The Effective Impedance of a Finite-Thickness
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This paper assesses the importance of viscothermal effects for acoustics calculations in
lined ducts, both inside and outside of a finite-thickness compressible boundary layer using
a combination of asymptotics and numerics.

Viscosity is always present, even at the high Reynolds numbers associated with aeroa-
coustics. The large majority of aeroacoustic calculations are performed inviscidly, however.
Existing inviscid impedance boundary conditions (e.g. Myers) have failed in predicting ex-
perimental results, and it is suggested that viscosity is the key to accurate computations.
Here, numerical solutions of the Linearized Navier—Stokes equations are compared to in-
viscid numerics inside a sheared boundary layer to quantify the errors associated with
neglecting viscosity. It is found that invisicd errors are strongly dependent on frequency,
with normalised errors of over 10% common at low frequencies. It is suggested that er-
rors increase with Mach number, though the dependence is weaker than that of frequency.
Viscothermal effects are also shown to be as important as shear.

Existing impedance boundary conditions rely on the assumption that the acoustics out-
side the boundary layer are the same as they would be in a completely uniform inviscid
flow. This assumption, that the near-wall effects of shear and viscous dissipation do not
penetrate far into the duct, is tested here by comparing analytic expressions for the uniform
acoustics with viscous numerics. It is found that errors outside a 99% boundary layer are on
average 0.006% for the pressure and 0.1% for the radial velocity, validating this assumption

Three existing impedance boundary conditions are tested against full viscous numerics
and are found to be inadequate for modelling the possibly unstable surface modes. A
new asymptotic boundary condition is derived that combines the regularising effect of a
finite-thickness shear layer with viscosity and thermal conduction to accurately capture
the physics of a boundary layer over an acoutic lining. Comparisons of the new boundary
condition with viscous numerics are extremely positive, and due to the decoupling of the
Reynolds number and boundary layer thickness in the derivation the condition may be used
for any flow. The new condition correctly predicts the stability of modes as parameters
vary. Though an analytic form of the new condition is not found, it is suggested that it
could be incorporated into a boundary solver at minor computational cost.

Nomenclature
p Density T Radial coordinate
T Temperature x Axial coordinate
P Pressure 0 Azimuthal coordinate
u Velocity vector ex  Axial unit vector
U Radial velocity e Radial unit vector
v Axial velocity w Angular frequency
w Azimuthal velocity k Axial wavenumber
r Position vector m  Azimuthal wavenumber
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I Shear viscosity yp  Point where Blasius velocity reaches 0.76 M

u?  Bulk viscosity N Number of finite difference grid points

K Thermal conductivity Cn Number of grid points outside boundary layer
co Centreline sound speed rm  Set of radial coordinates outside boundary layer
l Characteristic duct dimension T jth radial grid point

Cp Specific heat at constant pressure X Normalised Root Mean Square Error

¥ Ratio of specific heats Jm  Cylindrical Bessel function of the first kind, of order m
M  Mach number h Square root of Prandtl number

5 Boundary layer thickness n Branch of \/i(w — Mk)

Re Reynolds number & Viscothermal parameter linking Re and §

Pr  Prandtl number Re(q) Real part of quantity

o Viscous stress tensor Im(q) Imaginary part of quantity

D Eulerian rate of strain tensor q¢*  Dimensional quantity

8 Second coefficient of viscosity qo  Centreline base quantity

Z Reduced impedance q Acoustic quantity

Zoi Effective reduced impedance ¢qu  Uniform flow acoustic quantity

A Variable matrix q Rescaled acoustic quantity

X Solution vector ¢ Uniform flow acoustic quantity evaluated at lined wall
b Variable vector ¢ jth term in asymptotic expansion of quantity

Y Boundary layer coordinate ¢ q(r;), quantity evaluated at jth grid point

Y Finite truncation of boundary layer

1. Introduction

The majority of studies in the literature concerning sound propagation in a duct assume the carrier fluid
to be inviscid. This allows the acoustic pressure field to be simply expressed in uniform flow ', and analytic
approximations of this field to be extended into regions of shear (i.e. boundary layers) . This paper aims
to assess the importance of viscosity with regards to the use of effective impedance boundary conditions
(combining the impedances of the lining and the boundary layer), which approximate the behaviour of the
acoustics in a sheared boundary layer over an acoustic lining. It is already known that the inclusion of
viscosity in computations leads to better agreement with experiment in some circumstances” ', and it has
been shown in previous expeimental studies that the classical inviscid Myers condition is fallible ' “~'*. Here,
the idea that inviscid equations can really model the physics of a strongly sheared boundary layer over an
acoustic lining is questioned by comparing Linearized Navier—Stokes (LNS) with inviscid computations inside
the base flow shear layer.

Previous studies which have included viscous effects in an effective impedance boundary condition
have various shortcomings, as will be discussed — in particular, the leading order viscous corrections to the
Myers condition * do not regularise its ill-posedness. In these studies the effects of viscosity are assumed to
be localised to the boundary layer. This assumption will be tested by comparing numerical solutions of the
LNS in the core of a duct (i.e. outside the boundary layer) with analytic expressions for the acoustics in a
uniform, slipping flow.

Existing effective impedance boundary conditions will be compared with LNS numerics. The illposed
yet widely used Myers condition ”*", and the regularisation of this condition”" (here called the Modified
Myers condition), as well as the viscous condition of Brambley'’, will be tested. In particular, how these
boundary conditions describe the behaviour of the possible instability modes, inherent in the use of acousti-
cally soft walls, will be investigated. It has been shown that for an inviscid shear layer over an acoustic lining
there exists surface modes (oscillations at or near the boundary) that can become unstable. When excited,
an unstable surface mode has been shown to be convectively unstable (growing in space), or, under certain
circumstances, absolutely unstable (growing in both time and space)”' . (These surface mode instabilities
are different from the vortex sheet instability of the Myers condition, which is regularised by considering a
finite shear layer.) Inviscid computations concerning the proposed hydrodynamic instability mode”" were
compared well in Ref. to the experimental data of Ref. 13, though the growth rate of the theoretical
instability was appreciably higher than the experimentally observed instability, suggesting viscous damping
plays a role.

Having ascertained the importance of viscosity for predictions of sound fields and stability analyses, the
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LNS are analysed asymptotically by expanding in a finite boundary layer thickness §. A reduced system of
equations is derived which describes the acoustic field inside the sheared boundary layer over an acoustic
lining. By solving this system numerically it is shown that it is possible to improve upon the predictions
of the effective impedances made by the existing models (both inviscid and viscous). An explicit boundary
condition is not found, but it is suggested that the reduced system could be incorporated into a boundary
solver.

2. Governing equations

A. Nondimensionalisation

We imagine a duct with an inviscid, uniform base flow at its centreline. Then, where a star denotes a
dimensional variable, we nondimensionalise densities by the base centreline value, p* = pfp; velocities by the
centreline sound speed, u* = c¢fu; lengths by the characteristic duct dimension (i.e. its radius), r* = [*r;
and temperatures by T = ¢}/ c, T, where cj, is the specific heat at constant pressure. Continuing, we scale

pressure and viscous stress by 032 po; coeflicients of viscosity by ¢jl* pg; thermal conductivity by ¢jl*pge;; and
time by I* /c. In such a scheme, the centreline base flow density, temperature and pressure take the respective
values pg = 1, Tp = 1/(y — 1) and pg = 1/, where + is the ratio of specific heats. The dimensionless core
velocity is Uy = M, the centreline Mach number of the flow. The viscosities and thermal conductivity are
taken to depend linearly on temperature over the relevant temperature range, meaning their small variations
introduce perturbations comparable to the acoustic temperature field.

u(re, /T(r)

r -—l

Figure 1. Schematic of lined cyclindrical duct with radially varying temperature and parallel flow

To gear our analysis to applications inside aeroengines we work in cylindrical coordinates (r, 8, x). The
domain is then a cylindrical shell of infinite axial extent (no leading- or trailing-edge effects) with dimen-
sionless radius r = 1 (see Figure 1). This is divided into two regions: (i) the core of the flow, occupying
0<r<1-4¢, in which the flow is moving with a uniform (or close to uniform) velocity; and (ii) the boundary
layer, occupying 1—9 < r < 1, where the effects of viscosity and thermal conduction cause strong shear
and temperature/density gradients. Here, § is the dimensionless boundary layer thickness, ranging in our
computations from 10~* to 1071, It is assumed that we are studying a steady-state laminar boundary layer
far downstream from leading edges, and that the base flow is at all points parallel with the duct wall. In the
core of the flow, the base flow dynamical variables take the constant zero-subscripted values stated above. In
the boundary layer, the base flow variables follow some r-dependent profile such that no-slip and isothermal
boundary conditions are satisfied at the lining.

The Reynolds number Re, often scaled out of the equations through a relationship with the boundary layer
thickness, is kept in the system here as a separate parameter. This allows the acoustics to be investigated
over a large range of Re—d parameter space, and for the effect of each parameter to be tested separately.
We define the Reynolds number with respect to the centreline sound speed, Re = ¢§i*pg/ui. The Prandtl
number is similarly defined by centreline variables, Pr = ugc; /0. These definitions allow the viscosity and
thermal conductivity to be expressed in terms of Pr and Re as

T T ub T 21)
= —_— = R = .
H ToRe’ e ToRe pg’ ToRePr’
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where 1P is the bulk viscosity.

B. Viscous compressible fluid equations

We are concerned with the dynamics of a viscous compressible gas, for which the stress tensor takes the form

Here, D is the Eulerian rate of strain tensor 2D;; = (du;/0x; 4+ Ou;/0x;); p and § are the dynamic and
second”” viscosity respectively, where 3 is related to the bulk viscosity u? by 8+ 2u/3 = uf. Tt is posited
that the energy dissipation due to the viscous stresses and thermal conduction occurs only (or rather, mainly)
inside the thin boundary layer near a surface (this will be tested later). The full nondimensional governing
equations are "

% + V- (pu) =0, (2.3a)

p%l: =-Vp+V.o, (2.3b)

p%f = %]; + V. (kVT) + Jij(‘(;cu;’ (2.3¢)
= %g, (2.3d)

in which the material derivative is D/Dt = 9/0t +u - V.

We linearise equations (2.3) about the base flow to arrive at the LNS, with acoustic quantities having the
harmonic dependence exp {iwt — ikz — im6f}. The LNS are solved in the domain r € [0, 1], with regularity
conditions applied to the acoustics at the duct centreline r = 0. At the lined wall r = 1, the axial base flow U
satisfies no-slip, as do the axial and azimuthal acoustic velocities 4 and w. Isothermal boundary conditions
are also applied, such that the base temperature, T, has zero gradient at the wall, and the temperature
perturbation, T, is zero at the wall. At the lining, the acoustic pressure p drives a radial velocity v via an
impedance Z: p(1) = Zo(1) (equivalent to the Myers boundary condition due to the no slip at the wall).

3. Numerical method

The LNS as derived forms a system of five equations for five unknowns, (p, , v, w, T), once the density
has been eliminated using the constitutive law (2.3d). We discretise the domain such that the physical r
space has N unevenly spaced points, with more points clustered in the boundary layer to fully resolve the
behaviour there. The physical space is then mapped onto an evenly spaced computational grid, £, allowing
the numerical derivatives to be performed more stably. The relationship

d 0¢d
— = 1
dr  Ord¢ (3.1)
is used to map the r derivatives to the computational domain, where £ and r are related by
tanh S¢
= 2
" tanh .S (3:2)

Here, S is a stretching parameter. Higher values of S allow more points to be clustered near r = 1, and S
was chosen to give at least 400 points in the boundary layer for any §.

The resulting linear system is of the form Ax = b, where A is a 5N x 5N sparse matrix and b is a vector
of zeros bar one entry in which we set the boundary condition p(1) = 1 to force a non-zero solution. We
use a 6th order, unoptimised ", central finite difference discretisation on the uniform computational grid to
approximate the derivatives in A. The system is first order in p and second order in @, ¥, @ and T so we
may apply nine boundary conditions: we choose to apply a regularity condition on all five variables at r = 0,
and leave ¥ unconstrained at the lining » = 1. This leaves the dispersion relation still to be satisfied, as
described below. The system is solved with a sparse matrix solver for the solution vector x.
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A. Mode finding and the effective impedance

Since v is left unconstrained at the boundary, we must use Newton-Raphson iteration to apply the de-
sired impedance boundary condition at » = 1. In this way, (k,w) modes are found for a given azimuthal
wavenumber m by iterating to solve the dispersion relation

o) _ (3.3)

where Z may either take a specified value, or depend on w or k through some liner model (such as a
mass-spring-damper or Helmholtz resonator model).

Our definition of effective impedance is that impedance Z.g which, applied as an acoustic boundary
condition for a uniform, inviscid slipping duct flow, produces the uniform acoustic fields ¢, that match the
viscous, sheared acoustics outside the boundary layer. That is, applying the condition

Pu(1)
= Zog, 3.4
Ba(1) 7" (34)
should allow p, =~ p for 0 < r < 1 — . The assumption made during previous attempts at finding such an
effective impedance ***°" is that this is possible. This will be tested in the next section. For an inviscid flow

and a vortex sheet-boundary layer, the Myers Z.g may be derived:

w

Znvers = ————— 7. 3.5
Y w— Mk (3.5)

The Modified Myers condition adds O(d) terms to (3.5) to account for a finite-thickness boundary layer,
while the leading order viscous condition of Ref. 17 reduces to (3.5) (numerically) if the viscosity and thermal
conduction are set to zero.

The acoustic pressure in a uniform slipping flow satisfies a form of Bessel’s equation,

2

425, 1dpa )
Puj 2CP +((ka)2k27:2>puo, (3.6)

dr2 r dr

where we have taken p(r) =1 and U(r) = M. Equation (3.6) may be solved in terms of Bessel functions,
Pu(r) = EJpy(ar), a? = (w— Mk)* — k2, (3.7)
and the inviscid Euler equations may be used to find the related acoustic radial velocity,

ﬁu(r/‘) — M, (38)

w— Mk
where a prime denotes a derivative with respect to the argument. Using (3.7) and (3.8), then, it is possible
to form explicitly the effective impedance from (3.4):

Jm(a)

Zeﬁ‘ = (W—Mk)m

(3.9)
Importantly, the normalisation constant E drops out when the ratio of p, and 7, is taken. This means that
the value of Z.g for a given Mach number M is only dependent on the triplet (k,w,m), and not on the
amplitude of the acoustics.

B. Base flow

Up to this point we have made no assumptions about the boundary layer profile of the base flow, other
than that it must depend only on r. It is unclear as to what the character of the boundary layer inside a
real aircraft engine intake is. Common velocity profiles used in the literature include power law, sinusoidal,
logarithmic, and linear. It has been shown that the actual profile of the base flow is not as important
to sound attenuation calculations as parameters such as the displacement or momentum thickness”'»”~, so
results found using a single base profile can be considered, in part, to be universal. However, it has been
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shown that the profile can affect the number of surface modes predicted by a model*”, so the profile chosen
may have important ramifications for the stability of the boundary layer. Care must be taken also to ensure
that the chosen base profile satisfies the desired physics: here, we assume the wall and fluid are in thermal
equilibrium, so 7).(1) = 0 must hold for any base profile.

A compressible Blasius flat-plate boundary layer** of thickness 6 (107%-1071) is used for most of the
subsequent computations (see Ref. for details). This is to ensure that a ‘realistic’ interplay between
temperature and velocity is captured in the boundary layer (the focus, afterall, being on viscothermal
effects). Hence, an r-dependent temperature profile is required, as well as a velocity profile.

The Blasius equations were solved on the end section of the stretched physical domain r € [1 —38Y/yp, 1],
mapped to the boundary layer variable y € [0,Y]. The value of yp is the point in the y domain where the
Blasius velocity reaches 0.76 M, and is dependent on the Mach number. The 0.76M value is taken from the
common tanh velocity profile used in Refs. 25,26,35, which is defined below in (5.1). The value Y was chosen
such that the conditions at infinity were suitably satisfied, and such that the matching to the uniform flow in
the core of the duct was sufficiently smooth. Most computations herein use the value Y = 23 which produces
a boundary condition error of 107!°. By scaling the boundary layer by Y/yp, we provide enough ‘room’ in
our duct domain for the Blasius profile solver such that the desired boundary layer thickness convention is
adhered to. We calculate the base flow at leading order only, as the corrections at O(§) from the cylindrical
geometry and boundary layer scaling are considered sub-dominant. We note that if they were included in
the analysis, the cross-flow V' term, appearing at the same order, must also be included, as must the slow
variation of § with axial distance z. The Blasius boundary layer is a function of y/+/x; we use the argument
made in Ref. 341 that solutions for a fixed axial coordinate (we choose here x = 1) are universal.

4. Numerical comparisons: viscous vs. inviscid

The reporting of take-off and flight conditions at the inlet of an aeroengine varies greatly. The Reynolds
number lies in the range 10°-107, and the Mach number is between 0.3 and 0.7, depending on the study. We
will try here to aim for mild generality, and investigate the effects of all (most) parameters on the acoustics
in a lined duct.

To do this, we begin by comparing LNS computations with those from the same solver but with viscosity
set to zero (i.e. the inviscid Euler equations, which reduce to the Pridmore-Brown equation”®, henceforth
PB). This will help elucidate whether (i) viscosity is important in calculating the effect of a ‘soft’ lining on
the acoustics in a boundary layer; and (ii) whether its effects are localised near the boundary, and hence
whether the hypothesis of applying a viscous boundary condition to a inviscid flow has merit.

A. Inside the boundary layer

Although the pressure field is usually what people are interested in when discussing acoustics, we also
consider here the acoustic radial velocity. This is because both the viscous and inviscid numerics adhere to
the boundary condition p(1) = 1, hence any variation of pressure inside the boundary layer is muted by the
boundary forcing.

Figure 2 shows the real and imaginary parts of the acoustic radial velocity inside the boundary layer
as frequency is reduced (left to right) for fixed k, 6, M, m and Re. Plotted are the full, sheared LNS
results, sheared PB results, and, for comparison, uniform slipping PB results. The higher-frequency results
(w =31 and w = 15) in Figures 2a and 2b show that the viscothermal acoustics (solid) deviate from the
inviscid acoustics (dashed) only slightly through the boundary layer, with the largest deviation tending to
be very close to the wall (the acoustic boundary layer). This is in stark contrast to the lower-frequency
results (w = 5) in Figure 2¢, where viscosity is having a large effect on the acoustics throughout the base
flow boundary layer, and the behaviour is qualitatively different, in line with predictions in Refs. 16,
Comparing the values at the wall (r = 1) of the three solutions (viscous, inviscid, and uniform inviscid) in
Figs. 2a and 2c, we see that the magnitude of the viscous effect is of the same order as that of the shear.
Figure 3 shows similar results for a variety of parameters, displaying just the sheared results. Importantly,
Fig 3b shows a situation where viscothermal effects force of a non-zero real part of the radial velocity where
the inviscid counterpart is purely imaginary. (This of course depends upon the normalisation chosen, and
can occur when both the frequency and axial wavenumber are real.)

To quantify the errors of the the inviscid acoustics, we must use an applicable definition of normalised
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Figure 2. Close-ups for the boundary layer showing the real and imaginary part of the acoustic radial velocity for the LNS
(solid), PB (dashed) and uniform PB (dash-dot). In (a) w = 31, (b) w = 15, (¢) w = 5. k = 26 — 14i, m = 12, M = 0.5,
§=7x10"3, Re =1 x 106.

(a) (b) (c)
0.10
0.25
0.00
0.05] 0.20
—0.05]
_ . . 015
& & 0.00 & ) 8
= < g 9 =]
= ~ = ~ =
0.10
—0.10]
—0.05]
0.05
— LNS -2.2
--- Inviscid Euler
=32 Real _0.10! —0.15
—— Imaginary 0.00
0.76M boundary layer 2.4
4
0.996 0.997 0.998 0.999 1.000 0.994 0.995 0.996 0.997 0.998 0.999 1.000 0.96 0.97 0.98 0.99 1.00
r r r

Figure 3. Close-ups for the boundary layer showing the real and imaginary part of the acoustic radial velocity for the LNS
(solid) and PB (dashed). (a) w =31, k =41 +25i, m =0, M = 0.7, § =2 x 1073, Re = 1 x 107; (b) w = 31, k = 60, m = 24,
M=050=2x10"3Re=1x10"; (c) w=31,k=12+2i,m =24, M =03, =3 x 1072, Re =5 x 10°

error. Since the real and imaginary parts of p and ¥ often pass through zero, the relative error throws
anomalous results. We cannot simply consider the relative error of the absolute values as the inviscid and
viscous solutions sometimes have different signs — taking the absolute value would disregard the sign change
and hence the error would be underestimated. We must forgo relative error altogether and consider absolute
error, which we make ‘relative’, in a broad sense, by normalising with respect to the mean value of the viscous
solution throughout the boundary layer. This error definition has difficulties if the mean value throughout
the boundary layer is close to zero, as this can cause the error to be exagerated. Examples of this normalised
error are shown in Figures 4, 5 and 6. Figure 4 shows that substantial errors are common for low and
moderate frequencies (w = 5,15 are the top two rows). Merely increasing the azimuthal wavenumber and
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thickening the boundary layer suppresses most of the large errors at the moderate frequency (w = 15), as
can be seen in Fig. 5. Both Figure 4 and 5 suggest that an increase in Mach number (left to right) leads to
an increase in error in the inviscid approximation, as found in the experiments of Ref. 39. Figure 6 shows
the fragility of the inviscid approximation: changing the wavenumber from k& = 41 + 25¢ to k = 26 — 14,
with all else held constant, introduces massive errors when oscillatory viscous modes are excited in the
boundary layer. The exact size of the large errors visible in Fig. 6 should not be taken as writ due to the
noted problems with the normalisation, but the general trend is important. The conclusion to draw from
these three collections of plots is that for very realisable parameter sets, it is often the case that inviscid
acoustics in a sheared boundary layer at a lining are appreciably wrong when compared with the viscous
acoustics. There are exceptions to this, in which certain parameter sets have small errors close to 1%, or in
which massive errors of over 100% occur, but it is difficult to discern trends that help to predict when these
exceptions will happen. Viscosity, then, is important for the accurate prediction of acoustic modeshapes
inside the mean flow boundary layer at a lined wall.

Normalised Error
© o o
» [e)] [e0]

o
N

Normalised Error
© © o o o o oo
o | N w D Ul NO

- I
€015l — ©
o --- Real
— ea
g 0.10L . Imaginary
© —— Re=5eb5
€  Re—
s 0.05! Re=1e6
= —— Re=b5e6
—— Re=le7 . . Lo o
0'8.0998 10.998

Figure 4. The normalised error of the inviscid acoustics with respect to the viscous acoustics. The rows have frequencies w = 5,
15 and 31 respectively; the columns have Mach numbers M = 0.3, 0.5, 0.7 respectively. Reynolds number increases with line
thickness in Re € [5e5, 1e6, 56, 1e7]. Green lines are for p, blue lines are for ©; dashed shows real parts, dotted shows imaginary
parts. Fixed paramters are k = 41 4+ 254, m = 0 and § = 2e-3.

As an easily comparable measure of accuracy, the boundary layer mode shapes are used to calculate the
Normalised Root Mean Square Error (NRMSE, ¥, defined in (4.1) below) of the inviscid solution compared
to the LNS. Then, 972 parameter sets (detailed in Table 1) are tested. By calculating bulk values of the
mean, maximum and minimum error, a more general view is attained of the error associated with the inviscid
approximation. Table 1 shows the expected trend that higher Reynolds numbers make for a ‘more inviscid’
flow. The mean error through the boundary layer for the acoustic pressure is 2.5% for the moderate Reynolds
number of 5 x 105, while for the high Reynolds number of 1 x 107 the mean error reduces to 1.1%. The
radial velocity sees a larger reduction, from 11% to 3.2%. The results for different Mach numbers are shown
in Table 2, in which the v results lend weight to the hypothesis that errors increase with Mach number. This
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Figure 5. As Figure 4 but with m = 12 and § = 7e-3.

Re | Mean Max Min Mean Max Min

o5ed | 0.025 0.51 9.3e-6 | 0.11 0.84 0.0013
le6 | 0.018 0.37 5.0e-6 | 0.083 0.73 8.4e-4
o5e6 | 0.012 0.38 1.1e-6 | 0.043 0.59 2.9e-4
le7 | 0.011 0.41 5.5e-7 | 0.032 0.53 1.8e-4

Table 1. Bulk analysis of 972 parameter sets for which the Normalized Root Mean Square Error (NRMSE) was calculated for
both p and ¥ over the boundary layer. The mean, maximum and minimum of the NRMSE are shown here for various values of
the Reynolds number. All permutations of the following parameters were used: w € [5,15,31], k € [12 + 2i,41 + 257, 26 — 144],
m € [0,12,24], M € [0.3,0.5,0.7], § € [2e-3,7e-3,3e-2] and Re € [5€5, 1e6, 5e6, 1e7].

bulk treatment also allows a clearer picture to be painted of the dependency upon frequency of the inviscid
error: the mean o errors are 16%, 3.2% and 1.2% for w = 5, 15 and 31 respectively. To conclude, it is difficult
to predict for what values of k, m, and ¢ viscosity will play a substantial role — it is clear, however, that it
very often does, and that the inviscid errors are strongly dependent on frequency and weakly dependent on

Mach number.

B. Outside the boundary layer

The hope of those working with boundary conditions for lined ducts is that near-wall effects (viscosity,
thermal conduction, strong shear) do not penetrate far into the duct core. Then, it is reasoned, the physics
of these effects may be collapsed into a single boundary condition. This condition would be applicable, at a
lined wall, to a flow that suffers from none of said near-wall effects (for instance, an inviscid uniform slipping
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Normalised Error

M | Mean Max Min Mean Max Min

0.3 ] 0.012 0.30 5.5e-7 | 0.053 0.82 1.8e-4
0.5 ] 0.010 0.22 1.3e-6 | 0.067 0.84 2.0e-4
0.7 ] 0.027 0.51 1.3e-6 | 0.084 0.79 2.3e-4

Table 2. As in Table 1, but showing the mean, maximum and minimum NRMSE for various Mach numbers.

flow). Here we assess this hope. To do this, the uniform pressure solution, p,, from equation (3.7) is matched
to the full LNS solution for a given parameter set, and the error outside the boundary layer calculated. The
matching is performed numerically at a set of radial positions r,, by iterating the normalisation constant F,
in (3.7), to minimise the expression 1 —pyu(r;)/p(r;), where r; € ry,,. Then, x(pu) over the core of the duct is
calculated for each matching point in r,,. The minimum of these errors then gives an approximation of how
well the LNS acoustics are approximated by the invisicd, uniform flow acoustics outside the boundary layer.
We define outside the boundary layer here as where there is almost no shear. We adopt the 99% boundary
layer convention for this purpose — that is, the base flow velocity for all r; € r,, satisfies U(r;) > 0.99M, for
the core Mach number M.

The NRMSE does not have a standard form (the method of normalisation varies, e.g. by the mean value
or by the total range), and it is less well defined for our particular case (where the mean is meaningless for
an wave oscillating about zero, and the total range has no direct counterpart for complex values). We choose
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to define x as follows:

CnN . o
=0 -G - P
=0
— 4.1
X MaxDist(p) ’ (41)

where (p — pi,) is the complex conjugate of (p° — ¢ ), Cy is the number of grid points outside the boundary
layer, and p° is the value of the pressure at the ith grid point. The function MaxDist is a generalisation of
the total range of a real-valued function, max(-) — min(-). It is the maximum absolute distance between two
coordinate pairs (Re{p'},Im{p'}), (Re{p’}, Im{p’}); effectively the diameter of the smallest circle in the
complex plane that contains all values of p.

For the 972 parameter sets tested inside the boundary layer (detailed in the caption of Table 1), the
matching procedure described above was performed and the minimum matching y calculated (i.e. the best-
matched solution was found). The average x of the best-matched uniform acoustics outside the boundary
layer was found to be 0.0062% for p and 0.14% for ©. The matching of a viscous boundary layer to a inviscid
uniform core flow is justified, in most cases, by these small errors.

5. Comparison of existing impedance boundary conditions

In the previous section it was shown that at the high Reynolds numbers we are considering, viscous effects
on the acoustics are in general localised near the boundary. The acoustic pressure and velocity deviate from
their inviscid counterparts either in the small acoustic boundary layer or over the base flow shear layer.
Outside the base flow boundary layer, the acoustics are very well approximated by the correctly normalised
uniform, inviscid solutions (which in cylindrical geometry are expressible in terms of Bessel functions, Egs.
(3.7), (3.8)). It was also evident that for certain sets of parameters, viscosity did not alter the acoustics
even inside the boundary layer by much. So, models that collapse a sheared boundary layer into a boundary
condition applicable to a uniform flow have merit. Here we compare three such boundary conditions to see
when they should and should not be used.

Two inviscid conditions are tested: the Myers (or Ingard-Myers) condition'”*"| and the Modified Myers
condition”". The Myers condition treats any base flow shear as a vortex sheet very close to the wall,
and asserts zero flow on the wall side and uniform flow on the other. Continuity of acoustic pressure and
displacement are assumed across the sheet. The Modified Myers condition models the bulk effects of the base
flow shear layer by expanding in terms of a finite thickness boundary layer, capturing more of the physics of
the problem. One viscous boundary condition is tested: that of Brambley ', which is effectively the viscous
Myers condition, and which must be calculated numerically. Not considered here are two other notable
studies that suggest a viscous impedance boundary condition: those of Adregan et. al. ® and Nayfeh . In
Ref. 106, the velocity and temperature were restricted to having small variations across the boundary layer;
in Ref. 15 only the acoustic boundary layer is considered rather than the base flow boundary layer. We thus
only test Brambley’s viscous condition, which does not have these restrictions (though, as will be shown,
suffers from the same ill-posedness as does the Myers condition).

In order to compare the three conditions fairly, a tanh velocity profile is chosen,

U(r) = M tanh (1 - T) 4+ M(1 = tanh (1/5)) (Htal;h(l/‘s)r e 7“)) (1—7), (5.1)

which can be exactly transformed to the boundary layer variable to calculate the viscous boundary condi-
tion'’. For simplicity a constant density p(r) =1 is used.

First we look at the accuracy of Zeg predictions. As shown in (3.9), we can calculate Zeg analytically
given the boundary impedance Z. To get Z we solve the LNS for a given parameter set and then take
p(1)/9(1). This is the impedance that we pass to the three boundary conditions described above. They
each output an effective impedance which we compare with the solution from (3.9). In Figure 7 the merit
of both the first order inviscid, (b), and leading order viscous, (c), conditions can be seen, as both are
improvements over the Myers condition, (a). The regions where the Myers condition is usefully accurate
(warmer colours) are localised close to the origin. Accuracy is lost well within the plotted domain. The
Modified Myers condition extends the region of accuracy down, and just off, the negative real line, but does
not improve upon the Myers condition much in the right half plane. The leading order viscous condition
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improves the accuracy more uniformly around the origin, but does not reach the high accuracies attained by
the Modified Myers condition in most of the left half plane. This suggests that there are regions of k-space
where viscosity is important, and regions where the inclusion of a finite thickness shear layer is important.
At the higher Reynolds number (5 x 10°) and higher frequency (w = 31) shown in Figure 8, the effect of
including viscosity is diminished — compare (a) and (c) — while the inclusion of a finite thickness shear layer
still has an appreciable effect — compare (a) and (b).

(a) (0) (c)

10

S
2
3
S

50

Im(k)

=50

_ ; | o> %, S
10 00 -50 0 50 100-100 -50 0 50 100-100 -50 0 50 100

Re(k) Re(k) Re(k)

Figure 7. Contour plots in the complex k plane showing the relative error of Z.g as predicted by the three impedance boundary
condition models described in the main text. (a) is the Myers condition (leading order inviscid), (b) is the Modified Myers
condition (first order inviscid), (c) is the leading order viscous Myers condition. The impedance at each point is taken from the
LNS solution. w =7, M = 0.5, m =12, § =2 x 1073, Re = 1 x 10%. A tanh boundary layer profile is used, Eq. (5.1).

Figure 8. Contour plots in the complex k plane showing the relative error of Z.g as predicted by the three impedance boundary
condition models described in the main text. (a) is the Myers condition (leading order inviscid), (b) is the Modified Myers
condition (first order inviscid), (c) is the leading order viscous Myers condition. The impedance at each point is taken from the
LNS solution. w =31, M = 0.3, m =24, § =3 x 1072, Re = 5 x 105. A tanh boundary layer profile is used, Eq. (5.1).

A. Position of modes in the k-plane

Here we compare the three boundary conditions to the full LNS by looking at the position of modes in the
complex k-plane. When a duct has a soft wall (a finite impedance) all modes have a non-zero imaginary
part??. For stable modes, the sign of the imaginary part of the wavenumber tells us the direction of
propagation of the decaying mode. A sheared boundary layer can support wave modes localised near the wall,
known as surface modes”'. These surface modes may become convectively unstable and grow in space”' ",
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In this case the imaginary part of the wavenumber tells us the growth rate of the unstable wave: a growing
unstable wave propagating downstream has the same sign of Im(k) as a decaying wave propagating upstream
when the frequency is purely real. Viscous and thermal dissipation are (usually) stabilising mechanisms, so
the stability properties of surface modes for a fully viscous, sheared boundary layer can be expected to be
different from those predicted by any existing effective impedance boundary conditions. Figure 9 shows the
modes for w =5, m =0, and § = 2 x 1073, The Reynolds number is chosen to satisfy the Blasius flat-plate
scaling of 1/6%, such that Re = 2.5 x 10°. Figure 9b shows the acoustic cutoff modes. There is an interesting
contrast between upstream- and downstream-propagating modes: upstream-propagating modes (Im(k) > 0)
are more affected by viscosity (the leading order viscous modes are more accurate); while the downstream-
propagating modes (Im(k) < 0) are more affected by the finite-thickness shear layer (the Modified Myers
modes are more accurate). Although the Myers condition seems to be performing comparatively well for the
downstream-propagating modes, this does not hold for other parameter sets tested.

(a) (b)
200 200
150 150,
100 i 100
50 ° 50
g * * g
E 0 3 E 0 we
—50 x -50
-100 Myers -100
Modified Myers
—150 x  Leading order viscous —150
+ LNS
—20055 0 20 40 60 80 100 —200——¢ 5 -3
Re(k)

Figure 9. Modes in the k-plane for three effective impedance boundary conditions, and the LNS. w =5, m =0, § = 2 x 1073,
Re = 2.5 x 10% and M = 0.5. Impedance is modelled as a mass-spring-damper, Z(w) = R+ iwd — ib/w, with parameters R = 3,
d=0.15, b= 1.15.

The right-most modes in Fig. 9a are surface modes. None of the existing boundary conditions accurately
predict the LNS surface mode. Importantly, we see that the surface modes for the two viscous solutions (LNS
and the leading order viscous boundary condition) have crossed the real k axis. For the reasons mentioned
above, this has ramifications for the stability of the mode. If the imaginary part of the frequency is reduced
from zero to sufficiently negative, the movement of the mode in the k-plane should indicate whether it
is stable or unstable (this is the Briggs-Bers stability criterion””""). In Figure 10 the Modified Myers
surface mode crosses the real axis, indicating that it is a downstream-propagating convective instability,
as expected "% °7. Also as expected, the Myers surface mode displays erroneous behaviour. The leading
order viscous condition appears to qualitatively predict the behaviour of the LNS mode: The LNS surface
mode does not cross the real axis, and hence remains stable. However, we need only plot the growth rate
of the surface mode for the viscous boundary condition to see that it too predicts erroneous results. Figure
11 shows the growth rate of the unstable surface mode as it changes with real k. The modes for both the
Myers and the leading order viscous conditions have unbounded growth rates. The Modified Myers condition
regularises this problem and displays a bounded growth rate. The full behaviour of the LNS mode is not
captured by any existing boundary condition, however. For small k the LNS mode is stable; it destabilizes
as k is increased; for some finite k& the mode re-stabilizes.

It has been shown that the Myers condition is not sufficient in general for predicting acoustics in a viscous
fluid. The two existing improvements on the Myers condition — the inclusion of a finite-thickness boundary
layer, and the inclusion of viscothermal effects at leading order — both have merits, but neither capture the
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Figure 10. Modes in the k plane as Im(w) is varied from 0 (points) to —10 with Re(w) = 5 held fixed. Other parameters as in
Figure 9.

full behaviour of the LNS.
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Figure 11. The evolution of the growth rate (—Im(w)) of the unstable surface mode as k (real) is increased. m = 0, § = 7x 1073,
Re = 5 x 108 and M = 0.5. A tanh velocity profile is used (5.1). Liner impedance is modelled as a mass-spring-damper,
Z(w) = R+ iwd — ib/w, with parameters R = 3, d = 0.15, b = 1.15.

6. A new model for the effective impedance

In Section § 5 it was shown that none of the existing effective impedance boundary conditions capture
fully the behaviour of a sheared, viscothermal boundary layer over an impedance lining. Here we address
this issue by deriving a new boundary condition.

Consider a cylindrical duct with uniform, inviscid flow of Mach number M in 0 < r < 1—§, and a sheared
viscous boundary layer in 1 — § < r < 1. As in the LNS computations described above, in the boundary
layer the base flow axial velocity, temperature and density follow some r-dependent profiles U(r), T'(r) and
p(r), respectively. We use the Blasius flat-plate boundary layer scalings

r=1-4dy, £Re = 1/6°, o0 =1, (6.1)
where £, nominally O(1), allows the decoupling of Re and d; and then make the helpful pre-emptive scalings

w=0a, T=06T, ©=0d0. (6.2)

These scalings allow the mass, momentum and energy equations to balance when expanded in terms of the
boundary layer variable y. The pressure and azimuthal velocity remain O(1). Expanding Egs. (2.3) and
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retaining all terms up to O(6), the boundary layer perturbation equations become

i(w — UK)T + ikTi — T? (;ﬂ) = 6 [yi(w — Uk)Tp — TH — imT] , (6.3a)
i(w— Uk)i+ Uy — £(y — 1)°T(Ta, + UyT)yyz 5 [z’(fy — KT — €(y — 1)*T(Ta, + UyT)] . (6.3b)
By = 8 |2¢(v = 1)(Ti,)y + £(v — 1) (’;B - g) (T, — ikTa), — W@ i€y — V)k(Tay, + in’)} ,
(6.3¢)
£(Tiy), — i(;"__ll)];;)w - —7”_” B+ 00), (6.3d)

i(w— UK)T + Tyo — %5(7 —1)*T(TT)y, — £(y — V?T(UZT + 21U a,) =
B) [(’y —1)i(w — Uk)TpH — %g(v —1)2T(TT),| . (6.3¢)

The viscothermal parameter ¢ takes the value 1/(Red?), and tends to zero for inviscid flows. Equations (6.3)

must be solved inside the boundary layer by assuming an expansion of the form ¢ = ¢(© 4 6¢") + O(6?) for
the acoustic quantities. The solutions may then be matched to the inviscid acoustics (i.e. (3.7) and (3.8))
above in the limit y — oo.

A. Boundary conditions

To write fully the boundary conditions that equations (6.3) satisfy we first need to understand what is
happening at the transition between the viscous and inviscid regimes. Consider two cylindrical ducts, A and
B. Duct A has uniform inviscid flow throughout, and B has the flow regime we study here. Both A and
B have the same core flow mach number, M. From the centreline of the ducts out to a radius of r =1 -9
the acoustics in each duct are assumed to be identical (as justified in § B). The acoustic pressure and radial
velocity in A, p, and v, respectively, may be expanded about the boundary:

Pu = Doo — 0y, + O(6%),  vu = v — Syvl, + O(6%), (6.4)
where po and v, are the values at the wall. The derivatives, derived from the Euler equations, are

, (w— ME)? — k% —m?

P = —i(w — Mk)ve, v = i = MF) Poo — Vso- (6.5)
Now, if we choose a normalisation for B, our viscous system, by setting p(°) = 1, and assert that the
impedance boundary condition is satisfied exactly at leading order (that is, 9(?)(0) = —1/Z) we cannot know

anything about the normalisation of the inviscid system we are matching to (this would over-prescribe the
system). In other words, the values po, and v, must have expansions in orders of 0: p, = pg,g) + 5p§>) and

Voo = v((,g) + 51)(%). (In this way we ensure that Zeg = poo /v is calculated to first order.) Then, we match

our solutions in B to the uniform solutions in A at infinity,

P(y) =Dpoc — Sypls
=p0 +6p) + byi(w + MEWD,  y— o, (6.62)
—0(y) =voo — SYv,

2 _ 1.2 2
— 0 4 5D (o) _ W= ME)* — Kk —m” )
Vs + vy, + 0y <voo (e — 3K ped | Y — 00. (6.6b)
The boundary conditions that correctly close the system, then, are
W90)=0, TO0) =0, —i0)z=5p, @0) =0,
aO%y) -0, TO®W) =0, @9 > w, as y— oo, (6.7)
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at O(1), and

a)y=0, TW©)=0, #M(0) =0,
A (y) —»ue, TO(Y) =Ty, as y— oo, (6.8)

at O(0), along with the matching conditions described in (6.6).

B. Numerical method

We solve the system (6.3), (6.7), and (6.8) in four parts. First, we choose the base flow (either the Blasius,
§ B, or tanh, (5.1), profiles from above). The leading order system for @@, 5 and 7O is discretized
on the y domain described in § B, with derivatives approximated using a fourth-order symmetric finite
difference scheme. The linear system Ax = b is formed, where A is a sparse banded 3N x 3N matrix, and
solved by a direct sparse solver to find the solution vector x. We ensure that A is not singular through the
application of the inhomogeneous boundary condition ©(%) (0) = —ﬁ(o)/Z. The boundary conditions for 4(%)
and 7 at infinity are applied at ¥y = Y by considering the solutions to the governing equations outside
the boundary layer, for y > Y, where the equations decouple. Following Ref. 17, we find 4(9) o exp{—ny},
7O x exp{—hny}, where h? = Pr and n? = i(w — Mk). The branch cut for  must be chosen such that it
is not real and negative. This ensures our solutions decay as y — oco. Thus, the boundary conditions that
force decay at infinity are
ﬁl(jo) +7a® =0, Ty(o) + hnT(O) =0.

After the solution has been found, the decoupled continuity equation for y > Y,
0 = i(w — Mk)(y - )T + ika®),

is used to extrapolate the value of (°) at y =Y to y = oo (though the change is exponentially small, and
usually outside the realms of the accuracy of the numerics).

Second, the first order correction to p is calculated using solution to the leading order problem. From
(6.3¢) we find

50 — 9y T8O 4 (v—1) [ PB _ 2 (760 _ipra©@y— [T ZUE) so) i 1reTa ;
P =2(y=1)To,"+(v—1) 3 (T0,” —ikTu™) e l)TU +i(y=1)k(To,+U,T)dz, (6.9)
o —

where the integral may be performed numerically. From (6.9) we can see that only the second group of terms
is affected by the value of the ratio u¥ /u*. We employ the continuity equation (6.3a) to rewrite these terms
as

T — iki?) = i(w — UR)T + T, + O(9). (6.10)

Now, at y=0, our boundary conditions (6.7) tell us T(O)(O) =0, while our assumption of thermal equilibrium
between the wall and fluid forces T, (0) =0. Hence the right hand side of (6.10) is always zero at the wall. As
y — 00, we again have the boundary condition 7O 0. Also, in this limit the base temperature is assumed
to reach its constant core value, so T,,=0. So the right hand side of (6.10) is always zero at the edge of the
boundary layer. The value of the O(§) correction to the pressure perturbation is thus only affected by the
bulk viscosity in the interior of the boundary layer. Since the calculations of the effective impedance Z.g
only use the values of ¥ and p at the boundaries of the domain, it follows that the value of Z.g will never
be affected by a change in the bulk viscosity in this model. The mode shape of p(*) is changed, however, so
one must be careful in using said shape in any analysis.

At this stage, the inhomogeneous @ equation, (6.3d), may be solved as a stand-alone problem for w0,
meaning the matrix A, above, may be reused at first order, with only the boundary condition rows having
to be altered. Third, the leading order results are used as forcing on the right hand side of the first order
problem. The boundary conditions at infinity are again applied at y = Y by matching to solutions of the
governing equations outside the boundary layer, in the uniform base flow region. This amounts to matching
to the uniform flow values (those with the subscript ‘v’ in (6.7) and (6.8)) and making an exponentially
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small adjustment. For completeness, at y =Y,

B0+ i © = nu,, (6.11a)
1

aD(Y) =uy + §Ya<0> (V) +ae™, (6.11b)

N 1. .

TON) =Ty + JYTOY) + b, (6.11c)

where u, = kp® /(w — ME), wy, = mp® /(w — Mk) and T, = p(¥. The middle terms on the right hand
sides of (6.11b) and (6.11¢) are indeed exponentially small due to the boundary conditions at leading order.

Fourth, and finally, we use the matching principle described in (6.6) to find po, and v, the values of
the acoustic pressure and radial velocity at the impedance wall of the associated inviscid, uniform base flow
system. In this way we arrive at the effective impedance, Zog = Poo/Voo, t0 first order in the boundary layer
thickness, that, when applied at the wall of a duct with uniform inviscid flow, emulates the effects on the
duct acoustics of a viscothermal boundary layer. The effective impedance may be applied using the Myers
boundary condition”’, with the new Zg replacing the classical Zyyers = Z/(1 — Mk/w).

C. Results
(a)
100
o
N
50
=
g 0
-50
~10855 100

Figure 12. Contour plots in the complex k plane showing the relative error of Z.g as predicted by the new first order viscous
impedance boundary condition. (a) w =7, M = 0.5, m =12, =2 x 1073, Re = 1 x 10%. (b) w = 31, M = 0.3, m = 24,
§=3x10"2, Re = 5 x 105. A tanh boundary layer profile is used in both plots, Eq. (5.1), and the impedance at each point is
taken from the LNS solution.

The tests of the existing boundary conditions in § 5 are repeated here for the new boundary condition.
First, the errors in Z.g are plotted in Figure 12 for the parameter sets shown in Figures 7 and 8. At low
frequency, the new condition performs brilliantly throughout the domain (Fig. 12a), allowing for the loss
of accuracy in the anomalous region past the branch cut in the lower right quadrant. The improvement
over the existing models is less pronounced at high frequency (Fig. 12b), but it is clear that the new model
retains all of the positive parts of the Modified Myers and leading order viscous conditions. (Note: the poor
performance in Fig. 12b is expected, as the derivation of the new condition assumes, like the existing models,
that k,w < 1/4. For this plot, this means k,w < 33 for the model to be asymptotically valid. Hence, at the
high frequency of w = 31, and near the edges of the k& domain, errors are expected.)

Second, the k-plane modes are plotted in Fig. 13. The new first order viscous model predicts the position
of the surface mode exceptionally well (right-most modes, Fig. 13a), and both the upstream and downstream
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Figure 13. Modes in the k-plane for the new first order viscous condition, the three existing boundary conditions, and the
ILNS. w =5 m =0, = 2x 1073 Re = 2.5 x 10° and M = 0.5. Impedance is modelled as a mass-spring-damper,
Z(w) = R+ iwd — ib/w, with parameters R = 3, d = 0.15, b = 1.15. (a) shows two mode-tracks for the surface mode, as Im(w)
is reduced from zero to —10 with Re(w) = 5 held fixed.

cutoff modes are more accurately reproduced (Fig. 13b). The surface mode of the new condition is traced
in Fig. 13a as Im(w) varies, and shows a much better agreement with the LNS mode than the existing
conditions (c.f. Figure 10). Importantly, this suggests the new condition is capable of correctly modelling
the stability of the surface waves supported by acoustic linings.

2.0]
1.0

1.5

0.5
1.0

0.0k

3 05 3
8 B
0.0
—0.5
—0.5| delta
increasing
-1.0 --- First order viscous -1.0
—— LNS
20 40 60 80 100 120 10 20 30 40 50 60 70 80 90

k k

Figure 14. The growth rate of the unstable surface mode as k (real) is increased, for the new first order viscous model (red,
dashed then dash-dot) and the LNS (purple, solid then dotted). (a) Reynolds number is decreased from Re = 5 x 10 through
1 x 108, 5 x 10%, 3 x 105, 2 x 10° to 1 x 10° with § = 7 x 10~3 held fixed. (b) Boundary layer thickness is increased from
§ =7 %1073 through 1 x 1072, 1.5 x 1072, 2 x 10~2 to 2.5 x 10~2 with Re = 5 x 10 held fixed. In both cases, m = 12 and
M = 0.5. Impedance is modelled as a mass-spring-damper, Z(w) = R + iwd — ib/w, with parameters R = 3, d = 0.15, b = 1.15.

Third, to explicitly investigate the stability, the behaviour of the possible instability mode is plotted in
Figure 14 as Re and § vary. We conjecture that the new condition may be used as a useful tool to investigate
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the stability of the LNS near a lining: the qualitative behaviour of the mode is predicted correctly (the loss
of accuracy as k increases is expected, as described above). The agreement is not perfect, though, as shown
by the second-to-last (as Re is decreased) mode in Fig. 14a which is unstable for the LNS for stable for the
new model. This does not diminish the great improvement of the new model over the existing ones, however.

Figure 14 hints at an interesting relationship between Re and ¢ as parameters which govern the linear
stability of a mode. In inviscid studies this is wholly lost, and the unstable mode remains theoretically
unstable. Here, however, the separation of the two parameters allows their effect to be viewed independently.

7. Concluding remarks

This paper has tackled four questions: whether viscosity is important for calculating the acoustics in
a sheared boundary layer at a lined wall; whether near-wall effects really are localised to the wall, such
that a boundary condition on a uniform flow can be applied; whether existing effective impedance boundary
conditions capture the true behaviour of viscous, sheared acoustics; and whether a new boundary condition
can be derived which does just that.

By comparing solutions of the Linearised Navier—Stokes (LNS) and Pridmore-Brown equations inside the
base flow boundary layer, it was found that the errors associated with using inviscid equations is appreciably
large, and that viscothermal effects can sometimes be as important as shear. For the 972 parameter sets
tested, the Normalised Root Mean Square Error (NRMSE) of the inviscid acoustics compared with the
viscous acoustics over the boundary layer averaged 6.8% for the radial velocity and 1.6% for the pressure
(with the proviso that the acoustic pressure satisfied the same boundary condition for the viscous and
inviscid computations, so the error was suppressed). Often the NRMSE rose above 10% (in 143 of the 972
test cases). One result of this bulk testing was the discovery of a trend linking increased Mach number to
increased inviscid error. Another trend was that lower frequency acoustics were more effected by viscosity.
These two trends were suggested in the experimental study Ref. 39, and support the results of Ref. 16, in
which it was found that the inviscid Myers condition was recovered from an asymptotic viscous boundary
condition only at high frequency. Note that a Helmholtz number of w = 5 is small in this case.

Outside the boundary layer, where the shear is small or zero, the mode shapes of the viscous acoustics
were matched to the analytic expressions for the uniform inviscid acoustics. For the same 972 parameter sets,
the average NRMSE of the uniform invsicid acoustics outside the boundary layer was found to be 0.0062% for
the pressure and 0.14% for the radial velocity. These low errors suggest that applying a boundary condition
to a uniform slipping flow instead of modelling the sheared, viscous boundary layer is warranted. The near-
wall effects of shear and viscosity do not penetrate far into the duct, with only 26 of the 972 test cases having
an average error of more than 1% throughout the duct.

Three existing effective impedance boundary conditions were tested against LNS computations. The
Myers condition ”*") known to be illposed '© and fallible when compared with experiments “~ ", was shown
to be inadequate in its effective impedance predictions except in small, isolated regions of wavenumber space,
usually near the origin. It is unsuitable for predicting the stability of surface modes, but for its simplicity
it approximates acoustic cutoff modes fairly well. The Modified Myers condition" " is an inviscid condition
that takes into account the finite thickness of the base flow boundary layer. It is well-posed, and as such can
be used to predict the stability of surface modes. However, it was shown that viscous dissipation plays an
important role in determining the stability of surface modes, hence the inviscid Modified Myers condition
does not capture the possibility of a mode restabilizing at high wavenumbers or low Reynolds numbers. The
leading order viscous condition ' was shown also to be illposed, and hence unsuitable for stability studies,
despite its improvement over the inviscid models in predicting upstream-propagating cutoff modes. The
result stemming from these comparisons is that neither viscosity nor a finite-thickness shear layer alone are
enough to fully capture the behaviour of viscous sheared acoustics as calculated by the Linearised Navier—
Stokes equations. Hence, no existing boundary condition is the complete package.

To rectify this problem, the paper culminated in its main result: a new boundary layer expansion of the
Navier—Stokes equations in the small boundary layer thickness 4, leading to a system of equations that may
be solved numerically to calculate the effective impedance of a viscothermal boundary layer over an acoustic
lining. The new condition was shown to agree extremely well with the full numerics in all tests. It is an
improvement over the existing boundary conditions for predicting the position of cutoff and surface modes;
for studying mode stability and approximating maximum instability growth rates; and for straightforward
effective impedance calculations. Although no analytic form for the boundary condition is found, the derived
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system of equations could be efficiently incorporated into a boundary solver without much computational
cost. Work on finding approximate analytic forms of the new boundary condition, for different boundary
layer scalings or parameter limits, is ongoing.
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