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Abstract. The finite element (FE) method is a powerful tool for simu-
lating industrial metal forming processes such as metal rolling. FE allows
users to estimate the stress distribution in the metal sheet during the
rolling process. However, FE simulations do not allow for real-time online
process control due to model complexity and computational time. This
paper forms part of a large-scale research project aimed at designing a
simple-but-accurate mathematical model that provides sufficiently precise
results (compared toFE simulations) with faster computational timescales
allowing for real-time process control. To validate the asympotics-based
mathematical model, an accurate FE model is required. In this paper, we
give a detailed description of a quasi-static Abaqus/Explicit FE model and
show how this is optimised to represent the rolling process. We report new
insights gained from the FE simulations which can guide the development
of simpler, faster mathematical models.
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1 Introduction

In metal rolling, a sheet of metal is fed gradually between two rotating rollers.
The rollers are held at a fixed separation that is less than the initial thickness
of the sheet and act to permanently deform the sheet so that its thickness is
reduced (see Fig. 1). The system considered in this paper is symmetric about the
sheet centre, and the top roller rotates anti-clockwise so that the sheet moves
in the positive x-direction. Metal rolling has been studied for decades, with
some of the early slab-type mathematical models dating back as far as 1924 [19].
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More than 95% of ferrous and non-ferrous metals and alloys are processed to their
usable forms by rolling [17]. Given the importance of metal rolling processes,
many authors have attempted to augment existing analytical models to account
for variables such as through-thickness variations in stresses, displacements and
velocities, which early slab models neglected [13]. Some models [2] contain sys-
tematic assumptions about the process, e.g., thin sheet and large roller. These
assumptions enable an asymptotic analysis to be carried out. At leading order,
slab theory is recovered, and at higher orders through-thickness variations are
predicted. However, the accuracy of this updated asymptotic model is still under
debate, as the influence of key phenomena such as residual stresses and elastic
springback on asymptotic outputs remain unclear.

Fig. 1. Schematic of the metal rolling process. The sheet moves from left to right and its
thickness is reduced by the roller. Symmetry about the centre of the sheet is assumed.

The FE method is a numerical technique that can be applied to solve a wide
variety of problems in engineering and science governed by partial differential
equations (PDEs) [8]. The domain of interest is discretized into small regions
(elements), and the solution is approximated by a sum of basis functions on
these elements. The governing PDEs are used to give a system of algebraic equa-
tions for the amplitude of the basis functions, and the resulting global solution
converges to the exact solution of the PDEs as the size of the elements decreases.

The FE method provides a better understanding of the stress distribution
in the metal sheet during the rolling process compared to exact solutions of
the simplified slab model. However, a key limitation of FE modelling is that
simulations take too long to allow for real-time online process control, with
some FE rolling models taking hundreds of hours to run (e.g., [6]). Without
real-time process control, most forming processes remain open loop and rely on
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many repetitions to find viable operating conditions, producing large amounts
of waste material [12]. For example, 640Mt of CO2 per year is created globally
from steel which is subsequently turned into scrap, approximately equivalent to
100 coal power stations [1]. Real-time process control would allow for monitoring
the workpiece and correcting mistakes as they happen, as opposed to the current
trial-and-error approach. This work is part of a large-scale project whose long-
term goal is to derive models that are much simpler (giving faster computation
times), but still accurate, using asymptotic methods. An accurate FE model
is required both to drive the asymptotic analysis and to validate the resulting
reduced model. The formation, optimisation and outputs of this FE model are
the subject of this paper.

Section 2 describes the FE model used to simulate metal rolling and details
the model formulation and validation to ensure a quasi-static approximation is
achieved. In Sect. 3 oscillations in simulation results are discussed and a method
of removing these high-frequency oscillations is proposed. We discuss the phys-
ical insights that can be gained from FE results in Sect. 4, such as the shape
of the boundary between the plastic and elastic deformation zones in the sheet
presented by the simulation results. In Sect. 5 we draw conclusions and briefly
discuss some future plans for our FE simulations, which can guide the develop-
ment of simpler, faster mathematical models.

2 Mathematical Model

As shown in Fig. 1, a relatively thin sheet of half-thickness hin = 0.005m
(compared to roller radius R = 0.1m) is considered. By assuming the metal
sheet’s width is much larger than its thickness, we can consider an idealised
two-dimensional geometry by assuming plane-strain conditions apply [18]. We
consider a sheet of elastic-plastic material, which deforms elastically up to some
yield stress, above which it deforms plastically. The roller is assumed to be rigid,
so no roller deformation occurs. We also exploit the symmetry of this particular
metal rolling system about the centre of the metal sheet (see Fig. 1) and consider
the top half of the sheet and the top roller only. These modelling choices reduce
the computational intensity of the problem, and in turn facilitate the use of a
finer mesh in the FE formulation.

In metal rolling processes, speeds are typically quite low, (approximately
1 m.s−1). Therefore inertia effects can be ignored and the rolling process can be
idealised as quasi-static [3].

Three boundary conditions are applied in this analysis. First, the sheet’s
horizontal centre line (i.e., the symmetry axis in Fig. 1) is constrained vertically
to enforce the expected symmetry. Second, the centre of the roller is held in a
fixed position, so its only degree of freedom is rotation in the rolling direction.
Finally, the roller is given an angular velocity of Ω = 6.283 rad.s−1. The sheet
is also given an initial velocity of RΩ = 0.6283 m.s−1, roughly equal to the x-
component of the roller’s velocity, in order to reduce any jumps in velocity when
the sheet meets the roller.
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2.1 FE Method Implementation in Abaqus

A comprehensive literature review [4,6,9] showed Abaqus/Explicit to be the
preferred choice in most cases for modelling metal rolling processes due to its
efficiency and speed compared to the implicit solver used in Abaqus/Standard.
In this work Abaqus/Explicit 2021 [3] is implemented. The explicit dynamic
analysis implements an explicit integration rule using diagonal element mass
matrices. The equations of motion for the body are integrated using the explicit
central-difference integration rule, where the accelerations calculated at time
t are used to calculate the velocity solution at time t + Δt/2, Eq. 1, and the
displacement solution to time t + Δt, Eq. 2.
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2

üN
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Here uN is a degree of freedom (usually a displacement or a rotation component)
and the subscript i refers to the increment number in an explicit dynamics step.

Quasi-static analyses typically have longer timescales which increase the
numerical computation time required by FE methods. However, Abaqus/Explicit
enables the use of mass-scaling. Mass scaling uniformly scales the density of
the material within the simulation to facilitate longer time steps and, hence,
reduce computational time [12]. This occurs since the stable time increment for
Abaqus/Explicit simulations, which is the largest possible time step the solver
can take without results becoming unstable, is related to the density of the
material being analysed by

Δtstable ≈ Le√ρ√
E

, (3)

where Le is the length of an element, ρ is the material density and E is the
Young’s modulus of the material. The mass scaling factor (MSF) must be chosen
carefully to reduce simulation times without introducing inertial effects, which
can lead to erroneous and unstable outputs [7,11]. In this work, the MSF is
chosen to be 2000 and this is considered a typical value for conducting quasi-
static metal forming analyses with Abaqus/Explicit [11,14].

In FE analyses, the material model itself may provide damping in the form of
plastic dissipation or viscoelasticity. For many applications such damping may
be adequate. However, in some cases, it can be desirable to introduce some addi-
tional damping to provide another dissipation source. In this work we restrict our
attention to stiffness-proportional Rayleigh damping. In stiffness-proportional
damping, a damping stress, σ̃d, is added to the stress caused by the constitutive
response at the integration point when the dynamic equilibrium equations are
formed, but it is not included in the stress output. This stress is given by

σ̃d = β ˜Delε̇, (4)

where β is the stiffness-proportional damping factor, ˜Del is the current elastic
stiffness and ε̇ is the strain rate. Stiffness-proportional damping must be used
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with caution because it may significantly reduce the stable time increment. To
avoid a dramatic drop in the stable time increment, β should be less than or
of the same order of magnitude as the initial stable time increment without
damping [3].

In order to implement the model assumptions discussed earlier, the metal
sheet and roller are modelled as a 2D shell planar part and as a 2D analytical
rigid part respectively. To adhere to the plane-strain assumption, linear quadri-
lateral plane-strain elements with reduced integration (i.e., type CPE4R) are
used here. Only one roller and half the sheet’s thickness is modelled because of
the assumption of symmetry about the sheet’s horizontal centre line.

For the FE simulations in this paper, the global mesh element size and the
stiffness-proportional material damping factor, β, are analysed to investigate
their effect on oscillations in the FE simulations, as we will see in Sect. 3. Table 1
shows the name, element size and β value for each simulation. The physical
parameters given here and in each figure caption remain unchanged for each sim-
ulation: (hin, R, r, ρ, E, ν, σy, μ̂) = (0.005, 0.1, 0.2, 7850, 1.5 × 1011, 0.35, 3 ×
108, 0.1), where hin is the initial sheet half-thickness and R is the roller radius,
which both have units of m, r is the sheet reduction fraction, ρ is the density of
the metal sheet with units of kg.m−3, E is the Young’s modulus with units of
Pa, ν is Poisson’s ratio, σy is the yield stress of the metal, measured in Pa, and μ̂
is the friction coefficient between the roller and the sheet. Values of the friction
coefficient for industrial cold rolling mills are usually in a range of approximately
μ̂ = 0.02 − 0.15 [10]. The rest of these parameter and geometry values are com-
mon values for industrial cold metal rolling of steel sheets (as stated in [2]).

Table 1. Table showing the name, element size and material damping factor (β) of each
simulation considered in this paper. The physical parameters used in all simulations
are given by (hin, R, r, ρ, E, ν, σy, μ̂) = (0.005, 0.1, 0.2, 7850, 1.5 × 1011, 0.35, 3 ×
108, 0.1).

Simulation name Mesh element size Damping factor (β)

S1 5 × 10−5 m 0

S2 10 × 10−5 m 0

S3 20 × 10−5 m 0

S4 40 × 10−5 m 0

S5 5 × 10−5 m 2.5 × 10−7 s

2.2 Verification of Quasi-static Behaviour

If a simulation is truly quasi-static, the work applied by the external forces is
nearly equal to the internal energy of the system. Also, the inertial forces should
be negligible in a quasi-static analysis because the velocity of the material in the
model is very small. The corollary to both of these conditions is that the kinetic
energy of the deforming material should not exceed a small fraction (typically
5–10%) of its internal energy throughout most of the process [3,15].



216 F. Flanagan et al.

Figure 2 shows the typical ratio between the kinetic energy and the internal
strain energy (KE/IE) for the whole system for the simulations considered in
this paper. It should be noted that the value of the MSF (which is 2000 for all
simulations in this paper) is acceptable since the energy ratio is between 5%
and 10% for the majority of each simulation. For example, we can see in Fig. 2
that after roughly 0.08 roller rotations, the energy ratio dips below 10%, and
therefore we can say that the FE simulations are in a quasi-static state, since
the rule of thumb is satisfied throughout most of the process. It is not expected
that this condition is satisfied at the early stages of the simulations [14]. This
rule is followed for all simulations considered in this paper.

Fig. 2. Typical ratio between the kinetic energy and the internal strain energy (KE/IE)
for the whole rolling system for the simulations considered in this paper. The vertical
axis is limited to 0.5 since negligible internal energy caused a spike in this ratio at early
stages of the simulation.The physical parameters used in all simulations are given by
(hin, R, r, ρ, E, ν, σy, μ̂) = (0.005, 0.1, 0.2, 7850, 1.5 × 1011, 0.35, 3 × 108, 0.1).

3 Results

During initial simulations, high-frequency oscillations were observed near the
surface of the sheet between x = 0 and x = 0.4 (see Fig. 3(a) and Fig. 3(b)). To
investigate whether these oscillations are a numerical artefact or are representa-
tive of an intrinsic physical property, we monitor the effect of the mesh size and
material damping on simulation results and analyse their influence on the size
and existence of these oscillations in this section.

It should be noted that for every results figure presented in this paper, all
of the quantities are scaled with representative values for visualization, making
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all plots dimensionless. For example, x is scaled with the horizontal length of
the roll gap L, so that x = 0 and x = 1 correspond to the start and end of
the roll gap respectively in all figures. Similarly, z is scaled with the initial half-
thickness of the sheet hin, so that z = 0 and z = 1 correspond to the centre and
undeformed surface of the sheet respectively. The vertical velocity vz is scaled
with (R Ω hin) /L and all stress quantities are scaled with the yield stress σy.

3.1 Mesh Density

Figure 3 shows three contour plots of the dimensionless vertical velocity vz for
the simulations S1, S3 and S5 respectively. Oscillations are illustrated in both
Fig. 3(a) and Fig. 3(b) near the surface of the sheet between x = 0 and x = 0.4
approximately. It should be noted that these oscillations are present in contour
plots of other quantities (vx and σxy for example), but for brevity, only vz results
are investigated in this paper with regards to these oscillations. One possibility
is that the oscillations are numerical artefacts and can simply be filtered away
when post-processing the results. This is the hypothesis we want to check by
varying the mesh density to see what happens to these oscillations.

Fig. 3. Contour plot of dimensionless vertical velocity vz in a metal sheet with mate-
rial properties (hin, R, r, ρ, E, ν, σy, μ̂) = (0.005, 0.1, 0.2, 7850, 1.5 × 1011, 0.35, 3 ×
108, 0.1), for the simulations (a) S1, (b) S3 and (c) S5 in Table 1. The dimensions of
the sheet are normalized so that x = 0 and x = 1 correspond to the start and end of
the sheet respectively, and so that z = 0 and z = 1 correspond to the sheet centre line
and top undeformed surfaces respectively. Symmetry about the centre of the sheet is
assumed, and so only the top half of the sheet is displayed here. The numerical oscil-
lations observed between x = 0 and x = 0.4 in both Fig. 3(a) and Fig. 3(b) are not
visible in Fig. 3(c).

As we can see from both Fig. 3(a) and Fig. 3(b), the region of space occupied
by the oscillations seems to scale with the mesh size. For the simulation S1 (with
mesh size 5×10−5 m) these oscillations take up much less space than for the sim-
ulation S3 (with mesh size 20 × 10−5 m). This suggests that the oscillations are
numerical artefacts, but it is not conclusive. We investigate further by assessing
the amplitude of the oscillations. We use linear interpolation to extract the ver-
tical velocity, vz, at different values of the thickness position z for x = 0.2, inside
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Fig. 4. Dimensionless vertical velocity vz as a function of height z in a cross-section
x = 0.2 for all simulations in Table 1. The physical parameters used in all simulations
are given by (hin, R, r, ρ, E, ν, σy, μ̂) = (0.005, 0.1, 0.2, 7850, 1.5 × 1011, 0.35, 3 ×
108, 0.1). The surface of the sheet corresponds to z ≈ 0.9, where we can see high-
amplitude oscillations, particularly for the two simulations with the finest mesh densi-
ties (5 × 10−5 m and 10 × 10−5 m).

the zone x ∈ [0, 0.4] where the oscillations appear. These results are displayed
in Fig. 4.

We observe that the oscillation amplitude increases as the mesh density
increases (S4–S1), so the numerical solution does not converge. Additionally S4
fails to capture the oscillations seen in the other, more densely-meshed simula-
tions (S1–S3). Despite the oscillatory behaviour of the finely-meshed simulations,
a refined mesh is one of the principal means to ensure calculation accuracy [16].
Comparing S1 (fine mesh) with S4 (coarse mesh) we see poor agreement through
the sheet thickness. This indicates that the mesh strategy used in S4 is not ade-
quately refined. Therefore, it was concluded that coarsening the mesh was not
a viable solution for removing these oscillations and that a fine mesh is needed,
along with some other parameter change.

3.2 Material Damping

As stated earlier, the value of the damping factor, β, should be less than or of the
same order of magnitude as the initial stable time increment without damping.
The stable time increment for the simulation with mesh density 5 × 10−5 m and
no damping (i.e., S1 in Table 1) is Δtstable = 2.547×10−7 s, and so for preliminary
investigations, a value of β = 2.5 × 10−7 s was trialled to see what effect, if any,
this had on the oscillatory nature of the FE results near the surface of the sheet.
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Comparing Fig. 3(c) to Fig. 3(a) and Fig. 3(b), we can see that the damped
simulation S5 is free of the oscillations observed for S1 and S3 near the surface of
the sheet. The additional damping stress added to the stress caused by the con-
stitutive response successfully cleared away the oscillatory behaviour observed in
simulations S1–S3. The question remains as to how much the material damping
has influenced the resulting FE output. We investigate further by assessing the
amplitude of the oscillations as a function of material damping. Again, we use
linear interpolation to extract the value of vz at different values of z along the
line x = 0.2 for simulation S5.

In Fig. 4, we see that the damped simulation (S5) results capture the under-
lying behaviour of the undamped, finely-meshed simulation (S1) quite well
throughout most of the thickness of the sheet, while smoothing the oscilla-
tory behaviour. However, it should be noted that the CPU time required for
simulation S5 was considerably higher than that for S1 (approximately 700 h
compared to approximately 10 h). This comparison is therefore just a starting
point for obtaining a suitable β value that provides a balance between practical
computational time and successful implementation of material damping. This
will be considered in future work.

4 Physical Insights

Figure 5 shows FE results from simulation S1 in Table 1. Figure 5(a) shows a
dimensionless contour plot of the von Mises stress quantity and Fig. 5(b) shows
dimensionless slip lines (which correspond to the maximum shear stress trajec-
tories [20]).

Since plastic deformation only occurs when the von Mises stress is at or
above the effective yield stress (in Fig. 5(a), this corresponds to the von Mises
value of 1 since we have divided all stresses by the yield stress), and elastic
deformation occurs below this value, Fig. 5(a) provides us with a picture of the
shape of the boundary between the plastic and elastic zones within the metal
sheet. In reduced asymptotics-based models (e.g., [2]) it is assumed that the
plastic deformation zone starts where the sheet and roller first meet at x = 0
and that this zone is bounded to the left by a straight line at x = 0 throughout
the thickness of the sheet. The same is assumed for the right-hand boundary at
x = 1. However we see in Fig. 5(a) that these boundaries are not vertical lines
at x = 0 or at x = 1. This computational result has been quite informative for
building our mathematical model because now we can allow for some variation
in the z-direction when writing down boundary conditions for our model, i.e.,
the boundary is now described by x = xt(z) instead of x = 0 at the roll gap
entrance. We describe xt(z) as a “transition curve” where the sheet transitions
from elastic to plastic behaviour. In the asymptotic limit where the aspect ratio
ε is small, we expect xt(z) to have an O(ε) deviation from vertical.

It is also worth noting that the entrance and exit boundary shapes are notice-
ably distinct and although it was hypothesised that one region would be a mirror
image of the other, it looks as though careful consideration will have to be given
to two separate problems; the entrance-region problem and the exit-region prob-
lem.
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Fig. 5. Dimensionless FE results from simulation S1 in Table 1. Plot (a) shows a contour
plot of von Mises stress and (b) a slip-line graph for a metal sheet with material prop-
erties (hin, R, r, ρ, E, ν, σy, μ̂) = (0.005, 0.1, 0.2, 7850, 1.5 × 1011, 0.35, 3 × 108, 0.1).
The dimensions of the sheet are normalized so that x = 0 and x = 1 correspond to
the start and end of the roll gap respectively, and so that z = 0 and z = 1 correspond
to the sheet centre line and top undeformed surface respectively. Symmetry about the
centre of the sheet is assumed, and so only the top half of the sheet is displayed here.
These results are reproduced in companion paper [5].

Figure 5(b) is created by calculating the lines of maximum shear stress. The
presence of oscillations in these shear slip lines and other quantities along the
length of the roll gap necessitates wave-like solutions for the asymptotic problem,
the details of which can be found in [5].

Finally, an interesting observation from both Fig. 5(a) and Fig. 5(b) is that
the slip lines on the exit side of the roll gap (near x = 1) accumulate within a
thin layer under the surface of the sheet, which roughly lines up with the region
where a lot of residual stress is observed in the von Mises plot. These type of FE
results can help in designing a simple-but-accurate mathematical model that
provides sufficiently precise results (compared to FE simulations) with faster
computational timescales. This model is described by Erfanian et al. in [5].

5 Conclusion

FE modelling is a highly influential method for simulating metal rolling. How-
ever, simulations often require large CPU hours to complete, and so FE analysis
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is not a feasible approach for real-time online process control. If optimised cor-
rectly, asymptotics-based mathematical models could prove useful for online con-
trol, given their quick-to-compute nature, and potential to give accurate results
when compared to FE simulations. This mathematical method often requires
consideration of small or large parameters to simplify the governing equations
to be solved. In metal rolling, this is often the aspect ratio (i.e., the horizontal
length of the contact zone between the sheet and the roller is much longer than
the initial half-thickness of the sheet itself). The FE method can act as a useful
benchmark for comparisons against ever-developing mathematical models, but
can also provide insight into the required setup of a mathematical model ahead
of time.

We discuss here about the general modelling assumptions that make the FE
and mathematical analysis simpler to conduct. The FE method implementation
in Abaqus/Explicit is outlined, including details on how the model is confirmed
to be in a quasi-static state.

Oscillatory behaviour was observed in the FE outputs near the surface of
the metal sheet in preliminary results. The effects of mesh density and material
damping on these oscillations is analysed and it is observed that a fine mesh
with material damping is a suitable strategy for removing the high-frequency
oscillations. However, the amount of damping required to keep CPU time at a
minimum while still removing these oscillations is still not known and will have
to be considered in future analyses.

Finally, physical insights gained from FE simulation results are briefly
described that can help to guide the mathematical model formulation in the
form of altering boundary condition definitions and inspiring wave-like solutions
to be considered.
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