Draft v0.4
Gravitational Wave Bursts: Characterization of Transients in LIGO
Interferometer Data

Ed Brambley
Mentor: Dr. John Zweizig
Co-Mentor: Dr. Szabolcs Marka

May 2, 2004

This report details methods of detecting and categorizing transients in small sections of data. Tran-
sients are short lived, dramatic variations in a signal. Typical signal lengths are 10 to 60 seconds of data,
sampled at 16384Hz.

A spectrographic transform was used to allow consideration of the time evolution of power in individ-
ual frequency bands. Various statistical procedures were then considered for detecting transients within
these bands, and methods involving Likelihood Ratio testing based on Gamma and Normal distributions
was selected. Finally, post processing of the results from each frequency band yielded a concise list of
possible transients, together with their start and end times, total power, and frequency composition.

The final algorithms demonstrated their ability to successfully detect and classify transients in LIGO
interferometer data. Problems with badness of fit were evident between 1-3kHz, and a large number of
false signals were generated at isolated frequencies 4320Hz and 7168Hz (both +16Hz). The latter two
frequencies coincide with a dramatic increase in power compared to neighboring frequencies, and did not
correspond to any previously known noise sources.

1 Introduction

Previous algorithms implemented to detect transients in LIGO data have been based on finding outliers
in filtered time series, assuming a Normal distribution. Such methods include the glitchMon and glitch
trigger generation programs. However, it was desired to further characterize the transients indicated by
these triggers.

This report details the progress of a SURF investigation into methods of searching for and characterizing
transients, in both frequency and time. It bears similarities to the work of Stuver [1] on BlockNormal
analysis, and to the work of Sylvestre [2] on spectrographic processing of LIGO data.

2 Implementation

2.1 Pre-Processing

It was considered that each transient could be localized to a small frequency range, which implied far
better results could be expected from considering several frequency ranges separately. This was implemented
by a spectrographic transform, which involved Discrete Fourier Transforms (DFTs) the data in blocks which
overlapped by 50%, using a Hanning window. Typically these blocks were 512 samples in length, which for a
16384Hz sampling frequency, gave a time resolution of 16ms and a frequency resolution of 32Hz. Statistical



analyses were performed independently on the time series of power in each frequency, or in some cases on
the time series of real and imaginary parts of the DFT coefficients.

The power time series for each frequency is necessarily positive, but was not in general distributed
according to a Normal distribution. To apply Normal analysis to these data, a Box-Cox transform was
considered. This transform is a non-linear, smooth, monotonically increasing scaling of positive data —
see A.1 for details.

2.2 Statistical Analysis

Previous analyses used by LIGO fitted a distribution to the data, and then looked for outliers on this
distribution. It was decided for this project to investigate a different method, motivated partly by the
BlockNormal analysis.

Given a section of data, the idea was to search for the interval (the possible transient) who’s distribution
differed the most from the rest of the data (the background noise). Unlike the BlockNormal, where sections
at the beginning and end of the data were allowed to have different distributions, this method assumed such
sections to have the same background distribution, and therefore did not have problems with edge effects.
This search was then repeated on both “background noise” sections either side of the proposed transient, to
search for other transients in the data.

For parametric distributions, it was decided to use classical statistics rather then the Bayesian statistics
used for the BlockNormal analysis, as this would avoid inaccuracies introduced by specifying prior distribu-
tions. An interval test based on the Log Profile Likelihood Ratio statistic was used for this analysis (see A.2
for details). Tests based on this were termed Likelihood Ratio Interval Analysis tests.

Various distributions were considered for use with such a test. If the original time-series data were to
have a Normal distribution, then the real and imaginary parts of the DFT coefficients would be expected
to have a Normal distribution. This would suggest that the power (proportional to the sum of the squares
of the real and imaginary components) would have a scaled x3 distribution. The Gamma distribution is
a generalization of a scaled x? distribution, and the corresponding shape parameter for a x3 is a« = 1. A
Weibull distribution with shape parameter o = 1 also has identical form.

The distributions considered for modeling the time series of power in each frequency band were the
Normal distribution (both with and without a Box-Cox transform), the Gamma distribution, and the Weibull
distribution. In addition, the Di-Normal (two independent Normal distributions) and Bivariate Normal
distributions were considered for modeling the time series of real and imaginary parts of the DFT for each
frequency band. See A.3 to A.6 for details. In addition to these distributions, two others were investigated;
the Shifted Gamma and the Gamma/Normal distributions (the details of which are given in A.7 and A.8
respectively). However, these distributions or their approximations gave identical results to the Gamma
distribution, and so are not considered further.

As well as the parametric tests above, two non-parametric tests were considered. These compared the
distribution of data within an interval to the distribution of data outside it, and gave a statistic indicating
how different the two samples are. The major advantage of these tests over the parametric tests was that
they did not assume any kind of distribution for any of the data. The two tests considered were the
Kolmogorov-Smirnov and Anderson-Darling tests. See A.9 for details.

2.3 Post-Processing

All the analysis techniques above were applied independently to each frequency from the spectrographic
transform. Post-processing was therefore needed to amalgamate blocks found in each frequency into a concise
list of candidate transients, together with their frequency components. In order to do this, a histogram was
generated, with time along the x axis, and the number of frequency bands for which this time lay in a possible
transient along the y axis. A candidate transient was then considered to be an interval of time for which
this histogram was non-zero, and to consist of those frequencies contributing to the histogram anywhere in
this interval.



The power of the possible transient in each frequency band was considered to be the average power during
that time interval, minus the average power outside any signal in that frequency band. These powers were
then summed to give the total power in the candidate transient, and its relative frequency power composition.

2.4 Trigger Monitoring

A trigger monitor called BramMon was written to apply the above to categorize transients indicated by
triggers. It had a per frequency threshold that enabled “noisy” frequencies that gave lots of false signals
to be ignored, without compromising sensitivity for other frequencies. The thresholds were estimated from
LIGO data using a second program called BramThreshold, by analyzing the data in several small blocks
and finding the mean and standard deviation of the significance in each frequency; the threshold for that
frequency was then set to the mean plus some multiple of the standard deviation.

3 Results

The data samples used throughout this section are described in Appendix B. Samples H1 and H2 were
taken from the 4km Hanford interferometer, and where chosen because they each contained a large trigger as
detected by glitch, about 30 seconds into each sample. Both of these samples were part of LIGO 2 science
run 2.

3.1 Goodness of Fit of Parametric Distributions

To test the goodness of fit of the various parametric distributions considered to the data, a generalized
Kolmogorov-Smirnov goodness of fit test was used. This test is similar, but not identical, to the K-S two
sample test discussed above. For details, see A.10.

3.1.1 Goodness of Fit for Samples H1, H2, and S1

Figures 1-8 show how good a fit the three distributions considered were to the time series of power in
various frequency bands, for both LIGO and simulated data. As is clear from Figures 1 and 2, none are
Normally distributed. The Gamma and Weibull distributions both provided a good fit for the majority of
the LIGO data, and the entirety of the simulated data. The Gamma and Weibull distributions both had
worse between 1-3kHz, although of the two, the Weibull performed much better.

Figures 5 and 6 show the values of a and (§ used to generate Figure 3. As can be seen from Figure 5, the
optimal « value was very close to the expected value of o = 1, which corresponds to a scaled x3 distribution.
It deviated from this slightly at very low frequencies and between 1kHz and 3kHz, and dramatically at 544Hz
and 4320Hz; this deviation was almost identical in both Samples H1 and H2.

Figures 9 and 10 show the results of pre-processing each frequency’s power time series by a Box-Cox
transform. They demonstrate that the transform successfully manipulated all frequencies of both LIGO and
simulated data to be a good fit to a Normal distribution.

Figures 11-13 show the goodness of fit of a Normal distribution to both the real and imaginary parts of
the DFT coefficients, for various frequencies. They show that the problematic range of 1-3kHz still remained,
but was better fitted than the power time series fits above. The majority of the frequency range was fitted
very well.

In all of the above except the Weibull and Box-Cox’ed Normal distributions, a particularly bad fit when
compared to neighboring frequencies was seen in the 4320Hz power time series. Figure 21 shows this to have
coincided with dramatically higher power compared to neighboring frequencies.



3.1.2 Goodness of Fit for Other Interferometers

Figures 14-17 show similar graphs to those commented on above, for the Hanford 2km and Livingston
interferometers. Of these distributions, the Di-Normal seemed to show the best fit, and the Weibull distri-
bution also showed a better fit than the Gamma distribution.

Figures 14 and 15 show that both interferometers gave a bad fit to both Weibull and Gamma distributions
in the main sensitivity band up to about 1kHz. Figures 16 and 17 show that the Di-Normal distribution was
a good fit in these regions, strongly suggesting its use over the other two algorithms for these interferometers.

Figures 14 and 15 also demonstrate that the problematic area for the Hanford 4km interferometer between
1kHz and 3kHz was not present in the Hanford 2km interferometer, and for the Livingston interferometer,
the range was 4kHz—-6kHz.

3.2 Transients Responsible for the Triggers

Figures 18 and 19 show the power time series at 288Hz for Sample H1; Figure 19 is a Box-Cox transform
of Figure 18. The anomaly probably responsible for the trigger is clearly visible about 30 seconds into the
sample, and a second transient is shown about 3 seconds later. Figure 20 shows a closeup of these transients,
and demonstrates that each one consisted of three, closely grouped peaks.

From Figure 19, the first transient can be seen to lie about 7 standard deviations off the mean (at 0) in
the Box-Cox transformed power time series; this is clearly significant. However, the amount by which the
transient is larger than the surrounding noise was far more dramatic in the non-Box-Cox transformed time
series, which suggested that accurately modeling the power distribution directly would lead to better results
than using a Box-Cox transform and then assuming a Normal distribution.

These candidate transients are the only ones discovered in Sample H1 that may have caused the trigger,
and the fact that the largest occurred at exactly the time suggested by the trigger adds weight to this being
the cause.

No candidate transient was found in Sample H2 that could have caused a trigger at the appropriate time.

3.3 Likelihood Ratio Interval Analysis Results using a Normal Distribution

Figures 22—27 show the results of a Likelihood Ratio Interval Analysis based on a Normal distribution.
They plot the Log Profile Likelihood Ratio statistic against each frequency band considered. In these and
following analyses of the LIGO data samples, false signals were more prevalent between 1-3kHz, and at
isolated frequencies 4320Hz and 7168Hz. The 1-3kHz and 4320Hz problems were also apparent as a bad
fit to several distributions, but the fact that they were present in Figures 23 and 25 despite the Box-Cox
transformed data being well fitted by a Normal distribution for all frequencies indicated that a bad fit
was not the only cause of these false signals. Figure 21 shows both the 4320Hz and 7168Hz frequencies
to contain a significantly higher power than their neighboring frequencies. A possible cause for problems
in these frequencies would be non-stationarity, where the parameters of the underlying distribution for the
noise vary with time.

Figure 22 shows a hugely significant peak centered on 288Hz, which corresponds to the first of the
anomalies shown in Figure 18. Figure 23 also picks out this frequency as being significant, but much less so,
and in addition shows false signals at 4320Hz and 7168Hz.

Figure 24 and 25 show similar results for Sample H2. None of the peaks shown in either of these figures
correspond to an anomaly at the right time to have caused the trigger.

Figures 26 and 27 show the same graphs for the simulated data. Figure 26 demonstrates how well this
algorithm can work in an ideal environment, despite the Normal distribution nowhere being a good fit.
Figure 27 also shows the same effect of a Box-Cox transform as Figure 23 — that the transform reduces the
significance of dramatic outliers, and hence that just being a better fit to the distribution assumed does not
guarantee better results.



3.4 Likelihood Ratio Interval Analysis Results for Other Distributions

Figures 28-33 show similar results to the previous section for three different distributions; the Gamma,
the Di-Normal, and the Bivariate Normal. Of all the distributions considered, the Gamma and Di-Normal
Likelihood Ratio Interval Analyses seemed to perform the best. While the peaks shown in these figures
were lower than for the Normal distribution, so was the background level of noise. The 4320Hz and 7168Hz
frequencies also stood out far more using these distributions, which suggested that their sensitivity was
greater.

From Figures 29, 31, and 33, it can be seen that the Di-Normal distribution gave a lower level of
background noise than the Bivariate Normal distribution, while still showing the same sensitivity. This was
because considering covariance between real and imaginary parts effectively equates to taking note of the
phase of the signal in addition to its power, and a phase change with no corresponding amplitude change
easily triggered a false alarm, while it was considered unexpected for a real transient to have had this effect.

Figures 28 and 29 show that both the Gamma and Di-Normal analyses successfully detected the 288Hz
transient shown in Figure 18. Of the two distributions, the Di-Normal seemed less susceptible to the 4320Hz

and 7168Hz frequencies, although the Gamma distribution showed less background noise by about a factor
of 2.

Figures 30 and 31 show similar results for Sample H2. Although the Di-Normal algorithm successfully
suppressed problems at 4320Hz, both methods gave significant false signals at 7168Hz. Once again, the
Di-Normal’s sensitivity seemed better, while the Gamma distribution’s background noise was lower.

Figures 32 and 33 show how the two methods performed in an ideal environment. Both methods suc-
cessfully picked out the transients to the same significance, but again the Gamma distribution’s background
noise was about half that of the Di-Normal.

The Weibull distribution was not considered for this analysis, as it would have taken approximately two
weeks of computer processing to generate results for the three samples considered.

3.5 Non-Parametric Interval Analysis Results

Figures 34-39 show the results of the K-S and A-D nonparametric tests. They plot the corresponding
maximum statistic against frequency. Figures 34-37 still show large false signals were generated at 1-3kHz,
4320Hz, and 7168Hz. Since neither test assumed any distribution, this demonstrated that problems for these
frequencies must have been due to non-stationarity.

For Figures 34 and 35, a local maximum can be seen at 288Hz. However, these peak are by no means
the largest, which occur at either 4320Hz or 7168Hz — results based on these tests would have therefore
ignored the “obvious” anomalies shown in Figure 18 in favor of false signals at 4320Hz and 7168Hz.

Figures 36 and 37 show similar graphs for Sample H2. Again, both are dominated by false signals at
4320Hz and 7168Hz.

Figures 38 and 39 show how the two tests faired on the simulated data sample. Both picked out the 1kHz
transient, but only the A-D test uncovered the 4kHz transients, and even then only just.

Generally, it appeared that the A-D test faired better compared to the K-S test, and that it showed better
sensitivity. However, both tests performed far worse than any of the parametric tests. This was probably
due to the non-parametric distributions only considering the rank order of the data points, rather than
their value, so that dramatic outliers were treated the same as marginal outliers. In addition, the empirical
distribution function tends to be inaccurate in the tails of the distribution, as this is where the fewest points
are; however, this is where the distribution is needed to be most accurate for the detection of transients.



3.6 Post-Processing Results

Appendix C contains both the raw and post-processed results of recursive application of the Likelihood
Ratio Interval Analysis for the Normal, Di-Normal, and Gamma distributions. The threshold levels used to
generate these results were guessed so as to provide a reasonable quantity of data for post-processing. The
values used in practice would have to be estimated by running the algorithms on large quantities of LIGO
data.

Tables 1-9 show the raw results before post-processing, while Tables 10-18 list the corresponding post-
processed results.

3.7 Trigger Monitor Results

Appendix E lists the output of BramMon on a section of LIGO data from science run 2 which include both
Samples H1 and H2. The significance listed in these results is the ratio of the significance generated by the
appropriate algorithm to the threshold level used. In E.1 and E.2 this threshold level was constant for all
frequencies, whereas in E.3 the thresholds generated by BramThreshold and shown in Figure 40 were used.
Whether using such variable thresholds provides better results is unclear.

A start time relative to the epoch start time is shown for each candidate transient found, together with
a GPS time. This relative start time would be approximately in the middle of the interval (so at about 5
seconds for E.1 and E.3, and about 30 seconds for E.2) if it were the cause of the trigger.

4 Conclusion

Of the methods considered, the Likelihood Ratio Interval Analysis based on Normal, Di-Normal, and
Gamma distributions performed the best, based both on the ability to detect transients over background
noise, and on the speed of calculation. Of these, the Di-Normal distribution provided the best fit to the
data samples considered, the Gamma distribution gave the lowest level of background noise, and the Normal
distribution gave the most pronounced detection of an anomaly obvious to the eye. These three methods
were used to detect a candidate transient in a section of Hanford 4km science run 2 data that was almost
certainly the cause of a large glitch trigger. The candidate transient was best classified assuming a Normal
distribution, yielding a GPS start time of 729337275.15, a duration of 220ms, an average excess power of
3.305 x 1073 Units?, and a frequency range of 176Hz-400Hz. A second sample of Hanford 4km science run
2 data with a similarly large glitch trigger was also analyzed using these methods, but all failed to detect
the cause of the trigger.

The Weibull distribution was demonstrated to give a better fit than both the Normal or Gamma dis-
tributions to the time series of power for each frequency, but was too numerically expensive to perform a
Likelihood Ratio Interval Analysis with. An approximation to overcome this was attempted by estimating
maximum likelihood estimators from moments of the data, but this yielded a worse fit than the Gamma
distribution.

A Box-Cox transform was shown to successfully fit all frequencies to a Normal distribution, but at the
cost of dramatically reducing the significance of outliers. The extend of this reduction meant that better
results were obtained without the transform.

The Normal, Di-Normal, Bivariate Normal, Gamma, K-S, and A-D analyses were implemented in the
trigger monitor BramMon, with the ability to use per-frequency thresholds. A threshold generation program
called BramThreshold was written to provide a means of estimating thresholds from LIGO data.



5 Possibilities for Further Investigation

This report is the product of a SURF placement, the duration of which is 10 weeks. If time had permitted,
some of the following would have been investigated:

e High-pass Filtering and Strain Calibration: This report used the raw data provided by the LIGO
observatories. While strain calibration should not have any noticeable effect on the analysis involved
here due to the comparably short analysis timescales, it would give more meaning to the power shown
in the results. High-pass filtering would be useful in removing some of the bleeding in low frequencies
of interest from the even lower, noisy frequencies present in LIGO data. This should help give better
sensitivity of the algorithms at low frequencies.

e Optimize Parameters: The parameters used to generate the data here (such as length of data either
side of a trigger to analyze, size of DFT blocks in the spectrographic analysis, etc) were chosen after a
brief search because they gave good results. A detailed study of the effects of these parameters would
be useful to ascertain what their optimal values are.

e Suitable Threshold Values: Whether the variable thresholds generated by BramThreshold provide
better results than using a fixed threshold is unclear from this investigation, and would need further
study to ascertain an optimal threshold estimation algorithm.

e Overcoming Non-Stationarity: So far, the null and alternative hypotheses have considered one
and two sections of data respectively, each of which having distributions invariant with time. A
simple extension would be to allow the parameters in both hypotheses to be “slowly varying” across
the sections of data considered — this should help reduce or eliminate non-stationarity problems.
However, a difficult question is how to characterize and implement “slowly varying”.

¢ Rice Distribution: Sylvestre [2] suggested that a Rice distribution provided a good model for power
time series of LIGO data, with parameters estimated using moments (as was considered for the Weibull
distribution in A.5). It is not possible to implement a Likelihood Ratio Interval Analysis based on this
distribution in less than complexity O(n?), even using the moment approximation, although how fast
such a method would be in practice is hard to tell.

e Outlier Analysis: This report mainly concentrated on detecting intervals of interest. However, the
good fit of the Gamma, Weibull, Box-Cox transformed Normal, and possibly Rice distributions could
be used for Outlier Analysis. This would involve fitting one of these distribution to the whole of each
frequency’s time series, possibly using methods described above, and then searching for outliers on this
distribution. Post-processing would need to be extended so that anomalies that are close but do not
overlap in time are grouped. Non-stationarity would probably still prove to be a problem, but to less
of an extent, and could well manifest as missed transients rather then false signals.

e Wavelets: The purpose of the spectrographic transform was to find a representation of the data where
possible transients were concentrated in relatively few data segments, but where background noise was
spread out. Wavelets could possibly offer an even better transform, since they are localized both in
time and frequency. This would lead to better results with fewer false signals, provided distributions
could be found which fitted the wavelet components well.
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A The Mathematics

A.1 The Box-Cox Transform

The Box-Cox [3] transform is a non-linear scaling of positive data to better fit a Normal distribution.
The transformation is defined as N
=1
log(z) forA=0

where A is a real parameter. It can be seen to be continuous in A, and smooth and monotonically increasing
in x.

If Y; = fu(X;), and the Y;’s were independent and Normally distributed with common mean g and
variance o2, then the X;’s would have p.d.f.
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where n is the number of random variables, y; = f(x;), and

Zyi Syy = Z(yz - g)2 (3)

The maximum likelihood estimator (m.l.e.) for A is therefore the value of A for which
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g:
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i=1
attains its maximum.

When used, the Box-Cox transform was applied to each frequency’s power time series separately. For
each frequency, the maximum likelihood estimate for A was calculated by minimizing (4) numerically, to 4
significant figures.

A.2 Likelihood Ratio Interval Analysis

Let & be an n dimensional vector denoting the data, and let z; denote the i** data point. Write (¢, d)
for the vector (zy, zy1,...,%114—1), and write x*(¢,d) for all data points in @ not included in x(t,d). This
algorithm assumes a probability distribution function (p.d.f.) f(x|@), with parameters 6. For example, f
may be a Normal distribution p.d.f., and then @ = (u,02). The shorthand

flx) = sup f(z |6) (5)

is used for clarity.
The null hypothesis (Hp) is that all the data come from one common distribution.

The alternative hypothesis (H;) is that the data come from two independent distributions, with one
distribution for a small interval of the data x(t,d), and the other distribution for the rest.

The log Profile Likelihood Ratio statistic is therefore

L(x) = 2log




with the values of t and d for which the supremum is attained being the m.l.e.’s for the interval of interest.
Under Hy, L(x) tends to be small, whereas under Hy, larger values of L(x) indicate more evidence in support
of an inserted interval of a different distribution.

The above was implemented by searching though values of ¢t and d, with d being restricted by a minimum
and maximum interval size. If calculation of f (z) can be done in constant time at each step (for example,
by using the moments of x(¢,d), which can be updated from the moments of x(t,d — 1) or «(t — 1,d) in
constant time), then the whole algorithm is of complexity O(n).

Various distributions that were used with this method are discussed below.

A.3 The Normal Distribution for Interval Analysis

This method uses the Likelihood Ratio Interval Analysis described previously, using for f the p.d.f. of
Normal, independent, identically distributed random variables. That is to say,

 Sue (T — u)?}
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It follows that

f) = (ﬂ)/ o)

n

Since this only depends on the sum and the sum of the squares of the data (i.e. the moments), lengthening
or moving the interval being analyzed by one point simply requires at most two data points being subtracted
from one total and added to another, and hence f may be calculated in constant time.

A.4 The Gamma Distribution for Interval Analysis

If the original time series data were distributed Normally, then the coefficients of the DFT would also
be distributed Normally. Hence, the power (which is proportional to the sum of the squares of the real
and imaginary components of the DFT) would be distributed as a scaled x3 distribution. The Gamma
distribution is a generalization of a scaled x? distribution, and the above would correspond to a shape
parameter o« = 1. This motivated the use of a Gamma distribution.

This method again uses the Likelihood Ratio Interval Analysis above, this time with f being the p.d.f.
of independent, identically distributed gamma random variables. This gives

no 2 a—1 efnﬁ:i
flalas) = L (10)

It follows that

flx) = F((li)” exp {n@ <logj - 1) +(@-1) ;Ingl} (11)
where & is given by

1 n
logd — ®(&) =logz — = » logz; =e' 12
og & (&) =logZ n;og:ﬁ e (12)

and @ is the digamma function, which is the derivative of the log of the gamma function.
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Once again, since the above only depends on the sum and the sum of the logs of the data, f may
be calculated in constant time. However, computation of & is computationally quite expensive. A good
approximation to (12) in the range of interest is

& =~ exp {al® + bl* + cl + d} (13)
where
a = —0.00560202 b =0.0143161 c = —0.872786 d = —0.484827 (14)

This approximation was used for the results in this report.

A.5 The Weibull Distribution for Interval Analysis

Another distribution similar in shape to the Gamma distribution is the Weibull Distribution. When its
shape parameter a = 1, the distribution is identical to the Gamma distribution with o = 1.

The Weibull Distribution has p.d.f.
—no a-l :L.Z “
f@laB) =a"g (TJa:)  exp {— > (3) } (15)
Which gives

where

and & is a solution to

As a — 0, g(a) — —o0, and as a — 00, g(a) — max{logz;} — = " logz; > 0. The derivative of g is

Z Z (log(:ri) — log(mj))Qx?x}’
=l + 150 (19)
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Hence, g(«) is shown to be strictly increasing, so equation (18) has exactly one solution.

g'(a) =

This was implemented by using a numerical search for &. Unfortunately, not only is this search slow, it
also has complexity O(n), giving the overall Likelihood Ratio Interval Search a complexity of O(n?), which
is far slower than the other parametric searches considered. An attempt to evaluate f in constant time was
made by approximating & and B using moments. The raw moments of a Weibull distribution are

py = pr(l+a™t) (20)
py = [T(142a7") (21)
which suggested using the approximation
R LSy
B=" (22)
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where & is the solution of

h(a) =logT(1+2a™ ") —2logT'(1+a™ ') =log <% Zxﬁ) — 2log <% Z:z:z> (23)

A reasonable approximation to h(«) is

1
hla) ¥ ——— 24
(@)~ (24)
where

a4 —=e 05 b — o—0-3265 (25)

This gives

1/2
1 4a b

v — B2+ - — 26
“~ % ( log (L 3" 2;2) — 2log (%Zm») 2a (26)

Since equations (22) and (26) involve only the sum and sum of the squares of the data, they can be used to
approximate f in constant time.

Unfortunately, approximating & and B using moments caused the Weibull distribution to show a much
worse fit to the data than the correctly calculated values, to such an extent that the Gamma distribution
became a better alternative. Hence, this method of approximating & and ﬁ was abandoned; the results
shown in this report were generated using the correctly calculated f.

A.6 The Di-Normal and Bivariate Normal Distributions for Interval Analysis

As noted above for the Gamma distribution, if the time series data were Normally distributed, then the
individual real and imaginary components of the DFT would also be Normally distributed. This method of
analysis uses the Likelihood Ratio Interval Analysis on the time series generated by the real and imaginary
parts of the DFT coefficients of the spectrographic transform; each frequency is considered independently.

Write @ for the series of real parts and y for the imaginary parts. In both the Di-Normal and Bivariate
Normal distributions, it is assumed that each data point is independent from all other data points, apart
from possibly the corresponding real or imaginary part with the same index.

For the Bivariate Normal distribution, the real and imaginary parts are allowed to be correlated. This
yields a p.d.f.

—n/2 7
2 2 — (472 (5252 — 52 R 27
f(m7y|ﬂlao-13,u'25o—27012) ( 4 (0102 012)) exp 2(0_%0_3 _0%2) ( )
where
Z = 05 (Spa + (T — 11)%) 4 07 (Syy + 1§ — p12)*) — 2012 (Say + n(Z — p1) (7 — p12)) (28)
and

n

Sy = Z(xz - Z2)(yi — ) = leyz B % (Z xl) (Z y’) (29)
i=1 =1 =

=1

This gives
R Ar2e? —n/2
Fa) = (5 (S8 - 52)) (30)

As before, this only involves the sum and the sum of the squares of the two data sets, and the sum of the
cross terms, and hence f may be calculated in constant time.

For the Di-Normal distribution, the real and imaginary parts of each coefficient are assumed to be
independent, which forces 012 = 0 in equations (27) and (28). This produces

R An2e? -n/2

again giving f in constant time.
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A.7 The Shifted Gamma Distribution for Interval Analysis

If X has a Gamma distribution with parameters o and 3, then ¥ = d + X has a shifted Gamma
distribution with parameters «, 3, and d. The p.d.f. for a sample of n independent Shifted Gamma random

variables is L
g (s = d)) "o
L(a)™

f@l|a,B,d) = (32)

which gives

f@) =1 (=a.5.4) (33)

where

>
A a A €Xr; — dA
€T; — d
and d is the solution to the equation
1 z—d
Z Tr; — d 1 Z T; — d
Zw——x + D log(wi —d) =@ Zm——x
T; — d Tr; — d
This gives calculating f a complexity of O(n), which in practice takes longer than accurately calculating f
for the Weibull distribution.

log (35)

Similarly to the Weibull distribution, one possibility considered to calculate f in constant time was to
estimate &, 3, and d from the moments of the data. The mean (p), variance (02), and skewness (1) for a
Shifted Gamma distribution are

« « 2
=—+d 2= — = _ 36
o 3 + o 3 ! Ja (36)
which suggested using the approximation
7 = 25363?2 A Smc ~ 4S:cac3

where
1 3 2 33 1
Of course, Gamma random variables are never negative, which adds the constraint d < min{xy,..., &, }.

This approximation in practice gave a worse fit to the data than the non-shifted Gamma distribution!

Another approach considered was the crude approximation d = min{z1,...,z,}. This gave identical
results to the non-shifted Gamma distribution when applied to LIGO data.

A.8 The Gamma/Normal Distribution for Interval Analysis

A variant on the Gamma and Normal Likelihood Ratio Interval Analyses is the Gamma/Normal Interval
Analysis. For this, the null hypothesis (Hp) is that all the data have a Gamma distribution, and the
alternative hypothesis (H7) is that all but an interval have a Gamma distribution, while the data within
that interval have a Normal distribution.
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This gives a log Profile Likelihood Ratio of

sup [ fu (@(t, ) fy (2 (1, )
L(x) =2log Ld ~ (39)

fo()

where f, is f for a Normal distribution (see A.3), and fg is f for a Gamma distribution (see A 4).

In practice, this test gave identical results to the Gamma Likelihood Ratio Interval Analysis when used
on the LIGO data samples considered.

A.9 Kolmogorov-Smirnov and Anderson-Darling Interval Analysis

The Kolmogorov-Smirnov [4] test (referred to as the K-S test) is a non-parametric test that uses an em-
pirical distribution function from the data to estimate the underlying distribution. The test used here is the
two-tailed, two-sample test, described in A Knowledgebase for Extragalactic Astronomy and Cosmology [6].

The empirical distribution function for a sample x of n points is

n

Fo(t)=> Ilx; <t (40)

i=1

where I[test] denotes an indicator function, taking the value 1 if test is true, or 0 if test is false. The empirical
distribution function is therefore the cumulative probability function for drawing a point at random from
the sample .

The K-S statistic for testing if two data sets (denoted x and y, consisting of n and m points respectively)
are drawn from the same distribution is

K(e,w) = < { o [Fa(e) = Fyfo)|, max [Fal) - £y (a1)

This statistic would be zero for a perfect fit, and tends to be large for a worse fit. The critical values do not

depend on the distribution being sampled from, and are approximately 1.4 for a 95% confidence level, or 2.0
for a 99.9% confidence level.

The algorithm implemented scans through the data to find the interval with the largest K-S statistic, in
a similar manner to the Likelihood Ratio Interval Analysis. However, calculating the K-S statistic for each
interval has complexity O(n), so the total complexity of this test is O(n?), which is much worse than the
parametric tests above. Although noticeably slower, the K-S test still seemed to perform fast enough for 60
seconds of data to be usable.

The Anderson-Darling [5] test (referred to as the A-D test) is similar to the K-S test, but gives more
weight to the tails of the distribution. Denoting by @ Uy the sample consisting of all points in x and all
points in y, and by z;) the ith smallest element of x, the square of the A-D statistic is

A, 9)? = —n— 3 2 log (Fauy (w19)) +108 (1~ Fauy (#1-0))] (42)

i=1

This also yields a search algorithm of complexity O(n?), and in practice performed only slightly slower than
the K-S Interval Analysis.

14



A.10 Kolmogorov-Smirnov Goodness of Fit Test

To test how well a distribution with cumulative distribution function F'(x |6) fitted data @ (consisting
of n samples), a generalized Kolmogorov-Smirnov [4] goodness of fit test was used. This test is similar to
the K-S two sample test discussed above. Given an estimator é(a}) for 6, the generalized K-S goodness of
fit statistic is

K =/n max {‘% — F(z@ | 0(z)) ‘} (43)

1,.

The larger the value of K, the worse the fit, and a value of 0 indicates a perfect fit. The test is “generalized”,
as the classical K-S test does not allow F(x|6) to have parameters best fitted from the data. Allowing
this only changes the critical values, which then become dependent on the distribution being tested against.
From numerical Monte Carlo simulation, an approximate 99.99% confidence level for all the parametric
distributions considered was determined to be 1.4.

The estimator 6 used for the results in this report was the same estimator as was used for the Likelihood
Ratio Interval Analysis, so that the K-S statistic gave an indication of how well both the distribution and
the estimate of 8 performed during Likelihood Ratio Interval Analysis.

B Data Samples

B.1 Sample H1

Sample H1 was taken from the Hanford 4km Interferometer dark port (H1:LSC-AS_Q). It consisted of 60
seconds of data, starting from GPS time 729337245, and was chosen because a glitch trigger occurred 30.22
seconds into the sample with a strength of 7.94. This sample formed part of LIGO science run 2.

B.2 Sample H2

Sample H2 was similarly taken from the Hanford 4km Interferometer dark port (H1:LSC-AS_Q). It con-
sisted of 60 seconds of data, starting from GPS time 729337710, and was chosen because a glitch trigger
occurred 29.43 seconds into the sample with a strength of 6.84. This sample formed part of LIGO science
run 2.

B.3 Sample S1

Sample S1 was a 60 second sample of simulated data, with the following components:

e Normally distributed noise with variance 1.0 through out the sample.

e A 30Hz sine wave with amplitude 100 through out the sample.

e A 1kHz sine Gaussian centered at 31 seconds, with s.d. width 50ms and maximum amplitude 0.7.
e A 4kHz sine Gaussian centered at 25 seconds, with s.d. width 10ms and maximum amplitude 1.0.

e A 4kHz sine Gaussian centered at 26 seconds, with s.d. width 10ms and maximum amplitude 0.8.
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Frequency (in Hz) | Start Time (ins) End Time (ins) Significance

64 | 33.87 34.12 640.6
64 | 38.05 38.21 514.9
192 | 30.21 30.30 475.1
224 | 30.20 30.35 2934.
256 | 30.20 30.37 3899.
256 | 33.43 33.55 495.4
288 | 30.20 30.35 4024.
288 | 33.43 33.55 1638.
320 | 30.21 30.35 2536.
320 | 33.54 33.70 667.6
352 | 30.21 30.35 1482.
352 | 33.66 33.70 338.8
384 | 30.20 30.35 1461.
384 | 33.59 33.70 1256.
576 | 33.59 33.70 389.6
608 | 33.54 33.70 915.6
640 | 33.49 33.70 316.7
672 | 30.20 30.29 502.6
704 | 30.15 30.29 479.3
768 | 33.68 33.71 533.2
800 | 33.54 33.70 429.7
800 | 5.461 5.617 360.8
928 | ©5.742 5.867 365.1
960 | 5.727 5.977 573.7
1024 | 5.414 5.664 438.1
1056 | 5.555 5.773 711.2
1088 | 5.352 5.602 535.0
1088 | 5.633 5.883 385.1
1120 | 1.430 1.617 310.3
1216 | 1.398 1.648 322.2
1248 | 1.367 1.602 422.4
1280 | 5.555 5.805 382.6
1312 | 5.461 5.695 366.4
1376 | 5.430 5.680 573.9
1408 | 5.414 5.648 813.9
1440 | 5.414 5.648 502.7
1472 | 1.352 1.586 497.4
1504 | 1.336 1.586 434.6
1536 | 1.336 1.586 422.1
1536 | 5.336 5.586 337.8
1568 | 1.445 1.695 585.2
1632 | 5.336 5.570 422.8
1664 | 5.320 5.539 686.1
1664 | 5.664 5.914 362.2
1696 | 5.367 5.617 393.3
1696 | 5.773 5.930 619.3
1728 | 1.398 1.555 488.6
1728 | 5.773 5.977 324.7

Table 1: Results of recursively applying a Likelihood Ratio Interval Analysis, assuming a Normal distribution,
on Sample H1. A significance threshold of 300 was used. Continues on next page.
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Frequency (in Hz) | Start Time (in s) End Time (ins) Significance

1760 | 5.211 5.461 334.9
1824 | 5.430 5.664 623.2
1824 | 34.96 35.21 355.5
1856 | 5.523 5.773 691.2
1856 | 5.805 5.930 372.4
1856 | 34.96 35.21 399.1
1888 | 5.523 5.773 573.2
1952 | 5.523 5.773 336.6
1984 | 1.336 1.586 403.2
2016 | 1.383 1.617 452.5
2016 | 1.742 1.898 445.6
2048 | 1.367 1.617 343.6
2112 | 5.398 5.648 300.3
2144 | 1.352 1.555 576.7
2144 | 41.40 41.59 323.5
2240 | 5.430 5.680 356.3

Table 1 Continued.

Frequency (in Hz) | Start Time (in s) End Time (ins) Significance

0 | 42.68 42.93 328.2

32 | 42.68 42.93 428.0
64 | 42.66 42.91 480.9
64 | 39.73 39.98 420.0
64 | 43.74 43.98 334.3
64 | 33.05 33.21 366.9
96 | 42.66 42.91 365.7
992 | 57.52 ov.T7 377.6
992 | 35.16 35.41 439.0
1024 | 35.20 35.40 587.4
1152 | 35.21 35.46 334.2
1312 | 57.48 97.73 355.4
1408 | 35.24 35.49 342.5
1664 | 59.10 59.34 344.2
1664 | 57.38 97.63 343.2
1696 | 59.16 59.32 327.8
1792 | 59.18 59.30 302.0
1824 | 57.45 57.70 345.0
1856 | 57.55 57.80 404.7
2048 | 57.51 57.76 355.0
2496 | 28.48 28.68 344.1
2528 | 28.52 28.62 379.3
7136 | 23.37 23.62 320.7
7168 | 23.37 23.62 458.0

Table 2: Results of recursively applying a Likelihood Ratio Interval Analysis, assuming a Normal distribution,
on Sample H2. A significance threshold of 300 was used.
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Frequency (in Hz) | Start Time (ins) End Time (ins) Significance
992 | 30.91 31.09 4114.
1024 | 30.91 31.09 1671.
3968 | 24.99 25.02 426.2
4000 | 24.98 25.02 2262.
4000 | 25.98 26.02 1217.
4032 | 24.98 25.02 400.9

Table 3: Results of recursively applying a Likelihood Ratio Interval Analysis, assuming a Normal distribution,
on Sample S1. A significance threshold of 300 was used.

Frequency (in Hz) | Start Time (in s) End Time (in s) Significance

64 | 33.88 34.12 105.0
224 | 30.20 30.35 181.4
256 | 30.20 30.37 232.7
288 | 30.20 30.35 331.3
288 | 33.41 33.55 112.8
320 | 30.20 30.35 161.0
384 | 30.18 30.35 138.1
1056 5.555 5.773 130.6
1088 | 5.555 5.773 121.3
1376 5.414 5.648 110.4
1408 | 5.414 5.648 137.0
1440 5.414 5.648 122.5
1568 | 1.336 1.570 126.2
1664 5.320 5.539 103.9
1824 5.430 5.664 112.8
1856 5.461 5.695 106.6
1888 | 5.383 5.617 122.2

Table 4: Results of recursively applying a Likelihood Ratio Interval Analysis, assuming a Gamma distribu-
tion, on Sample H1. A significance threshold of 100 was used.

Frequency (in Hz) | Start Time (ins) End Time (ins) Significance
64 | 43.74 43.98 118.7
64 | 42.66 42.84 136.0
7136 | 23.37 23.60 108.0
7168 | 23.37 23.60 144.7

Table 5: Results of recursively applying a Likelihood Ratio Interval Analysis, assuming a Gamma distribu-
tion, on Sample H2. A significance threshold of 100 was used.

Frequency (in Hz) | Start Time (ins) End Time (ins) Significance
992 | 30.91 31.09 361.1
1024 | 30.91 31.09 180.8
4000 | 24.98 25.02 144.4

Table 6: Results of recursively applying a Likelihood Ratio Interval Analysis, assuming a Gamma distribu-
tion, on Sample S1. A significance threshold of 100 was used.
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Frequency (in Hz) | Start Time (in s) End Time (in s) Significance

64 | 33.87 34.12 133.9
224 | 30.20 30.35 235.4
256 | 30.20 30.37 349.7
288 | 30.20 30.35 385.6
288 | 33.43 33.55 130.3
320 | 30.20 30.35 147.5
384 | 30.18 30.35 154.1
960 5.727 5.977 136.5
1056 | 5.555 5.773 150.7
1088 5.555 5.773 139.3
1216 1.398 1.648 106.3
1280 5.555 5.805 102.1
1376 | 5.430 5.680 148.6
1408 5.414 5.648 175.9
1440 5.414 5.648 130.4
1472 1.352 1.602 106.3
1504 1.336 1.586 110.2
1536 | 1.336 1.586 133.3
1536 | 5.336 5.586 120.6
1568 1.336 1.586 161.1
1664 | 5.289 5.539 133.8
1664 | 5.664 5.914 102.2
1696 | 1.367 1.617 118.7
1696 | 5.367 5.617 125.5
1696 | 5.711 5.930 101.1
1728 1.352 1.555 108.9
1824 5.414 5.664 140.6
1856 5.523 5.773 130.5
1888 | 5.383 5.617 139.4
2016 | 1.383 1.617 104.3
2144 1.352 1.602 110.1

Table 7: Results of recursively applying a Likelihood Ratio Interval Analysis,

bution, on Sample H1. A significance threshold of 100 was used.

assuming a Di-Normal distri-

Frequency (in Hz) | Start Time (ins) End Time (ins) Significance
64 | 43.73 43.98 142.2
64 | 42.59 42.84 156.3
64 | 39.73 39.98 103.8
7168 | 23.37 23.62 116.3

Table 8: Results of recursively applying a Likelihood Ratio Interval Analysis, assuming a Di-Normal distri-
bution, on Sample H2. A significance threshold of 100 was used.
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Frequency (in Hz) | Start Time (ins) End Time (ins) Significance
992 | 30.91 31.09 378.6
1024 | 30.91 31.09 185.0
4000 | 24.98 25.02 155.7

Table 9: Results of recursively applying a Likelihood Ratio Interval Analysis, assuming a Di-Normal distri-
bution, on Sample S1. A significance threshold of 100 was used.

Start Time (in s) End Time (in s)

Significance

Excess Power

Frequency composition

1.336 1.695

585.3

9.48 x107°

1104 - 1136: 0.05494
1200 - 1264: 0.1297
1456 - 1584: 0.3697
1712 - 1744: 0.0839
1968 - 2064: 0.2672
2128 - 2160: 0.09461

1.742 1.898

437.3

9.808x107°

2000 - 2032:

5.211 5.977

813.4

1.375x10~ %

784 - 816: 0.02538
912 - 976: 0.05586
1008 - 1104: 0.1034
1264 - 1328: 0.07431
1360 - 1456: 0.1980
1520 - 1552: 0.04523
1616 - 1776: 0.2461
1808 - 1904: 0.1662
1936 - 1968: 0.03992
2224 - 2256: 0.04570

30.15 30.37

4025.

3.305x1073

176 - 400: 0.9951
656 - 720: 0.004916

33.43 33.71

1639.

5.073x10~4

240 - 400: 0.9387
960 - 656: 0.03929
752 - 816: 0.02201

33.87 34.12

640.7

4.156

48 - 80:

34.96 35.21

399.1

1.503x107°

1808 - 1872:

38.05 38.21

o15.

4.586

48 - 80:

41.4 41.59

323.1

1.043x107°

2128 - 2160:

Table 10: Results of post-processing Table 1.
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Start Time (in s) End Time (ins) Significance Excess Power Frequency composition
23.37 23.62 458.1 5.170x10~% | 7120 - 7184:
28.48 28.68 379.3 2.343x107° | 2480 - 2544:
33.05 33.21 366.9 4.812 48 - 80:
35.16 35.49 587.5 2.909x107° 976 - 1040: 0.4060
1136 - 1168: 0.2358
. . . . 1392 - 1424: 0.3582
39.73 39.98 420. 5.055 48 - 80:
42.66 42.93 481. 204.7 0- 112:
43.74 43.98 334.7 7.721 48 - 80:
57.38 57.8 404.8 4.018x10~° 976 - 1008: 0.1222
1296 - 1328: 0.1502
1648 - 1680: 0.1751
1808 - 1872: 0.3496
. . . . 2032 - 2064: 0.2029
59.1 99.34 344.2 2.781x107° | 1648 - 1712: 0.6894
1776 - 1808: 0.3106

Table 11: Results of post-processing Table 2.

Start Time (in s) End Time (in s) Significance Excess Power Frequency composition
24.98 25.02 2263. 0.1992 3952 - 4048:
25.98 26.02 1217. 0.07300 3984 - 4016:
30.91 31.09 4115. 0.1317 976 - 1040:

Table 12: Results of post-processing Table 3.

Start Time (in s) End Time (in s) Significance Excess Power Frequency composition

1.336 1.586 126.2 2.173x10~° 1520 - 1584:

5.32 5.773 136.9 8.117x107° 1040 - 1104: 0.1595

1360 - 1456: 0.3990

1648 - 1680: 0.1015

. . . . 1808 - 1904: 0.3400

30.18 30.37 331.4 2.459x1073 208 - 336: 0.9645

. . . . 368 - 400: 0.03552
33.41 33.55 112.9 2.049x10~4 272 - 304:
33.87 34.12 111.3 4.156 48 - 80:

Table 13: Results of post-processing Table 4.

Start Time (in s) End Time (in s) Significance Excess Power Frequency composition
23.37 23.62 146.9 5.170x10~% 7120 - 7184:
42.66 42.84 136.1 9.160 48 - 80:
43.73 43.98 120. 7.432 48 - 80:

Table 14: Results of post-processing Table 5.

Start Time (in s) End Time (ins) Significance Excess Power Frequency composition
24.98 25.02 144.4 0.1191 3984 - 4016:
30.91 31.09 361.2 0.1317 976 - 1040:

Table 15: Results of post-processing Table 6.
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Start Time (in s)

End Time (in s)

Significance

Excess Power

Frequency composition

1.336

1.648

161.1

7.974%x107°

1200 - 1232:
1456 - 1584:
1680 - 1744:
2000 - 2032:
2128 - 2160:

0.07553
0.4729
0.2173
0.1111
0.1232

5.289

5.977

175.8

9.352x10~°

944 -

976:
1040 - 1104:
1264 - 1296:
1360 - 1456:
1520 - 1552:
1648 - 1712:
1808 - 1904:

0.04992
0.1076
0.06501
0.2821
0.07084
0.1650
0.2595

30.18

30.37

385.6

2.459x1073

208 -
368 -

336:
400:

0.9645
0.03552

33.43

33.55

130.3

2.219x10~%

272 -

304:

33.87

34.12

133.9

4.156

48 - 80:

Table 16: Results of post-processing Table 7.

Start Time (in s) End Time (in s) Significance Excess Power Frequency composition
23.37 23.62 116.3 3.467x10~4 7152 - 7184:
39.73 39.98 103.8 5.055 48 - 80:
42.59 42.84 156.3 7.01 48 - 80:
43.73 43.98 142.2 7.432 48 - 80:

Table 17: Results of post-processing Table 8.

Start Time (in s) End Time (ins) Significance Excess Power Frequency composition
24.98 25.02 155.6 0.1191 3984 - 4016:
30.91 31.09 378.7 0.1317 976 - 1040:

Table 18: Results of post-processing Table 9.
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Figure 1: The goodness of fit of a Normal distribution to the power time series of various frequencies, from

a spectrographic transform of width 512.
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Figure 2: The goodness of fit of a Normal distribution to the power time series of various frequencies, from

a spectrographic transform of width 512.
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Figure 3: The goodness of fit of a Gamma distribution to the power time series of various frequencies, from
a spectrographic transform of width 512.
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Figure 4: The goodness of fit of a Gamma distribution to the power time series of various frequencies, from
a spectrographic transform of width 512.
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Figure 5: The a values used to fit a Gamma distribution to the power time series of various frequencies.
These values were used to construct Figure 3.

3e+07

I I I
Sample H1 ———
Sample H2 ———

2.5e+07

2e+07

1.5e+07

K-S Statistic

le+07 —

5e+06

0 | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency (in Hz)

Figure 6: The (8 values used to fit a Gamma distribution to the power time series of various frequencies.
These values were used to construct Figure 3.
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Figure 7: The goodness of fit of a Weibull distribution to the power time series of various frequencies, from
a spectrographic transform of width 512.
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Figure 8: The goodness of fit of a Weibull distribution to the power time series of various frequencies, from
a spectrographic transform of width 512.
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Figure 9: The goodness of fit of a Normal distribution to the Box-Cox transformed power time series of
various frequencies, from a spectrographic transform of width 512.
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Figure 10: The goodness of fit of a Normal distribution to the Box-Cox transformed power time series of
various frequencies, from a spectrographic transform of width 512.
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Figure 11: The goodness of fit of a Normal distribution to the time series of real and imaginary parts of the
DFT coefficients from a spectrographic transform of Sample H1, using a width of 512, at various frequencies.
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Figure 12: The goodness of fit of a Normal distribution to the time series of real and imaginary parts of the
DFT coefficients from a spectrographic transform of Sample H2, using a width of 512, at various frequencies.
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Figure 13: The goodness of fit of a Normal distribution to the time series of real and imaginary parts of the
DFT coefficients from a spectrographic transform of Sample S1, using a width of 512, at various frequencies.
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Figure 14: The goodness of fit of a Gamma distribution to the power time series of various frequencies, from
a spectrographic transform of width 512.
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Figure 15: The goodness of fit of a Weibull distribution to the power time series of various frequencies, from
a spectrographic transform of width 512.
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Figure 16: The goodness of fit of a Normal distribution to the time series of real and imaginary parts of the
DFT coefficients from a spectrographic transform of a sample of Hanford 2km dark port data, using a width
of 512, at various frequencies.
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Figure 17: The goodness of fit of a Normal distribution to the time series of real and imaginary parts of the
DFT coeflicients from a spectrographic transform of a sample of Livingston dark port data, using a width
of 512, at various frequencies.
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Figure 18: The time series of power in the 288Hz frequency band, for Sample H1. The unit used is uncali-
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Figure 19: The optimal Box-Cox transform of Figure 18.
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Figure 20: A closeup of the candidate transient shown in Figure 18.
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Figure 21: The power spectrum of Sample H1. This was created by Fourier transforming 60 non-overlapping
one second intervals, and averaging the power present in each frequency over all intervals.
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Figure 22: The likelihood of a transient being present in Sample H1 for various frequency bands, using the
Likelihood Ratio Interval Analysis, and assuming a Normal distribution.
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Figure 23: The likelihood of a transient being present in Sample H1 for various frequency bands, using the
Likelihood Ratio Interval Analysis, and assuming a Normal distribution. Each frequency band was Box-Cox
transformed independently prior to analysis.
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Figure 24: The likelihood of a transient being present in Sample H2 for various frequency bands, using the
Likelihood Ratio Interval Analysis, and assuming a Normal distribution.
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Figure 25: The likelihood of a transient being present in Sample H2 for various frequency bands, using the
Likelihood Ratio Interval Analysis, and assuming a Normal distribution. Each frequency band was Box-Cox
transformed independently prior to analysis.
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Figure 26: The likelihood of a transient being present in Sample S1 for various frequency bands, using the
Likelihood Ratio Interval Analysis, and assuming a Normal distribution.
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Figure 27: The likelihood of a transient being present in Sample S1 for various frequency bands, using the
Likelihood Ratio Interval Analysis, and assuming a Normal distribution. Each frequency band was Box-Cox
transformed independently prior to analysis.
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Figure 28: The likelihood of a transient being present in Sample H1 for various frequency bands, using the
Likelihood Ratio Interval Analysis, and assuming a Gamma distribution.
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Figure 29: The likelihood of a transient being present in Sample H1 for various frequency bands, using the
Likelihood Ratio Interval Analysis on the DFT coefficients.
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Figure 30: The likelihood of a transient being present in Sample H2 for various frequency bands, using the
Likelihood Ratio Interval Analysis, and assuming a Gamma distribution.
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Figure 31: The likelihood of a transient being present in Sample H2 for various frequency bands, using the
Likelihood Ratio Interval Analysis on the DFT coefficients.
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Figure 32: The likelihood of a transient being present in Sample S1 for various frequency bands, using the
Likelihood Ratio Interval Analysis, and assuming a Gamma distribution.
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Figure 33: The likelihood of a transient being present in Sample S1 for various frequency bands, using the
Likelihood Ratio Interval Analysis on the DFT coefficients.

41



3.5 — _

2.5

K-S Statistic
[\
I
|

0.5 — _

0 | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency (in Hz)

Figure 34: The likelihood of a transient being present in Sample H1 for various frequency bands, using the
K-S Interval test.

A-D Statistic

0 | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency (in Hz)

Figure 35: The likelihood of a transient being present in Sample H1 for various frequency bands, using the
A-D Interval test.
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Figure 36: The likelihood of a transient being present in Sample H2 for various frequency bands, using the
K-S Interval test.
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Figure 37: The likelihood of a transient being present in Sample H2 for various frequency bands, using the
A-D Interval test.
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Figure 38: The likelihood of a transient being present in Sample S1 for various frequency bands, using the
K-S Interval test.
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Figure 39: The likelihood of a transient being present in Sample S1 for various frequency bands, using the
A-D Interval test.
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Figure 40: Thresholds generated by BramThreshold using Normal analysis, with s.d. of 5. An interval length
of 10 seconds, minimum size of 3 samples, maximum size of 0.25 seconds, and spectrogram width of 512
samples were used. The data processed was all Hanford 4km LSC-AS_Q data from 729337008 to 729338000.
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E BramMon Results

The results listed here are from analyzing glitch triggers generated for the Hanford 4km interferometer’s
dark port (H1:LSC-AS_Q) between GPS times 729337008 and 729338000 using BramMon. A spectrogram width
of 512 samples, minimum interval length of 3 samples, and maximum length of 0.25 seconds were used.

E.1 Normal Analysis, 10s Samples, and Constant Threshold 500

Opened trigger table file: Glitch_H1.xml
Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337221 s + 961914063 ns GPS time
dT: 0.2 s
Significance: 5.026

1 Candidate Transients Found:
Start Time: 4.953 s into sample (729337221 s + 915039063 ns GPS time)
Duration: 0.2188 s
Significance: 1.164
Excess Power: 0.1795
Frequency Decomposition:
48 - 80: 1

Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337275 s + 222290039 ns GPS time
dT: 0.2293 s
Significance: 7.942

1 Candidate Transients Found:
Start Time: 4.969 s into sample (729337275 s + 191040039 ns GPS time)
Duration: 0.1562 s
Significance: 2.936
Excess Power: 0.0008964
Frequency Decomposition:
176 - 400: 1

Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337278 s + 689270020 ns GPS time
dT: 0.2021 s
Significance: 5.955
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2 Candidate Transients Found:
Start Time: 1.5 s into sample (729337275 s + 189270020 ns GPS time)
Duration: 0.1562 s
Significance: 2.537
Excess Power: 0.0009453
Frequency Decomposition:
208 - 400: 1

Start Time: 4.734 s into sample (729337278 s + 423645020 ns GPS time)
Duration: 0.125 s
Significance: 1.233
Excess Power: 0.0001831
Frequency Decomposition:
272 - 304: 1

Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337467 s + 671936035 ns GPS time
dT: 0.2 s
Significance: 5.103

0 Candidate Transients Found:

Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337513 s + 776306152 ns GPS time
dT: 0.2 s
Significance: 5.092

0 Candidate Transients Found:

Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337739 s + 428771973 ns GPS time
dT: 0.2075 s
Significance: 6.836

0 Candidate Transients Found:
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Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337969 s + 475280762 ns GPS time
dT: 0.2 s
Significance: 5.424

0 Candidate Transients Found:

E.2 Normal Analysis, 60s Samples, and Constant Threshold 500

Opened trigger table file: Glitch_H1.xml
Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337221 s + 961914063 ns GPS time
dT: 0.2 s
Significance: 5.026

3 Candidate Transients Found:
Start Time: 29.95 s into sample (729337221 s + 915039063 ns GPS time)
Duration: 0.2188 s
Significance: 1.748
Excess Power: 1.485
Frequency Decomposition:
48 - 80: 1

Start Time: 54.36 s into sample (729337246 s + 321289063 ns GPS time)
Duration: 0.25 s
Significance: 1.278
Excess Power: 1.159e-05
Frequency Decomposition:
1520 - 15562: 1

Start Time: 58.58 s into sample (729337250 s + 540039063 ns GPS time)
Duration: 0.2031 s
Significance: 1.015
Excess Power: 1.065e-05
Frequency Decomposition:
1040 - 1072: 1

Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337275 s + 222290039 ns GPS time
dT: 0.2293 s
Significance: 7.942
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5 Candidate Transients Found:
Start Time: 1.109 s into sample (729337246 s + 331665039 ns GPS time)
Duration: 0.2656 s
Significance: 1.499
Excess Power: 1.849e-05
Frequency Decomposition:
1456 - 1488: 0.2746
1520 - 1584: 0.458
2128 - 2160: 0.2675

Start Time: 5.188 s into sample (729337250 s + 409790039 ns GPS time)
Duration: 0.5625 s
Significance: 1.666
Excess Power: 7.165e-05
Frequency Decomposition:
944 - 976: 0.07195
1008 - 1104: 0.2082
1360 - 1424: 0.2393
1680 - 1712: 0.1067
1808 - 1904: 0.3738

Start Time: 29.97 s into sample (729337275 s + 191040039 ns GPS time)
Duration: 0.1562 s
Significance: 9.669
Excess Power: 0.004621
Frequency Decomposition:
176 - 400: 0.9976
688 - 720: 0.002441

Start Time: 33.19 s into sample (729337278 s + 409790039 ns GPS time)
Duration: 0.1406 s
Significance: 2.69
Excess Power: 0.0001793
Frequency Decomposition:
272 - 304: 1

Start Time: 33.64 s into sample (729337278 s + 862915039 ns GPS time)
Duration: 0.25 s
Significance: 1.366
Excess Power: 4.177
Frequency Decomposition:
48 - 80: 1

Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337278 s + 689270020 ns GPS time
dT: 0.2021 s
Significance: 5.955
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5 Candidate Transients Found:
Start Time: 1.578 s into sample (729337250 s + 267395020 ns GPS time)
Duration: 0.7031 s
Significance: 2.12
Excess Power: 1.822e-06
Frequency Decomposition:

944 - 976: 0.0547

1008 - 1104: 0.1721
1360 - 1456: 0.3042
1648 - 1712: 0.1822
1808 - 1904: 0.2869

Start Time: 26.5 s into sample (729337275 s + 189270020 ns GPS time)
Duration: 0.1562 s
Significance: 9.534
Excess Power: 0.004458
Frequency Decomposition:
176 - 400: 0.9952
656 - 720: 0.004757

Start Time: 29.73 s into sample (729337278 s + 423645020 ns GPS time)
Duration: 0.2656 s
Significance: 2.664
Excess Power: 0.0002915
Frequency Decomposition:
240 - 304: 0.8108
368 - 400: 0.1681
592 - 624: 0.0211

Start Time: 30.17 s into sample (729337278 s + 861145020 ns GPS time)
Duration: 0.25 s
Significance: 1.337
Excess Power: 4.167
Frequency Decomposition:
48 - 80: 1

Start Time: 34.36 s into sample (729337283 s + 48645020 ns GPS time)
Duration: 0.1562 s
Significance: 1.002
Excess Power: 4.59
Frequency Decomposition:
48 - 80: 1

Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337467 s + 671936035 ns GPS time
dT: 0.2 s
Significance: 5.103
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1 Candidate Transients Found:
Start Time: 35.23 s into sample (729337472 s + 906311035 ns GPS time)
Duration: 0.25 s
Significance: 1.527
Excess Power: 1.131e-05
Frequency Decomposition:
1968 - 2000: 0.555
2160 - 2192: 0.445

Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337513 s + 776306152 ns GPS time
dT: 0.2 s
Significance: 5.092

0 Candidate Transients Found:

Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337739 s + 428771973 ns GPS time
dT: 0.2075 s
Significance: 6.836

3 Candidate Transients Found:
Start Time: 37.72 s into sample (729337747 s + 147521973 ns GPS time)
Duration: 0.2344 s
Significance: 1.095
Excess Power: 3.266e-06
Frequency Decomposition:
1008 - 1040: 1

Start Time: 45.23 s into sample (729337754 s + 663146973 ns GPS time)
Duration: 0.25 s
Significance: 1.379
Excess Power: 7.099
Frequency Decomposition:
48 - 80: 1

Start Time: 46.3 s into sample (729337755 s + 725646973 ns GPS time)
Duration: 0.2344 s
Significance: 1.11
Excess Power: 7.776
Frequency Decomposition:
48 - 80: 1
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Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337969 s + 475280762 ns GPS time
dT: 0.2 s
Significance: 5.424

2 Candidate Transients Found:
Start Time: 6.438 s into sample (729337945 s + 912780762 ns GPS time)
Duration: 0.25 s
Significance: 1.277
Excess Power: 1.389e-06
Frequency Decomposition:
1680 - 1712: 1

Start Time: 57.31 s into sample (729337996 s + 787780762 ns GPS time)
Duration: 0.3281 s
Significance: 1.934
Excess Power: 9.861e-05
Frequency Decomposition:
1328 - 1360: 0.1086
1552 - 1584: 0.11
1712 - 1904: 0.6785
1968 - 2000: 0.1029

E.3 Normal Analysis, 10s Samples, and BramThreshold Threshold from Figure 40

Opened trigger table file: Glitch_H1.xml
Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337221 s + 961914063 ns GPS time
dT: 0.2 s
Significance: 5.026

1 Candidate Transients Found:
Start Time: 7.25 s into sample (729337224 s + 211914063 ns GPS time)
Duration: 0.09375 s
Significance: 1.391
Excess Power: 6.124e-07
Frequency Decomposition:
5968 - 6000: 1
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Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337275 s + 222290039 ns GPS time
dT: 0.2293 s
Significance: 7.942

3 Candidate Transients Found:
Start Time: 4.969 s into sample (729337275 s + 191040039 ns GPS time)
Duration: 0.1562 s
Significance: 2.293
Excess Power: 0.0009003
Frequency Decomposition:
176 - 400: 0.9956
656 - 720: 0.004389

Start Time: 5.453 s into sample (729337275 s + 675415039 ns GPS time)
Duration: 0.04688 s
Significance: 1.081
Excess Power: 3.672e-05
Frequency Decomposition:
4176 - 4208: 1

Start Time: 8.438 s into sample (729337278 s + 659790039 ns GPS time)
Duration: 0.04688 s
Significance: 1.136
Excess Power: 2.452e-05
Frequency Decomposition:
560 - 592: 1

Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337278 s + 689270020 ns GPS time
dT: 0.2021 s
Significance: 5.955

3 Candidate Transients Found:
Start Time: 1.5 s into sample (729337275 s + 189270020 ns GPS time)
Duration: 0.1562 s
Significance: 1.809
Excess Power: 0.001181
Frequency Decomposition:
176 - 272: 0.8514
304 - 368: 0.1432
656 - 720: 0.005438
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Start Time: 1.984 s into sample (729337275 s + 673645020 ns GPS time)
Duration: 0.04688 s
Significance: 1.277
Excess Power: 3.703e-05
Frequency Decomposition:
4176 - 4208: 1

Start Time: 4.953 s into sample (729337278 s + 642395020 ns GPS time)
Duration: 0.04688 s
Significance: 1.024
Excess Power: 2.086e-05
Frequency Decomposition:
752 - 784: 1

Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337467 s + 671936035 ns GPS time
dT: 0.2 s
Significance: 5.103

1 Candidate Transients Found:
Start Time: 3.844 s into sample (729337466 s + 515686035 ns GPS time)

Duration: 0.04688 s

Significance: 1.009

Excess Power: 1.236e-05

Frequency Decomposition:
7696 - 7728: 1

Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337513 s + 776306152 ns GPS time
dT: 0.2 s
Significance: 5.092

0 Candidate Transients Found:

Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337739 s + 428771973 ns GPS time
dT: 0.2075 s
Significance: 6.836
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1 Candidate Transients Found:
Start Time: 6.125 s into sample (729337740 s + 553771973 ns GPS time)
Duration: 0.0625 s
Significance: 1.326
Excess Power: 7.46e-06
Frequency Decomposition:
3472 - 3504: 1

Trigger Info:
ID: Glitch
subID: H1:LSC-AS_Q
Time: 729337969 s + 475280762 ns GPS time
dT: 0.2 s
Significance: 5.424

0 Candidate Transients Found:
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