (Eq. 11) against PPW for the “real-world” filter s7 and time integration LDDRK56 at CFL =

0.8. (a) and (b) plot the same data on different scales. SAT boundary conditions are used for the SBP schemes,

direct boundary conditions are used for the others. The derivative schemes are listed in Table 1.

both converge at the rate O(∆x6). There appears to be no disadvantage to imposing the boundary

conditions in a weak SAT sense, while this has the advantage over the direct application of boundary

conditions that it ensures long-time stability (see Section 3.1).

From Fig. 1 it is clear that, while the SBP DRP scheme is stable, there is no advantage to using an

optimized DRP scheme above a maximal order one such as CGA7sbp or FHZ7sbp, as was found for

the period case [6]. Indeed, all schemes plotted so far have the same computational cost.

We now consider a real-world case using the standard 7-point 6th order filter s7 (described in Sec-

tion 3.2) and the fixed-timestep LDDRK56 time integration [15] with a CFL of 0.8. Boundary con-

ditions are imposed using SATs for SBP derivatives, and directly for non-SBP derivatives. Figure 2

plots the error against points per wavelength in this case. Figure 2(a) shows that the non-SBP schemes

fail to converge, with the exception of the mo7s scheme mentioned above. This is unfortunate, par-

ticularly considering that the DRP7+BBMB and BB11+BBMB schemes use asymmetric stencils at

the boundaries particularly designed for wave propagation problems [8] and that the K+THK3,7 and

K+THKp3,7 schemes use asymmetric stencils at the boundaries designed with stability in mind [9].

The mo7s scheme again converges with a slow rate O(∆x3), and the DRP7sbp scheme again con-

verges at its theoretical rate of O(∆x4). Both the CGA7sbp and FHZ7sbp schemes initially converge

at O(∆x6), before eventually converging at O(∆x4) as the LDDRK56 accuracy becomes the lim-

iting factor. Nevertheless, there is a clear accuracy advantage to using the CGA7sbp and FHZ7sbp

schemes. There is again no advantage to using an optimized DRP scheme over a maximal order one.

5. Conclusion

The performance of several finite difference schemes has been compared using a problem involv-

ing wave propagation over many wavelengths, exponential damping over a few wavelengths, and

wave reflection by boundary conditions. Many finite difference schemes proved unstable due to their

choice of asymmetric stencils at the boundaries; this is disappointing, since several had been specifi-

cally designed for use at domain boundaries [e.g. 8, 9]. In contrast, a class of finite difference schemes

with the Summation By Parts (SBP) property are provably stable and were found to perform well.

Summation By Parts (SBP) schemes have received considerable attention [see, e.g., 11, 12]. In

6 ICSV24, London, 23-27 July 2017
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addition to provable stability they have other beneficial properties, such as the superconvergence of

functionals, and their behaviour at the boundaries between two numerical grids. Because of their

provable stability, no filtering was needed to stabilize them, although here some filtering was found

to enhance their performance. While a number of SBP schemes were found to converge when the

boundary conditions were imposed directly on v0 and vN , this is not guaranteed in general, and instead

other techniques that preserve the SBP property should be used, such as Simultaneous Approximation

Terms (SATs). Use of these was necessary for the stability of one SBP scheme, and was not of any

significant detriment to any. Note that the strength of the SATs must be exactly specified for the test

case used here, as either too weak or too strong would break the provably stable behaviour.

As part of this study, a new SBP scheme was created whose internal symmetric stencil is that

of the 7-point 4th order DRP scheme of Tam & Shen [10]. This boundary closure scheme, given

in appendix A, may be used for any 7-point 4th order internal scheme by altering the coefficient d1.
Being an SBP scheme it is provably stable, unlike the DRP optimized boundary closure proposed

by Berland, Bogey, Marsden & Bailly [8] which was always unstable for the test case used here.

However, DRP schemes are known to perform poorly with non-constant-amplitude oscillations [6],

and this was confirmed here by the poor performance of the DRP7sbp scheme in Figs 1–2.

Diagonal SBP schemes (where P is diagonal) are important when mapping curvilinear physical

coordinates onto a rectangular equi-spaced computational grid [16]. The only diagonal SBP scheme

considered here is the FHZ7sbp scheme of Del Rey Fernández, Hicken & Zingg [12, D
(6,3,:)
1 , ap-

pendix A]. This scheme uses a 7-point 6th order stencil in the interior, but is only 3rd order accurate

for the 6 points closest to the boundary. Nevertheless, in practice it attained 6th order accuracy on the

test case used here. This might be due to to the major source of error being within the domain interior

for this case, and could not be expected in general. The CGA7sbp scheme uses the same interior

stencil but retains theoretical 6th order accuracy overall, although it is not a diagonal scheme.

Realistic 3D CAA simulations contain a wide range of wavelengths and decay rates, especially

near boundaries. Since SBP schemes perform so well here, and add little if any complication to

the numerical implementation, their use is recommended. It is unlikely that optimized asymmetric

boundary stencils [e.g. 8, 9] would show any significant advantage over SBP schemes, since wave

amplitudes at boundaries are often non-constant, and even then any advantage in resolution would

be outweighed by the major disadvantage of their inherent instability. Despite only using a 4th order

time integration, the 6th order finite difference schemes CGA7sbp and FHZ7sbp significantly outper-

formed their 4th order counterparts (see Fig. 2), particularly for relatively few points per wavelength,

and so their use is recommended. The FHZ7sbp scheme has the advantage of being diagonal, while

the CGA7sbp scheme has the advantage of being provably globally 6th order accurate. Even in these

best cases, at least 16 points per wavelength were needed for an answer accurate to 1%.

A. An SBP closure for 7-point DRP schemes

We find an SBP scheme whose internal stencil is the 7-point 4th order DRP scheme of Tam &

Shen [10]. In order to retain global 4th order accuracy we require at least 3rd order accuracy near the

boundary. We take a linear combinator of two SBP schemes. The first is a 4th order scheme with 3rd

order accuracy near the boundary given by Del Rey Fernández, Hicken & Zingg [12],

P4 =


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






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



(12)
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We construct a similar SBP scheme which is 3rd order accurate near the boundary and 6th order

accurate in the interior, given by

P6 =

























829
3240

601
6480

0 0

601
6480

4631
3240

−1189
3240

49
540

0 −1189
3240

865
648

−115
1296

0 49
540

−115
1296

3319
3240

1
. . .

























Q6 =

























−1
2

9347
12960

−943
3240

181
2592

−9347
12960

0 4037
4320

−149
648

1
60

943
3240

−4037
4320

0 10067
12960

−3
20

1
60

−181
2592

149
648

−10067
12960

0 3
4

−3
20

1
60

−1
60

3
20

−3
4

0 3
4

−3
20

1
60

. . .
. . .

. . .
. . .

. . .
. . .

. . .

























(13)
The SBP closure of the 7-point DRP scheme [10] is obtained by setting

P = (9− 12d1)P4 + (12d1 − 8)P6 Q = (9− 12d1)Q4 + (12d1 − 8)Q6 (14)

where d1 = 0.77088238051822552. This scheme is denoted “DRP7sbp” in Figs 1–2.
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