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The acoustics of sheared viscous
flow over impedance linings

Doran Khamis

This thesis considers the propagation and stability of acoustic perturbations to the steady
flow of a perfect gas through a cylindrical duct in the presence of shear and viscosity. Acoustic
boundary conditions that account for the physics of both the boundary layer and the lined duct
wall are derived and evaluated.

For an inviscid fluid, existing asymptotic results are extended to greatly improve the accuracy
of acoustic mode prediction for thin boundary layers, while retaining the regularisation of previous
boundary models. A non-asymptotic approach is proposed that performs well for thicker boundary
layers and shorter wavelength sound.

Viscothermal effects on the acoustics above an impedance wall, often neglected in aeroacoustic
computations, are investigated numerically. It is found that viscosity can be as important as shear,
and therefore including shear while neglecting viscothermal effects is questionable. The damping
rate of upstream propagating waves is found to be under-predicted by the inviscid theory. The
effects of viscosity on stability are also found to be important. It is shown that a viscous flow over
an impedance lining supports a greater number of surface wave modes than an inviscid flow.

By assuming a thin boundary layer, asymptotic analysis in both an unrestricted and a high-
frequency regime lead to different boundary layer governing equations for the acoustics. The
equations for the the first regime must be solved numerically, while the high-frequency limit yields
analytical solutions. A closed-form effective impedance boundary condition is derived, suitable for
application in frequency-domain numerical simulations, and is shown by comparison with numerical
solutions to be highly accurate.

An asymptotic two-deck model for the boundary layer is proposed, using a novel thickness–
Reynolds number scaling to allow analytical solution. A closed-form effective impedance boundary
condition is derived for an unrestricted frequency. The viscous boundary condition correctly pre-
dicts the attenuation of cut-on modes and the position of surface modes, unlike existing inviscid
boundary conditions. The temporal stability of the two-deck model is found to be well behaved,
allowing a time-domain formulation to be proposed.

Finally, the attenuation predictions for various boundary models are investigated by calculating
the reflection coefficients for a plane wave incident on a flat impedance surface. The classical
Ingard–Myers boundary condition is shown to incorrectly predict the damping rate of sound in
many cases, while it is found once more that viscosity greatly affects the attenuation of upstream
propagating sound.

i



Dedication

To my whole family, near and far

ii



Declaration and Acknowledgements

This dissertation is the result of my own work and includes nothing which is the outcome of work
done in collaboration except where specifically indicated in the text. The analysis of chapter 2
has been published (Khamis & Brambley, 2016a), and chapters 3–5 have been submitted for
publication (Khamis & Brambley, 2016b,c). Parts of chapters 3–5 have also been presented at
international conferences (Khamis & Brambley, 2015, 2016d).

I would like to thank my supervisor, Dr. E. J. Brambley, for his guidance, patience and good
humour. I would also like to express my gratitude to Dr. L. J. Ayton for all of our fruitful
discussions—and for the fruitless. Thanks must also go to Mr. R. Suliman, who suffered through the
sharing of my office in spirit, if luckily rarely in body. Finally, I am indebted to several important
people who listened to me consistently throughout my PhD when my confidence wavered, so thank
you to those family members and friends who endured, indulged or ignored me.

This work was supported by an EPSRC grant. I would like to thank Darwin College for funding
part of my expenses for attending the AIAA/CEAS aeroacoustics conferences in Dallas, TX in May
2015, and in Lyon, France in May 2016.



iv



Contents

1 Introduction 1
1.1 Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Thermodynamics and the equations of fluid motion . . . . . . . . . . . . . . 6
1.1.2 Nondimensionalisation, scaling and linearisation . . . . . . . . . . . . . . . 7

1.2 Introduction to duct acoustics and impedance boundary conditions . . . . . . . . . 9
1.2.1 Solutions in a duct with uniform, inviscid flow . . . . . . . . . . . . . . . . 10
1.2.2 Dispersion relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 Effective impedance boundary conditions . . . . . . . . . . . . . . . . . . . 13

2 Acoustic boundary conditions at an impedance lining in inviscid shear flow 15
2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 The uniform solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 An impedance governing equation . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Deriving the asymptotic solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 The Runge–Kutta solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 The explicit scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 A single-step implicit scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Accuracy of Zeff models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Simplified forms and limiting cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Linear boundary profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Surface modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Wavenumber spectrum and stability . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.1 The unstable hydrodynamic mode . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.A Details of the asymptotics of the p̃ and ṽ governing equations . . . . . . . . . . . . 32
2.B Asymptotics of the impedance governing equation . . . . . . . . . . . . . . . . . . 34
2.C Surface mode asymptotics of Ij integrals . . . . . . . . . . . . . . . . . . . . . . . . 36
2.D The implicit scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 A numerical study of the effects of shear and viscosity on sound attenuation
and flow stability 39
3.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Steady base flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.2 The linearised Navier–Stokes equations . . . . . . . . . . . . . . . . . . . . 40

3.2 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Comparisons of viscous and shear effects . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Impedance errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Accuracy of modes in the k-plane . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Surface waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.A Details of numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.A.1 Regularity at r = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.A.2 Mode finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.A.3 Numerical convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

v



CONTENTS

4 Asymptotic analysis of viscous effects on the acoustics and stability of a shear
layer over an impedance wall 55
4.1 Asymptotic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Boundary layer asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.2 High frequency asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Comparison of asymptotic and numerical results . . . . . . . . . . . . . . . . . . . 60
4.2.1 k-plane modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 ω-plane modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 Accuracy of high frequency asymptotics at lower frequencies . . . . . . . . . 63
4.2.4 The ratio Zeff/Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.A Numerical boundary conditions and extrapolating to infinity . . . . . . . . . . . . 69
4.B Solving the high frequency boundary layer equations . . . . . . . . . . . . . . . . . 71

4.B.1 Matching the high frequency solutions to the outer flow . . . . . . . . . . . 75
4.B.2 The effective impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.C Alternate high frequency asymptotics: two small parameters . . . . . . . . . . . . . 77

5 Analytic solutions for the acoustics in a two-deck viscothermal boundary layer 87
5.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Main boundary layer solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Matching the main boundary layer solution to the outer flow . . . . . . . . 90
5.2.2 Behaviour of the main boundary layer solutions near the boundary . . . . . 91

5.3 Viscous sublayer solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.1 Matching with the main boundary layer solution . . . . . . . . . . . . . . . 93

5.4 Results for the mode shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.1 Composite solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 The effective impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5.1 Forming the effective impedance . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6.1 Wavenumber spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6.2 Temporal stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 Suggestion of a time-domain formulation . . . . . . . . . . . . . . . . . . . . . . . . 104
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.A Determining the sublayer scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.B Solving inside the sublayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.C Details of the viscous sublayer–main boundary layer matching . . . . . . . . . . . . 110

6 A study of the attenuation properties of various boundary models via plane
wave reflection coefficients 113
6.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 Asymptotic reflection coefficients . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.2 Computational method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2.1 Two dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.2 Three dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Conclusion 127
7.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

vi



Chapter 1

Introduction

The propagation of sound is greatly affected by the mean motions of its medium. When a sound
wave travels from a region R1 with mean velocity U1 to a region R2 with mean velocity U2,
refractive and reflective events occur (Ribner, 1957). The vortex sheet interface between the two
velocities acts like a permeable wall with a finite acoustic impedance Z. Acoustic information
may be passed between the two regions of uniform flow (where the governing equations simplify)
via the impedance relation p = Zv, where p is the acoustic pressure and v the acoustic velocity
normal the interface. The interface between the two fluid layers is susceptible to the Kelvin–
Helmholtz instability, the characteristic rolls and billows of which are commonly seen, visualised
by clouds, in atmospheric fluid flows. For a vortex sheet interface, the growth rate of the instability
is exponential and unbounded with wavenumber.

If the two velocities U1 and U2 are separated by a finite region of shear, the non-uniformity of
the flow leads to more complicated acoustic behaviour, and closed-form solutions for the acoustics
can not be so easily written down. For the particular case U2 = 0, for instance when the region R2

is a solid object upon the surface of which no slip holds, the shear layer between the two regions
is commonly called a boundary layer. Just as the (vortex sheet) interface between two uniform
flows can be thought of as having an acoustic impedance, the boundary layer between a uniform
flow and a solid wall has its own impedance (Brand & Nagel, 1982) which governs how sound is
reflected by and transmitted through it. The solid object R2 may also have an impedance, for
instance if it is an acoustically lined wall. For sound propagating in region R1, the joint effects
of the boundary layer and wall act as a boundary condition on the acoustic waves. An effective
impedance of the boundary layer–wall system may be constructed. If the wall itself does not
have a finite impedance (it is acoustically “hard”), the non-uniformity of the boundary layer can
still impart a finite effective impedance to the boundary layer–wall system (Nayfeh et al., 1975),
and thus the propagating sound behaves as if it sees an acoustically “soft” surface. This thesis
investigates how the inclusion of shear and viscosity in the boundary layer above an impedance
wall affect the propagation, attenuation and stability of ducted sound, and how the physics of the
boundary layer–wall system can be combined into an acoustic boundary condition.

Wave propagation in a steady flow over an acoustically lined wall has been widely studied due to
its applications to noise damping in acoustically lined aeroengines (such as that shown in fig. 1.1).
With large increases in air traffic projected, and European government targets to reduce aircraft
noise by 50% by 2020 compared to 2000 (ACARE, 2001), understanding and reducing overall
aircraft noise has become increasingly important. The total sound output from early turbofan
engines was dominated by jet noise, and much work over the past half a century has focused on
combating jet noise. As a result, the modern-day turbofan engine has an effective perceived noise
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Fan noise

Compressor noise

Combustion noise

Turbine noise

Figure 1.1. Schematic of a typical turbofan engine, displaying the main sources of noise. In this thesis we are
concerned mainly with the inlet region before the fan, and the bypass duct after the fan, which surrounds the
combustion engine. Taken from Ayton (2014).

level that is spread more evenly between four sources (see fig. 1.2): the fan and compressor in the
forward arc; the turbine and combustor; the fan in the rearward arc; and the jet (with the fan now
being the most important noise source, Peake & Parry, 2012). Acoustic liners may be used in the
cold streams at both the inlet and bypass outlet, and also (less commonly) in the hot stream at the
exhaust, and hence may be utilised to directly treat noise from two of these sources, in the forward
and rearward arcs. Thus, understanding the effect that acoustic liners have on sound propagating
upstream from the compressor and fan, and downstream from the fan, is vital if the 2020 targets
are to be met, and is the problem that forms the basis of this thesis.

Early work on wave propagation in a steady flow over an acoustically lined wall considered a
uniform inviscid slipping mean flow with fluctuating inviscid acoustic perturbations. This allows
analytic solution in terms of trigonometric functions in Cartesian ducts, and Bessel functions in
cylindrical or annular ducts. The lined wall was usually modelled by matching normal particle
displacement in the fluid to the normal displacement of the wall, now termed the Myers (1980), or
Ingard–Myers (Ingard, 1959) boundary condition, although some authors chose to match normal
velocity instead (Doak & Vaidya, 1970; Ko, 1971; Rice, 1969). The effect of mean flow shear
on the acoustic perturbations has also been studied (e.g. Ko, 1972; Mungur & Gladwell, 1969;
Pridmore-Brown, 1958; Tack & Lambert, 1965), usually by Fourier transforming the linearised
Euler equations leading to the Pridmore-Brown (1958) equation, which must in general be solved
numerically. For a non-slipping inviscid mean flow, it was found independently by Eversman &
Beckemeyer (1972) and Tester (1973) that, in the limit of a vanishingly thin inviscid shear layer,
continuity of normal displacement is recovered at the lined wall. This proved that the Myers
boundary condition was the correct boundary condition for an infinitely thin inviscid slipping
flow over a lined wall, and put an end to the confusion surrounding whether displacement or
velocity should be matched at the boundary. However, Gabard (2013) showed that, for parameters
representative of aeroengines, the Myers boundary condition in some cases over-predicted sound
attenuation by over 10dB when compared with the linearised Euler equations, showing that the
limit of a vanishingly thin shear layer can be a poor assumption in practice (as was also suggested
by Eversman, 1973). A detailed parametric study of the effects of the inviscid mean flow boundary
layer on sound propagation was recently performed by Gabard (2016).

The importance of including a finite-thickness shear layer rather than assuming a uniform
slipping flow also manifests in the different convective and absolute stability of the two models.
Experimental evidence of an instability in flow over an impedance lining has been reported many
times (e.g. Aurégan & Leroux, 2008; Marx et al., 2010). Theoretical predictions of the instability
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Figure 1.2. Effective perceived noise (EPN) from sound sources in early and modern turbofan engines, taken from
Peake & Parry (2012).

that utilise the Myers model found that in the time domain a numerical instability would grow
at the grid scale and swamp any meaningful signal, while in the frequency domain an unstable
mode was found with a growth rate unbounded with increasing wavenumber. This was due to the
ill-posedness of the problem of uniform slipping flow over an impedance lining (Brambley, 2009).
The ill-posedness is regularised by considering a non-slipping inviscid mean flow with a finite region
of shear (rather than a vortex sheet), and more recent works have sought to modify the Myers
boundary condition to account for this thin shear layer (Brambley, 2011b; Joubert, 2010; Myers
& Chuang, 1984; Rienstra & Darau, 2011). The boundary conditions resulting from these studies
are well-posed, and in particular that of Brambley (2011b) both matches well with solutions to
the linearised Euler equations (Gabard, 2013) and allows for the spatial and temporal stability
of inviscid shear flow over a lined wall to be investigated (Brambley, 2013) via rigorous Briggs–
Bers (Bers, 1983; Briggs, 1964) analysis (which requires any convectively or absolutely unstable
modes to have bounded growth rates; see the appendix of Brambley, 2009). This work is continued
here in chapter 2 and has been recently published (Khamis & Brambley, 2016a).

The accuracy of the current inviscid models was investigated by Gabard (2013) by considering
reflection of acoustic plane waves from an impedance lining in shear flow. It was found that use of
the Myers condition can lead to significant errors (of up to 14dB) in predictions of sound attenuation
due to the great impact of the boundary layer thickness. Modelling the physics inside the boundary
layer more precisely, for instance by expanding to second-order in the boundary layer thickness
as is done in chapter 2, should therefore lead to more accurate predictions of the absorption and
reflection coefficients for an acoustic liner in flow. The accuracy of current boundary conditions
and newly derived conditions are tested in a different way in chapter 2: by comparing with the
exact effective impedance found by numerical solution of the Pridmore-Brown equation; and by
comparing the prediction of cut-on and cut-off acoustic modes.

Inviscid flow over acoustic liners also supports surface waves – vibrations of the liner and
boundary layer – that are not present in the hard-wall case. These waves were classified as surface
modes by Rienstra (2003), who used uniform flow and the Myers (or Ingard–Myers) model of the
impedance lining to find a possible four surface modes per frequency and circumferential order.
This work was extended by Brambley (2013), who accounted for the thin-but-nonzero thickness
boundary layer by using the first-order correction terms to the Myers condition (Brambley, 2011b)
and found the number of possible surface waves increased to six. Because acoustic liners can support
surface modes where a hard wall can not, their use could lead to an amplification of noise as well
as a reduction due to the possibility of an instability being triggered. Theoretical identification
of these unstable modes is therefore of utmost importance. Chapter 2 extends the asymptotics of
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Brambley (2011b) by solving the inviscid equations to second-order in the boundary layer thickness
in order to further investigate surface wave solutions of the Pridmore-Brown equation.

It has been suggested that to accurately correlate theoretical predictions with experimental
observations, viscous effects need to be taken into account (Burak et al., 2008, 2009; Renou &
Aurégan, 2010, 2011). When Boyer et al. (2011) numerically solved the inviscid Euler equations
to attempt to identify theoretically an experimentally observed hydrodynamic instability in flow
over a lining (Marx et al., 2010), they found they could not predict the growth rate of the unstable
mode, whereas the real part of the wavenumber was reasonably well predicted; Boyer et al. (2011)
did not consider viscous effects, presumably as the Reynolds number of the experiments Marx
et al. (2010) (Re ∼ 2.5 × 105 by the definition in this paper) was considered high enough for
viscosity to be negligible, and instead three dimensional and non-parallel flow effects were blamed
for the discrepancy. However, Marx & Aurégan (2013) did include viscosity, and found that the
unstable surface wave mode found in the experimental study (Marx et al., 2010) is very sensitive to
viscosity. In chapter 3 a numerical study of the effects of viscosity on the propagation and stability
of acoustic modes is undertaken by solving the linearised compressible Navier–Stokes equations in
1D. The importance of viscosity is quantified by comparing with the corresponding effects of shear
by also solving the linearised Euler equations in both shear and uniform flow.

A number of studies have considered the effect of viscous dissipation on sound propagation
in shear flow over an impedance lining. Nayfeh (1973) considered the case where the acoustic
boundary layer is thin compared with the mean flow boundary layer, expanding to first order
in the acoustic boundary layer thickness. Aurégan et al. (2001) considered an arbitrary ratio
of mean to acoustic boundary layer thickness under the assumption that both were small, but
also assumed a low Mach number flow, expanding to first order in the Mach number. They
found an effective boundary condition that shifted between continuity of normal displacement and
continuity of mass flux across the boundary layer, depending on the ratio of the mean flow and
acoustic boundary layer thicknesses. Brambley (2011a) extended this work to relax the assumption
of low Mach number, with the only remaining assumption being that the boundary layer was thin.
High frequency asymptotics of the viscous boundary layer model led to a recovery of the Myers
boundary condition to leading order (conservation of normal displacement), while low frequency
asymptotics led to conservation of mass flux at leading order, both in agreement with Aurégan et al.
(2001) (since the acoustic boundary layer thickness scales as 1/

√
ω for frequency ω). The model of

Brambley (2011a) was effectively a viscous Myers condition, since it considered viscothermal shear
flow in the limit of a vanishingly thin boundary layer thickness. Importantly, the viscous Myers
condition does not by itself regularise the ill-posedness of the inviscid Myers boundary condition.
Brambley found no closed-form solution for the acoustics in the viscous Myers model, however. The
studies by Dokumaci (2014) and Mikhail & El-Tantawy (1994) find analytical solutions for viscous
acoustics by making several limiting simplifications. Mikhail & El-Tantawy (1994) considered a
hard-walled duct with no mean flow, and assumed the viscous fluid to be non-heat conducting.
Dokumaci (2014) assumed a uniform mean flow (invoking the Myers condition at the wall) and
appears to neglect viscous dissipation from the acoustic energy equation. Owing to the relatively
low Reynolds number Re ≈ 103 they considered, Mikhail & El-Tantawy (1994) found viscous
effects to be felt far outside the acoustic boundary layer, so that their solutions in the core of the
duct could not be considered inviscid; in aeroacoustic situations where Re & 105 are typical, the
acoustic mode shapes in the core of the duct have generally converged to the inviscid case (Khamis
& Brambley, 2015). In chapter 4 the asymptotics of Brambley (2011a) are extended to include the
effects of a finite thickness shear layer. A different asymptotic analysis in the high frequency limit
is also undertaken, in the pursuit of a closed-form acoustic boundary condition that incorporates
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CHAPTER 1. INTRODUCTION

both shear and viscosity.

The analysis of surface waves in the literature to date has been entirely inviscid. It is known
that viscosity has the greatest effect very close to a boundary where surface waves exist, and it
is therefore likely that viscosity is important for the accurate prediction of both the number and
position of surface wave modes. Chapters 3 and 4 study the effect of viscosity on the number and
stability of surface wave modes.

Without either making limiting simplifications or taking specific asymptotic limits, there is
no known closed-form solutions for the acoustics in a finite-thickness sheared, viscous boundary
layer. Reports of boundary layer thicknesses and Reynolds numbers in experimental studies (Marx
et al., 2010; Renou & Aurégan, 2011) suggest that the boundary layer momentum thickness is
δm ≈ 0.05m in an aeroengine intake 2m in diameter at Rec ≈ 2 × 107 (defined by the centreline
speed of sound) or Reu ≈ 7× 106 (defined by the free stream fluid velocity), so that the boundary
layer is thicker than would be predicted assuming a laminar Blasius boundary layer, δ ∼ 1/Re1/2.
This could be, for example, due to a turbulent boundary layer where the eddy viscosity (which
governs the mean flow) is larger than the molecular viscosity (which is assumed here to govern
viscous dissipation for acoustics). Chapter 5 seeks to exploit this difference in viscous lengthscales
in order to derive analytical solutions for the acoustics via matched asymptotic expansions in three
scaling regions (an outer region and two boundary layer “decks”) that cover an entire cylindrical,
acoustically lined duct.

In chapter 6 the work of Gabard (2013) is extended to account for viscothermal effects. A
numerical method is proposed for computing the reflection coefficient of a plane wave incident on
sheared, viscous boundary layer above an acoustic liner. Comparison is made with the inviscid
system, and with the predictions of the ill-posed Myers boundary condition. The numerical method
is used to measure the accuracy of analytical expressions for the reflection coefficient that are
derived from the new viscous effective impedance boundary conditions proposed in chapters 4
and 5.

Acoustic liners are commonly manufactured using a perforated facing sheet, which is therefore
inhomogeneous on the small scale of the distance between perforations. The mean flow above such
liners could also be expected to be inhomogeneous at the same small scale. A common simplification
in the literature is to average over this small scale and thereby model the liner as a homogeneous
boundary, which has been shown to give reasonable accuracy in practice (e.g. Boyer et al., 2011).
However, for this assumption to be valid, the acoustic wavelengths and boundary layers considered
must lie within limits defined by the hole diameters and spacings of the perforated facing sheet (Dai
& Aurégan, 2016). Recent numerical and experimental work on liners in grazing flow has found
that small-scale inhomogeneities of the liner may lead to liner self-noise and increased drag when
compared with a boundary layer over a flat plate (Tam et al., 2014; Zhang & Bodony, 2016), and
shown that nonlinear effects may be important in accurately modelling the liner response (Zhang
& Bodony, 2012). In the following chapters we forego the complications of inhomogeneities, while
nonlinearity with respect to the interaction between sound field, shear flow and liner is also beyond
the scope of this thesis. Furthermore, we neglect any slow axial variation of the mean flow.

1.1 Mathematical preliminaries

Throughout this work we will be concerned with the motion of a fluid acting as a medium for
acoustic waves, and the dynamics of these acoustic waves. The subsequent chapters all call upon
a few fundamental ideas that we lay out here, to be referred back to when necessary.
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1.1. MATHEMATICAL PRELIMINARIES

1.1.1 Thermodynamics and the equations of fluid motion

We follow the common assumption in aeroacoustic literature that air may be adequately modelled
as a perfect gas. Thus, we take the specific heats c∗p and c∗v, at constant pressure and volume
respectively, to be constants satisfying

c∗p − c∗v = R∗specific, (1.1.1)

where R∗specific is the specific gas constant and a starred quantity is dimensional. Then, defining
γ = c∗p/c

∗
v as the ratio of specific heats – and assuming γ = 7/5 – we may write (1.1.1) as

γ − 1

γ
=

1

c∗p
R∗specific. (1.1.2)

A perfect gas obeys the ideal gas law

p∗V ∗ = m∗R∗specificT
∗, (1.1.3)

where m∗ is the mass of gas contained within a volume V ∗, and p∗ and T ∗ are the pressure and
temperature of the gas. The gas density ρ∗ = m∗/V ∗ may be defined, and used in conjunction
with (1.1.2) to rewrite (1.1.3) as

γ

γ − 1
p∗ = c∗pρ

∗T ∗. (1.1.4)

This is our dimensional equation of state, relating the pressure, density and temperature of the
gas. We note here that the speed of sound in an ideal gas takes the form c∗2 = γp∗/ρ∗.

To capture the thermodynamics of the fluid, we must enforce conservation of energy. There are
many ways to write down a consistent energy equation, in terms of the internal energy, enthalpy or
entropy; here we choose to relate the convected change in entropy s∗ to the corresponding changes
in temperature and pressure, and then subsequently relate these changes to the dissipation of heat
by thermal conduction and viscous losses (Landau & Lifshitz, 1987; Pierce, 1994):

ρ∗T ∗
Ds∗

Dt∗
= ρ∗c∗p

DT ∗

Dt∗
− Dp∗

Dt∗
= ∇∗ · (κ∗∇∗T ∗) + σ∗ij

∂u∗i
∂x∗j

, (1.1.5)

where D/Dt∗ = ∂/∂t∗ + u∗.∇∗ is the material derivative; u∗ = (u∗, v∗, w∗) is the fluid velocity
vector; and

σ∗ij = 2µ∗

(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)
+ µS∗∇∗ · u∗δij (1.1.6)

is the Newtonian viscous stress tensor. Here, κ∗ is the thermal conductivity, µ∗ the shear viscosity,
and µS∗ = µB∗ − 2µ∗/3 the second viscosity (Tritton, 1988), with µB∗ the bulk viscosity. An
important simplification of (1.1.5) occurs in the inviscid limit, in which the specific entropy remains
constant for any given fluid particle (Pierce, 1994). Then,

Ds∗

Dt∗
= 0 =⇒ Dp∗

Dt∗
= c∗2

Dρ∗

Dt∗
, (1.1.7)

where we have rewritten the nonzero terms of (1.1.5) in terms of just the density and the pressure.
The form (1.1.7) will be used in chapter 2.

The fundamental statements of conservation of mass and momentum for a compressible fluid
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Figure 1.3. Schematic of parallel mean flow in a cylindrical duct with a radially-varying mean temperature.

give us our remaining governing equations as (Landau & Lifshitz, 1987; Stewart, 1942),

∂ρ∗

∂t∗
+∇∗ · (ρu∗) = 0, (1.1.8a)

ρ∗
Du∗

Dt∗
= −∇∗p∗ +∇∗ · σ∗. (1.1.8b)

Along with the statement of conservation of energy and the equation of state, the motion of a fluid
may be completely described by the above equations.

1.1.2 Nondimensionalisation, scaling and linearisation

Throughout this work we will treat acoustic waves as linear perturbations to a background flow.
This may be justified by comparing the pressure levels we think of as “sound” with ambient atmo-
spheric pressure: normal conversation takes place at ∼ 10−2Pa; the pressure disturbance 1m from
a jet engine is ∼ 102Pa; the ambient atmospheric pressure is ∼ 105Pa. Thus, while a jet engine
creates perturbations ten thousand times larger than those we make with our vocal chords, the
ambient pressure is a thousand times greater still. This is not to say that nonlinear effects are
never important, but we forego their consideration here. We define our mean flow (about which
we later linearise) in a cylindrical coordinate system r∗ = (x∗, r∗, θ) – within which a general
velocity vector would be defined u∗ = (u∗, v∗, w∗) – such that our analysis is tuned to the partic-
ular geometry of an aeroengine duct. We define an axial, parallel, non-slipping and non-swirling
mean flow U∗ = (U∗(r∗), 0, 0), with U∗(0) = U∗0 (the subscript zero denotes a value at the duct
centreline r∗ = 0). Then, the mean pressure is taken as constant across the duct cross-section,
p∗(r∗) ≡ p∗0—this is exact for inviscid flows due to the assumption that streamlines are everywhere
parallel, and is a useful approximation in the viscous case (see §3.1.1). The mean temperature
and density are allowed to vary only radially, and are related by the equation of state, (1.1.4).
Again, we define T ∗(0) = T ∗0 and ρ∗(0) = ρ∗0 as the reference centreline values. A schematic of the
coordinate system and the mean flow is shown in fig. 1.3.

There are natural choices for the length and velocity scales in our problem: the duct radius
l∗ and the centreline sound speed c∗0 =

√
γp∗0/ρ

∗
0. Time is made dimensionless by combining the

length and velocity scales, t∗ = l∗t/c∗0. We scale the state variables as follows:

p∗ = c∗20 ρ
∗
0p, ρ∗ = ρ∗0ρ, T ∗ =

c∗20

c∗p
T, (1.1.9)

Coefficients of viscosity (shear and bulk) are scaled by c∗0l∗ρ∗0, and thermal conductivity by c∗0l∗ρ∗0c∗p.
The impedance of the acoustic lining is nondimensionalised by Z∗ = ρ∗0c

∗
0Z. In such a scheme,

the dimensionless centreline mean flow density, temperature, pressure and axial velocity take the
values ρ0 = 1, T0 = 1/(γ − 1), p0 = 1/γ, and U0 = M , respectively, where M is the centreline
Mach number. The cylindrical duct has a dimensionless radius of unity.
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1.1. MATHEMATICAL PRELIMINARIES

Using the above scheme, we may rewrite the governing equations (1.1.4), (1.1.5), (1.1.8a)
and (1.1.8b) in dimensionless form:

Dρ

Dt
= −ρ∇ · u, (1.1.10a)

ρ
Du

Dt
= −∇p+∇ · σ, (1.1.10b)

ρ
DT

Dt
− Dp

Dt
= ∇ · (κ∇T ) + σij

∂ui
∂xj

, (1.1.10c)

T =
γ

γ − 1

p

ρ
. (1.1.10d)

This set of governing equations forms the basis of most of the analysis performed in this work.
Due to the fact that p(r) ≡ p0, (1.1.10d) tells us that the mean temperature and density profiles
are related by (γ − 1)T (r) = 1/ρ(r); we will use both interchangeably in later chapters.

Small, unsteady acoustic perturbations are added to the mean flow in the form

Qtot(r, t) = Q(r) + εaq
′(r, t), (1.1.11)

where εa � 1 is the acoustic amplitude, and q′ is taken to be O(1). Here, a prime denotes an
acoustic perturbation in the time domain. We move to the frequency domain by defining the time-
harmonic form q′(r, t) = q̆(r) exp (iωt), for dimensionless frequency ω (the Helmholtz number). We
perform a Fourier transform in the axial coordinate and define a Fourier series in the azimuthal
angle, defining the axial and azimuthal wavenumbers (k,m) as the Fourier pairs to the physical
variables (x, θ). Then, we consider a single acoustic mode of the form q̆(r) = q̃(r) exp (−ikx− imθ).
Thus, our acoustic perturbations take the modal form

q′(r, t) = q̃(r) exp (iωt− ikx− imθ). (1.1.12)

Neglecting terms of O(ε2a) or higher – due to our assumption of linear acoustics – the equations
(1.1.10) may be linearised to give, with the common exponential factor divided out,

iρ(ω − Uk)ũ+ ρUrṽ = ikp̃+ Vu, iρ(ω − Uk)ṽ = −p̃r + Vv,

iρ(ω − Uk)w̃ =
im

r
p̃+ Vw, iρ(ω − Uk)T̃ + ρTrṽ = i(ω − Uk)p̃+ Vt, (1.1.13)

iρ(ω − Uk)γp̃− iρ2(ω − Uk)(γ − 1)T̃ − ikρũ+ (ρṽ)r +
1

r
ρṽ − im

r
ρw̃ = 0.

which we will refer to, as a whole, as the dimensionless linearised compressible Navier–Stokes
equations (LNSE). The viscous terms are collected in the Vj terms, and are defined by

Vx =
1

Re

{
(Hũr + UrH̃)r +

1

r
(Hũr + UrH̃)− m2

r2
Hũ− (2 + β)k2Hũ

− ik(1 + β)(Hṽ)r + ikβHrṽ −
ik

r
(1 + β)Hṽ − km

r
(1 + β)Hw̃

}
(1.1.14a)

Vr =
1

Re

{
(2 + β)(Hṽr)r −

2

r
Hrṽ −

(
k2 +

m2

r2

)
Hṽ + (2 + β)

(Hṽ
r

)
r
− ik(1 + β)(Hũ)r

+ ik(Hrũ− UrH̃)− im(1 + β)
(Hw̃
r

)
r
+
im

r
Hrw̃ +

2im

r2
Hw̃
}

(1.1.14b)
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CHAPTER 1. INTRODUCTION

Parameter Value Parameter Value

γ 7/5 M 0.1 – 0.5
Pr 0.7 Re 105 – 107

µ∗B/µ
∗ 0.6 – 2 β -1/15 – 4/3

Table 1.1. Typical values of dimensionless parameters used throughout this work.

Vθ =
1

Re

{
− km

r
(1 + β)Hũ− im

r2
(3 + β)Hṽ − im

r
(1 + β)(Hṽ)r +

im

r
βHrṽ + (Hw̃r)r

+H
(
w̃

r

)
r

−
(
k2 +

m2

r2

)
Hw̃ − m2

r2
(1 + β)Hw̃ − 1

r
Hrw̃

}
(1.1.14c)

Ve =
1

Re

{
U2
r H̃+ 2HUrũr − 2ikHUrṽ +

1

Pr
(HT̃r + TrH̃)r +

1

rPr
(HT̃r + TrH̃)

− 1

Pr

(
k2 +

m2

r2

)
HT̃
}
. (1.1.14d)

In going from (1.1.10) to (1.1.13) and (1.1.14), a number of variables have been introduced or
replaced. First, the equation of state (1.1.10d) may be linearised,

ρ̃ = γρp̃− (γ − 1)ρ2T̃ , (1.1.15)

and subsequently used to eliminate the density perturbation ρ̃. Second, the shorthand β =

µB∗0 /µ∗0− 2/3 has been introduced, where the bulk viscosity fraction µB∗0 /µ∗0 ≈ 0.6 in air (Cramer,
2012; Greenspan, 1959; Pinkerton, 1947). Third, the dimensionless Reynolds and Prandtl num-
bers have been introduced, which measure the relative strengths of viscous and inertial effects,
and viscous and thermal conductive effects, respectively. In terms of dimensional scales, we de-
fine the Reynolds number with respect to the centreline sound speed as Re = c∗0l

∗ρ∗0/µ
∗
0, and the

Prandtl number as Pr = µ∗0c
∗
p/κ
∗
0. These definitions allow the viscosity and thermal conductivity,

assumed to have some dependence on radial position and temperature through the dimensionless
O(1) function H(r, T ), to be expressed in terms of Re and Pr as

µ =
H
Re
, µB =

H
Re

µB∗0

µ∗0
, κ =

H
Re Pr

. (1.1.16)

Previous studies of viscothermal acoustic propagation have used constant values (Aurégan et al.,
2001; Nayfeh, 1973) or a linear temperature dependence (Brambley, 2011a) for the molecular vis-
cosities and thermal conductivity. Radial dependence of the viscosity is important when modelling
a turbulent eddy viscosity (Marx & Aurégan, 2013). For now we leave H as a general function
of position and temperature. Typical values of the dimensionless parameters introduced here are
given in table 1.1.

1.2 Introduction to duct acoustics and impedance boundary

conditions

As discussed above, we use a modal approach to duct acoustics. The set of acoustic modes of the
form (1.1.12) define a basis by which a sound field may be represented—though there exist some
solutions that may not be described by discrete modes, for instance at the inviscid critical layer
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CONDITIONS

ω − U(rc)k = 0 (Brambley et al., 2012b). To ascertain the allowable modes in a given system, we
must solve for the radial mode shape q̃(r). Then, applying the relevant boundary conditions to the
solution leads to a dispersion relation that links the values of ω and k for a given value of m. Any
solution of the dispersion relation ω(k,m) or k(ω,m) then defines a single acoustic mode (allowing
for double roots, et cetera).

1.2.1 Solutions in a duct with uniform, inviscid flow

Commonly, aeroacoustic calculations are performed in the inviscid limit, in which viscous and
thermal conductive effects are set to zero. Taking the limit Re → ∞ in (1.1.13) we recover the
linearised Euler equations (LEE),

iρ(ω − Uk)ũ+ ρUrṽ = ikp̃, iρ(ω − Uk)ṽ = −p̃r,

iρ(ω − Uk)w̃ =
im

r
p̃, iρ(ω − Uk)T̃ + ρTrṽ = i(ω − Uk)p̃, (1.2.1)

iρ(ω − Uk)γp̃− iρ2(ω − Uk)(γ − 1)T̃ − ikρũ+ (ρṽ)r +
1

r
ρṽ − im

r
ρw̃ = 0.

from which a second-order equation for the acoustic pressure may be derived,

p̃rr +

(
2Urk

ω − Uk −
ρr
ρ

+
1

r

)
p̃+

(
ρ(ω − Uk)2 − k2 − m2

r2

)
p̃ = 0. (1.2.2)

This is a form of the Pridmore-Brown (1958) equation in cylindrical coordinates, and is used
abundantly to study acoustics in sheared, inviscid flow (Ko, 1972; Mungur & Gladwell, 1969; Tack
& Lambert, 1965). A corresponding equation for the acoustic radial velocity can also be derived
(see section 2.1). There is no known closed-form solution to (1.2.2) for a general mean flow.

A simple initial problem to consider is the uniform flow case of (1.2.2), with (U(r), ρ(r), T (r)) ≡
(U0, ρ0, T0) = (M, 1, 1/(γ−1)). The mean flow gradients vanish, and the Pridmore-Brown equation
reduces to Bessel’s equation,

p̃rr +
1

r
p̃r +

(
(ω −Mk)2 − k2 − m2

r2

)
p̃ = 0. (1.2.3)

Equation (1.2.3) has well-known solutions: the cylindrical Bessel functions of the first and second
kind. Thus, a general pressure mode may be expressed as a linear superposition of the two Bessel
functions,

p̃(r) = EJm(αr) + FYm(αr), α2 = (ω −Mk)2 − k2, (1.2.4)

where the eigenvalue α can be thought of as the radial wavenumber, and E and F are normalisation
constants. If we constrain ourselves to cylindrical ducts, the regularity condition at the radial
origin requires F = 0, since Ym(αr) is singular at r = 0 for all m (for an annular duct, F 6= 0

in general). The definition of α in (1.2.4) may also be thought of as an implicit definition of
the axial wavenumber k. When k is real the mode is “cut on” and the wave propagates axially
along the duct; when k is imaginary the mode is “cut off”, and the wave decays exponentially with
axial distance travelled. Cut-on modes are generally the most important acoustic modes as their
amplitudes are largest, and they are a mechanism of sound propagation away from a source to the
far field. The distinction between cut off and cut on becomes blurred when the duct wall is given
a finite impedance: all axial wavenumbers are now complex, meaning that no mode propagates
axially without attenuating to some degree. We will still use the term cut-on to refer to those
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Figure 1.4. Acoustic mode shapes of (a) the pressure, p̃, and (b) the radial velocity, ṽ, from numerical solutions
of the LNSE, (1.1.13), for different values of Re, compared with solutions of the LEE, (1.2.1). For Re & 105, the
inviscid and viscous solutions are very similar outside the boundary layer near r = 1. Each solution is normalised
by setting the wall-value of the pressure, p̃(1) = 1.

modes that are the least cut off.
Using the LEE (1.2.1) we may derive the solutions for all the acoustic quantities corresponding

to the pressure (1.2.4) in a cylindrical duct with uniform inviscid flow:

p̃u = EJm(αr), ṽu =
iEαJ ′m(αr)

ω −Mk
, (1.2.5)

for the pressure and radial velocity, and

ũu

k
=
rw̃u

m
=
EJm(αr)

ω −Mk
, ρ̃u = T̃u = EJm(αr), (1.2.6)

for the remaining quantities. These solutions are useful even when considering a flow that is
neither uniform nor inviscid: away from the duct wall, the acoustics in a sheared and viscous (yet
everywhere parallel) flow are well approximated by the expressions (1.2.5) and (1.2.6), provided
the Reynolds number is high enough (Khamis & Brambley, 2015). For the large Reynolds numbers
associated with aeroacoustic applications, 105 . Re . 107, the effects of shear and viscosity do
not extend much past the edge of the boundary layer—that is, wherever the mean flow shear is
negligible, the simple solutions (1.2.5) and (1.2.6) are impressively accurate. This is not the case
for Re . 104, for which viscous effects alter the behaviour of the solutions in large portions of the
duct (Mikhail & El-Tantawy, 1994), as shown in fig. 1.4. Throughout this work we will exploit this
feature of high-Reynolds number duct flow; the expressions in (1.2.5) and (1.2.6) will be assumed
to hold outside of the mean flow boundary layer, and therefore will be used as outer solutions to
which any boundary layer solutions may be asymptotically matched.

When asymptotically matching to an outer solution from an inner region, the behaviour of the
outer solution near the inner region must be found (see, for example, Hinch, 1991). In our case,
that means determining the behaviour of the outer solutions (1.2.5) near the wall r = 1. This may
be done by Taylor expanding the Bessel function solutions around r = 1 using the substitution
r = 1− δy for δ � 1:

pu(1− δy) =EJm(α)− δyαEJ ′m(α) +O(δ2) (1.2.7a)
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vu(1− δy) =
iαEJ ′m(α)

(ω −Mk)
+

iδyE

(ω −Mk)

[
αJ ′m(α) +

(
α2 −m2

)
Jm(α)

]
+O(δ2). (1.2.7b)

We can also rewrite (1.2.7) by introducing the constants

p∞ = EJm(α), v∞ =
iαEJ ′m(α)

(ω −Mk)
, (1.2.8)

where p∞ and v∞ are the wall-values of the uniform flow acoustic pressure and radial velocity,
respectively. Thus the near-wall behaviour of the outer solutions may be written as

pu(1− δy) ∼ p∞ + iδy(ω −Mk)v∞ +O(δ2), (1.2.9a)

vu(1− δy) ∼ v∞ + δy

[
v∞ +

(
α2 −m2

) ip∞
(ω −Mk)

]
+O(δ2), (1.2.9b)

to first order in the boundary layer thickness.

1.2.2 Dispersion relations

A solution of the form (1.2.5) is not necessarily an allowable duct mode; in order to describe a
physically realisable acoustic solution, a dispersion relation must be satisfied that links allowable
values of the modal quantities (ω, k,m). Commonly, a dispersion relation may be formed by
applying a boundary condition. For the case we are considering here, an allowable mode is found
by applying an impedance boundary condition p̃ = Zũ·n at the wall r = 1 with a specific boundary
model Z(ω, k), where n is the unit surface normal vector pointing out of the fluid (hence in our
cylindrical geometry ũ · n ≡ ṽ).

As an example, if we use the forms of the acoustic pressure and radial velocity for a uniform
inviscid flow from (1.2.5), we may write the dispersion relation p̃u(1) = Zṽu(1) as

(ω −Mk)Jm(α) = iZαJ ′m(α). (1.2.10)

In the hard-wall limit, when Z →∞, (1.2.10) reduces to

J ′m(α) = 0, (1.2.11)

and the allowable acoustic modes become the zeros of the first derivative of the Bessel function of the
first kind, of order m and argument α. That is, for a given azimuthal wavenumber m, the allowable
modes are given by (ωj , kj) where J ′m(αj) = 0 is the jth zero of J ′m(α), and α2

j = (ωj−Mkj)
2−k2

j .
When a wall has zero impedance, Z = 0, it is known as a “pressure release” surface. In this case,
(1.2.10) reduces to

Jm(α) = 0, (1.2.12)

and the allowable modes are the zeros of the Bessel function itself. Examples of acoustic modes in
the complex k-plane that satisfy the dispersion relations (1.2.11) and (1.2.12) are shown in fig. 1.5.
Notice that Im(k) = 0 for the cut-on modes in both cases.

It is known that if the mean flow (with velocity U) slips along the lining, the acoustic bound-
ary condition p̃ = Zṽ must be altered (Ingard, 1959; Miles, 1957; Ribner, 1957). Myers (1980)
derived (with prior work published in Ingard, 1959; Miles, 1957) the expression

iωũ · n = (iω + U ·∇− (n ·∇U) · n)p̃/Z, (1.2.13)
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Figure 1.5. A comparison of acoustic modes in the k-plane for the hard wall, (1.2.11), and pressure release, (1.2.12),
limits. As the impedance varies between the two limits (Z → ∞ and Z = 0, respectively), the cut-on modes move
off the real line and consequently attenuate in the x direction. Parameters are ω = 20, m = 2, M = 0.3.

for a duct with a general cross-section. In a straight duct the last term in the brackets on the right
hand side of (1.2.13) is zero, and in this case the expression (1.2.13) has been shown by Eversman
& Beckemeyer (1972); Tester (1973) to be the correct asymptotic limit for a vanishingly thin,
inviscid boundary layer (i.e. a vortex sheet an infinitesimal distance from the lining). The Myers
boundary condition (1.2.13) (also known as the Ingard–Myers condition Ingard, 1959; Myers, 1980)
is discussed in more detail in the next section, and is used as a baseline for comparisons with new
acoustic boundary conditions throughout this thesis.

1.2.3 Effective impedance boundary conditions

The previous section discussed acoustic boundary conditions at a liner in isolation from any bound-
ary layer effects. The boundary condition p̃(1) = Zṽ(1) is sufficient when no slip enforces a zero
mean flow at the wall, or for acoustics in a quiescent medium. However, what do we do when we
want to combine the ease of solution of the uniform flow case with the boundary layer complexity
that leads to the no slip condition being satisfied? One option is to form an effective impedance
boundary condition that accounts for the physics in the boundary layer and the impedance of
the liner, and is applicable to a uniform, slipping flow. We may then write the boundary condi-
tion as p̃u(1) = Zeff ṽu(1), where the effective impedance Zeff differs from the liner impedance Z
due to refraction through the sheared boundary layer and any viscothermal effects on the wave
propagation.

One way to define Zeff is as the impedance seen by the inviscid, uniform flow acoustics p̃u,
ṽu (that are the correct solutions outside the boundary layer) if they were continued to the duct
wall at r = 1: Zeff = p̃u(1)/ṽu(1). This then allows us, in theory, to choose Zeff such that the
easily calculable uniform flow acoustic modes match the modes in the real flow with a sheared (and
possibly viscous) boundary layer. Solving the uniform flow problem with a lining impedance of Zeff

is equivalent to solving the true (viscous) sheared flow problem with the actual lining impedance
Z. We are interested in the relationship between Z and Zeff .
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CONDITIONS

To write the Myers boundary condition (1.2.13) as an effective impedance relation, we imagine a
duct with uniform mean flow velocity U = (M, 0, 0) everywhere except for a vanishingly thin layer
next to the wall where the mean velocity is zero. A vortex sheet separates the moving and stationary
fluid, across which we assume the continuity of pressure and normal particle displacement. With
a subscript f denoting acoustics on the fluid side of the vortex sheet, and a subscript w denoting
acoustics on the wall side, at the wall the relationships Z = p̃w/ṽw and Zeff = p̃f/ṽf hold.
Continuity of pressure implies p̃w = p̃f . Normal particle displacement ξ is calculated via the
relationship ṽ = Dξ/Dt. Thus, in the frequency domain we find ṽf = i(ω−Mk)ξf and ṽf = iωξf .
Continuity of normal particle displacement then gives

ξw = ξf =⇒ ṽw
iω

=
ṽf

i(ω −Mk)
. (1.2.14)

Now, combining the above relationships for Z, Zeff , p̃f , p̃w, ṽf and ṽw, we may write

Zeff =
p̃f
ṽf

=
ω

ω −Mk

p̃w
ṽw

=
ω

ω −Mk
Z. (1.2.15)

This may be shown to be equivalent to (1.2.13): equation (1.2.13) may be written for a straight
duct as

iωvf = i(ω −Mk)
pf
Z
, (1.2.16)

which upon rearrangement yields
Zeff =

ω

ω −Mk
Z. (1.2.17)

The choice of replacing ũ · n with ṽf in (1.2.16) is obvious once we acknowledge we are applying
the boundary condition to the acoustics in the body of the duct (i.e. the fluid side of the vortex
sheet).

It is worth noting that the Myers boundary condition does not confer on the boundary layer
(that is, the vortex sheet) an impedance independently from the liner. In the pressure release limit
Z = 0 and Zeff is also zero; similarly, in the hard wall case Z = ∞ and Zeff is also infinite. This
is an early sign that the Myers boundary condition does not adequately account for the physics of
the boundary layer when applied to a slipping flow.

Many extensions of the Myers boundary condition (often called modified Myers conditions)
have been proposed that attempt to account for a finite layer of shear in an inviscid boundary
layer. This is usually done by asymptotically expanding inside the boundary layer in the small
layer thickness δ, and solving to first order in δ. Gabard (2013) tested the accuracy of two of
these first order extensions: the boundary condition of Rienstra & Darau (2011), derived in the
incompressible limit, was shown to be inferior to that of Brambley (2011b), which assumes a fully
compressible fluid. For this reason, in this work we use the term modified Myers condition to refer
to the boundary condition proposed by Brambley (2011b), which we state here:

Zeff =
ω

ω −Mk

Z − i(ω−Mk)2

ω δI0

1 + iωZ k2+m2

(ω−Mk)2 δI1
, (1.2.18)

where I0 and I1 are integrals across the thin boundary layer,

δI0 =

∫ 1

0

1−
(
ω − U(r)k

)2
ρ(r)

(ω −Mk)2
dr, δI1 =

∫ 1

0

1− (ω −Mk)2(
ω − U(r)k

)2
ρ(r)

dr. (1.2.19)
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Chapter 2

Acoustic boundary conditions at an
impedance lining in inviscid shear
flow

In this chapter, acoustics in an inviscid boundary layer over an acoustic lining are further inves-
tigated. This work has been published in the Journal of Fluid Mechanics (Khamis & Brambley,
2016a). In §2.1 the governing Pridmore-Brown equations for the acoustic pressure p̃ and velocity
ṽ are stated, and an impedance Ricatti equation is derived for Z(r) = p̃(r)/ṽ(r). Section 2.2 de-
scribes the asymptotic analysis leading to a boundary condition that is correct to second-order in
the boundary layer thickness. Section 2.3 solves the impedance equation by a single fourth-order
explicit Runge–Kutta step across the boundary layer; and by a second-order, single-step implicit
scheme. Expressions are given for the effective impedance at the lining seen by the acoustics in a
plug flow (uniform mean flow). In §2.4, the accuracy of each of these models is compared against
the Ingard–Myers boundary condition, its first-order correction, and numerical simulations. While
the second-order boundary condition performs better for thin boundary layers, the single-step im-
plicit Runge–Kutta scheme retains accuracy for high frequencies and short wavelengths, and for
thicker boundary layers, making it a viable substitute for the asymptotic boundary conditions
outside their regions of validity. In §2.5, simplified forms of the conditions are found both for a
specific linear shear profile and for the limiting case k/ω � 1 satisfied by surface modes. In §2.6
it is found that the second-order asymptotic condition is extremely accurate when investigating
surface modes and their stability, as well as cut-on and cut-off acoustic modes. The second-order
condition does, however, support spurious modes far from its region of asymptotic validity.

When applied in shear flow, the Pridmore-Brown equation possesses a singularity, called the
critical layer, wherever the phase speed of a wave is equal to the base flow velocity (that is, when a
wave is perfectly convected). It has been shown that the contribution to the resultant sound field
of the critical layer is modest at most (Brambley et al., 2012a). Here we avoid the critical layer
in favour of simplicity. Also omitted from the analysis are viscous effects, which are left to later
chapters.
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2.1. GOVERNING EQUATIONS

2.1 Governing equations

We are concerned with the dynamics of an inviscid compressible perfect gas, for which the dimen-
sionless governing equations (1.1.10) take the form

∂ρ

∂t
+∇ · (ρu) = 0, ρ

Du

Dt
= −∇p, Dp

Dt
=
γp

ρ

Dρ

Dt
, (2.1.1)

where the viscosities and thermal conductivity are set to zero, µ = µB = κ = 0. Small, unsteady
perturbations to the base flow are considered, of the form (1.1.12), from which the common expo-
nential factor is omitted henceforth. The velocity and density gradients in the base flow boundary
layer alter the effect of the acoustic lining on the acoustics. At the lining, the acoustic pres-
sure drives a wall-normal velocity, p̃ = Zṽ, for the given impedance of the lining, Z. Governing
equations for the acoustic pressure p̃ and radial velocity ṽ may be derived from (2.1.1):

(
p̃′

Q

)′
+
ᾱ2

Q
p̃ = 0,

[(
rṽ

ω − Uk

)′
Q

ᾱ2

]′
+Q

(
rṽ

ω − Uk

)
= 0, (2.1.2a,b)

where a prime denotes differentiation with respect to r, and

Q(r) =
ρ(ω − Uk)2

r
and ᾱ(r)2 = ρ(ω − Uk)2 − k2 − m2

r2
. (2.1.3)

It is worth noting that the Pridmore-Brown (1958) equation (2.1.2a) and the corresponding equa-
tion for the radial velocity (2.1.2b) are both second-order, in p̃ and ṽ respectively, with the radial
momentum equation stating ṽ ∼ p̃′. The similarity between the two equations (2.1.2a,b) may be
highlighted by defining φ = rṽ/(ω − Uk) and rearranging to give

Q

ᾱ2

(
p̃′

Q

)′
+ p̃ = 0,

1

Q

(
Q

ᾱ2
φ′
)′

+ φ = 0. (2.1.4a,b)

Inherent in the linearisation of the Euler equation, and thus in (2.1.2a,b), is the so-called critical
layer singularity, ω − U(rc)k = 0, where rc is the radial location of the critical layer. This occurs
when a wave is perfectly convected, and leads to a continuous hydrodynamic spectrum. We neglect
the critical layer in this chapter by assuming that rc does not fall within our physical domain (see
Brambley et al. (2012a) for a full discussion).

2.1.1 The uniform solution

It is well known (see, e.g., Brambley & Peake, 2008; Vilenksi & Rienstra, 2007) that the acoustic
pressure and radial velocity in a duct with inviscid uniform flow can be expressed in terms of Bessel
functions as p̃u(r) = EJm(αr) and ṽu(r) = iαEJ ′m(αr)/(ω−Mk), where α2 = (ω−Mk)2−k2 and
E is a constant amplitude. Modes for such a flow are found by applying a boundary condition at the
lined wall, p̃u(1) = Zeff ṽu(1). The effective impedance Zeff differs from the true lining impedance
Z due to refraction through the sheared boundary layer, which is neglected in the uniform flow
model. For example, for the Myers boundary condition,

Zeff =
ω

ω −Mk
Z, (2.1.5)

where the Doppler factor accounts for refraction across a vortex sheet by enforcing continuity
of normal displacement. We would like to choose a Zeff such that the easily calculable uniform
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CHAPTER 2. BOUNDARY CONDITIONS IN INVISCID SHEAR FLOW

flow acoustic modes match the modes in the real flow with a sheared boundary layer. Thus, Zeff

includes information about both the lining impedance Z, and how acoustic modes evolve in shear.
This means that solving the uniform flow problem with a lining impedance of Zeff is equivalent to
solving the true sheared flow problem with the actual lining impedance Z. We are interested in
the relationship between Z and Zeff .

If we knew both ω and k, then we could find Zeff explicitly:

Zeff = (ω −Mk)
Jm(α)

iαJ ′m(α)
. (2.1.6)

We do not know both k and ω a priori, however, and therefore we would like to solve (2.1.6) for
the modes k(ω); a relationship between Zeff and the known Z is then needed. For example, the
Ingard–Myers boundary condition modelling an infinitely thin shear layer (Eversman & Becke-
meyer, 1972) is given in (2.1.5), while the first-order asymptotic correction to the Ingard–Myers
boundary condition in the limit of a thin shear layer (Brambley, 2011b) is given by

Zeff =
ω

ω −Mk

Z − i(ω−Mk)2

ω δI0

1 + iωZ k2+m2

(ω−Mk)2 δI1
, (2.1.7)

where I0 and I1 are integrals across the thin boundary layer,

δI0 =

∫ 1

0

1−
(
ω − U(r)k

)2
ρ(r)

(ω −Mk)2
dr, δI1 =

∫ 1

0

1− (ω −Mk)2(
ω − U(r)k

)2
ρ(r)

dr. (2.1.8)

2.1.2 An impedance governing equation

Most work concerning acoustic propagation in inviscid fluids begins with equations (2.1.1) and
reduces them to a form of the Pridmore-Brown equation (Pridmore-Brown, 1958), e.g. (2.1.2a).
Less common is the corresponding governing equation for the radial acoustic velocity ṽ, (2.1.2b).
Here, we also work directly with the impedance and derive a new governing equation. We extend
the relationship p̃ = Zṽ at the boundary r = 1 to one valid for all r, i.e. ζ(r) = p̃(r)/ṽ(r). The
same is done for the uniform flow equivalent, i.e. ζu(r) = p̃u(r)/ṽu(r). Hence, Z ≡ ζ(1) and
Zeff ≡ ζu(1).

From (2.1.1) and (2.1.2a,b) the following relations may be derived:

ᾱ2

Q
p̃ = i

(
rṽ

ω − Uk

)′
and p̃′ = −iQ

(
rṽ

ω − Uk

)
. (2.1.9)

Guided by the form of (2.1.9), we write

1

r
(ω − Uk)ζ =

p̃
rṽ

(ω−Uk)

. (2.1.10)

Taking the derivative with respect to r and using (2.1.9) to eliminate p̃ and ṽ we find a nonlinear
Ricatti equation for ζ, [

1

r
(ω − Uk)ζ

]′
= −iQ+

iᾱ2

Q

[
1

r
(ω − Uk)ζ

]2

. (2.1.11)

Note that (2.1.11) is a rephrasing of the acoustic equations (2.1.2a,b), and thus ζ(r) represents
the lumped impedance of both the boundary and the fluid in [r, 1]. Since (2.1.11) is a first-order
equation and at the lining the boundary condition gives ζ(1) = Z, in the uniform flow region the
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2.2. DERIVING THE ASYMPTOTIC SOLUTION

requirement that ζ(r) = ζu(r) allows us to find Zeff .

The equation (2.1.11) is exact, and so its numerical solution should correspond with direct
solution of the Pridmore-Brown equation. However, its nonlinearity makes it a less attractive can-
didate for such computations. Instead we solve equation (2.1.11) using two different approximate
methods. In §2.3, two single-step Runge–Kutta solutions are found, one explicit and one implicit,
which exploit the inherently small step size δ. In §2.B, an alternative asymptotic analysis (to that
in §2.2) is performed by expanding (2.1.11) in terms of the small width of the boundary layer, δ.
The two methods vary in essence by where we make our approximations: the first approximately
solves an exact equation; the second exactly solves an approximate equation.

2.2 Deriving the asymptotic solution

In this section the asymptotic boundary condition for the effective impedance is found to second-
order in δ by solving equations (2.1.2a,b) inside the boundary layer and matching to the uniform
solutions outside the boundary layer.

Outside the boundary layer, the uniform base flow pressure solution may be written p̃u(r) =

EJm(αr) as described above. Expanding this about the lined wall at r = 1 using the boundary
layer scaling r = 1− δy as in Brambley (2011b), the outer solution for the pressure becomes

p̃u(1− δy) = EJm(α)− δyEαJ ′m(α)− 1

2
δ2y2E

[
αJ ′m(α) + (α2 −m2)Jm(α)

]
+O(δ3). (2.2.1)

Using the notation p∞ ≡ p̃u(1), the pressure at the wall r = 1, and v∞ ≡ ṽu(1), (2.2.1) and the
equivalent radial velocity expansion may be written as

p̃u(1− δy) = p∞ + δyi(ω −Mk)v∞ +
1

2
δ2y2

[ (
k2 +m2 − (ω −Mk)2

)
p∞

+ i(ω −Mk)v∞

]
+O(δ3) (2.2.2a)

ṽu(1− δy) = v∞ − δy
(

(ω −Mk)2 − k2 −m2

i(ω −Mk)
p∞ − v∞

)
+

1

2
δ2y2

[
3m2 + k2 − (ω −Mk)2

i(ω −Mk)
p∞

+
(
2 + k2 +m2 − (ω −Mk)2

)
v∞

]
+O(δ3). (2.2.2b)

Our inner solutions will be matched to (2.2.2) in the limit y →∞.

In terms of the boundary layer variable y, equations (2.1.2a,b) become(
p̃y

ρ(ω − Uk)2

)
y

= δ

(
yp̃y

ρ(ω − Uk)2

)
y

− δ2

(
1− k2 +m2

ρ(ω − Uk)2

)
p̃+O(δ3) (2.2.3)

for the pressure, and[( ṽ

ω − Uk
)
y

ρ(ω − Uk)2

ρ(ω − Uk)2 − k2 −m2

]
y

= δ

(
ṽ

ω − Uk
ρ(ω − Uk)2

ρ(ω − Uk)2 − k2 −m2

)
y

− δ
[(

ṽ

ω − Uk

)
y

2m2yρ(ω − Uk)2

[ρ(ω − Uk)2 − k2 −m2]
2

]
y

− δ2

(
ṽ

ω − Uk ρ(ω − Uk)2

)
+ δ2

(
ṽ

ω − Uk
yρ(ω − Uk)2

[ρ(ω − Uk)2 − k2 −m2]
2

(
ρ(ω − Uk)2 +m2 − k2

))
y
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− δ2

[(
ṽ

ω − Uk

)
y

4m2y2ρ(ω − Uk)2

[ρ(ω − Uk)2 − k2 −m2]
3

(
ρ(ω − Uk)2 − k2

) ]
y

+O(δ3) (2.2.4)

for the radial velocity. Here ρ and U are now the corresponding base density and axial velocity as
functions of y. A subscript denotes differentiation.

Solving (2.2.3) and (2.2.4) to second-order produces the inner solutions; see §2.A for details.
When evaluated at the wall, the second-order correction to the ṽ expansion is singular if (ω −
Mk)2 = k2 + m2. Solutions of the Pridmore-Brown equation exist at this point. Thus, the
singularity is a consequence of the asymptotic expansion and is spurious. Close to the new singular
point one could simply revert to using the first-order expansion as derived by Brambley (2011b),
which is unaffected by the unphysical singularity.

Matching with the outer solutions (2.2.2) and evaluating at the boundary y = 0 gives, after
some algebra,

p̃(0) = p̃u(0) + i(ω −Mk)ṽu(0)δI0 + i(ω −Mk)ṽu(0)δ2I2

+ (k2 +m2)p̃u(0)
(
δI0δI1 − δ2I3

)
− (ω −Mk)2p̃u(0)δ2I7 +O(δ3), (2.2.5a)

ṽ(0) =
ω

ω −Mk

{
ṽu(0)− ip̃u(0)

k2 +m2

ω −Mk
δI1 + (ω −Mk)2ṽu(0)δ2I2

+ (k2 +m2)ṽu(0)δ2I3 + ip̃u(0)
k2 +m2

ω −Mk

k2 −m2 − (ω −Mk)2

k2 +m2 − (ω −Mk)2
δ2I3

+ (k2 +m2)ṽu(0)
(
δI0δI1 − δ2I2 − δ2I5

)
+

2im2p̃u(0)

ω −Mk

(
k2 +m2

k2 +m2 − (ω −Mk)2
δ2I6 − δ2I4

)}
+O(δ3), (2.2.5b)

where the integrals Ij are

I0 =

∫ ∞
0

χ0(y)dy, I1 =

∫ ∞
0

χ1(y)dy, I2 =

∫ ∞
0

yχ0(y)dy

I3 =

∫ ∞
0

yχ1(y)dy, I4 =

∫ ∞
0

yχ2(y)dy, I5 =

∫ ∞
0

χ1(y)

∫ y

0

χ0(y′)dy′dy

I6 =

∫ ∞
0

yχ1(y)χ2(y)dy, I7 =

∫ ∞
0

χ0(y)

∫ y

0

(
1− k2 +m2

ρ(y′)(ω − U(y′)k)2

)
dy′dy

(2.2.6)

with

χ0(y) =

[
1− ρ(ω − Uk)2

(ω −Mk)2

]
, χ1(y) =

[
1− (ω −Mk)2

ρ(ω − Uk)2

]
,

χ2(y) =

[
1− (ω −Mk)2 − k2 −m2

ρ(ω − Uk)2 − k2 −m2

]
.

(2.2.7)

The impedance of the boundary is the ratio of the acoustic pressure to the normal velocity that
it drives, so we write Z = p̃(0)/ṽ(0) using equations (2.2.5). We identify the effective impedance
with the same ratio for the uniform flow variables: Zeff = p∞/v∞. Using these two relationships
we may rearrange the ratio of (2.2.5a) and (2.2.5b) to find an expression for the effective impedance
of an acoustic liner with an inviscid sheared boundary layer:

Zeff =
ω

Ωu

Z − iΩ2
u

ω

(
δI0 + δ2I2

)
− Zµ2δ2I2 + σ+Z(δI0δI1 + δ2I3 − δ2I5)

1 + iσ+
ωZ
Ω2

u
δI1 + Υ1δ2I3 + Υ2

(
δ2I4 − σ+

µ2 δ2I6

)
+ σ+δI0δI1 − Ω2

uδ
2I7

+O(δ3), (2.2.8)
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Figure 2.1. The relative errors of the leading (black dotted), first (blue dashed) and second (red solid) orders of
the new boundary condition (2.2.8) when compared with numerical solutions of the Pridmore-Brown equation. The
green dash-dot lines have gradients of 1, 2 and 3 beginning from the top and moving down. Parameters used are
k = ±1 ± i,±1,±i and ω = 1, m = 0, M = 0.5 with the tanh boundary layer profile of (2.4.1). Relative error is
defined |Z∗/Zeff − 1|, where Z∗ is the approximation from the specified model, and Zeff is the exact result from
(2.1.6).

where σ+ = k2 +m2, Ωu = ω −Mk and µ2 = σ+ − Ω2
u, and where

Υ1 =
iσ+ωZ

Ω2
u

(2m2

µ2
− 1
)
− σ+, Υ2 = 2im2ωZ

Ω2
u

.

Equation (2.2.8) readily reduces to the modified boundary condition as derived by Brambley
(2011b) at O(δ), (2.1.7), and to the classical Myers condition (2.1.5) in the limit δ → 0. Fig-
ure 2.1 shows that the condition is correct to the stated asymptotic order.

Equation (2.2.8) may be applied in the physical r domain by transforming the integrals Ij as
follows:

δI0 =

∫ 1

0

χ0(r)dr, δI1 =

∫ 1

0

χ1(r)dr, δ2I2 =

∫ 1

0

(1− r)χ0(r)dr,

δ2I3 =

∫ 1

0

(1− r)χ1(r)dr, δ2I4 =

∫ 1

0

(1− r)χ2(r)dr,

δ2I5 =

∫ 1

0

χ1(r)

∫ 1

r

χ0(r′)dr′dr, δ2I6 =

∫ 1

0

(1− r)χ1(r)χ2(r)dr,

δ2I7 =

∫ 1

0

χ0(r)

∫ 1

r

(
1− σ+

ρ(r′)Ω(r′)2

)
dr′dr.

(2.2.9)

An example of the accuracy of this boundary condition is given in §2.4, and an explicit form for a
linear boundary layer profile is given in §2.5.1.

2.3 The Runge–Kutta solutions

Here we derive an expression for Zeff by approximately solving (2.1.11) using a single step of a
fourth-order explicit Runge–Kutta method (see Hairer et al., 1993), and a second-order, single-step
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CHAPTER 2. BOUNDARY CONDITIONS IN INVISCID SHEAR FLOW

implicit scheme.

Equation (2.1.11) may be transformed as follows. Dividing (2.1.11) through by (ω − Mk)2

produces
1

ω −Mk
L′ = −iQ̃+

iᾱ2

Q̃(ω −Mk)2
L2, (2.3.1)

where Q̃ = Q/(ω −Mk)2, an O(1) quantity for all ω, k, and

L =
(ω − Uk)

r(ω −Mk)
ζ. (2.3.2)

The quantity L may be split into a uniform flow value, Lu = ζu/r, and a perturbation due to the
presence of the boundary layer, L̃, such that

L = Lu + L̃. (2.3.3)

Equation (2.3.1) has the associated data Lu(1) = Zeff , and L = Lu outside the boundary layer.
For a uniform flow of Mach number M and constant density ρ ≡ 1, (2.3.1) reduces to

1

(ω −Mk)
L′u = − i

r
+ ir

(
1− k2 + m2

r2

(ω −Mk)2

)
L2

u. (2.3.4)

Equation (2.3.4) may then be used in (2.3.1) along with the decomposition (2.3.3) to form a
governing equation for L̃(r):

1

(ω −Mk)
L̃′ =

i

r

[
1− ρ(ω − Uk)2

(ω −Mk)2

]
+ ir

k2 + m2

r2

(ω −Mk)2

[
1− (ω −Mk)2

ρ(ω − Uk)2

]
L2

u

+ ir

[
1− k2 + m2

r2

ρ(ω − Uk)2

]
(2LuL̃+ L̃2). (2.3.5)

The asymptotics of equation (2.3.5) may be found in §2.B, where it is shown that the modified
Myers (Brambley, 2011b) condition may be cleanly reproduced from (2.3.5) but the second-order
extension runs into difficulties concerning nonuniqueness. Here, we proceed with approximate
solutions to (2.3.5).

2.3.1 The explicit scheme

In order to ensure the correct δ → 0 behaviour, we use the decomposition (2.3.3) and solve (2.3.5)
for L̃(r), with the necessary condition that L̃ = 0 in uniform flow (for r < 1 − δ). While this is
technically only valid for profiles with U ≡M for r < 1− δ, for a 99% U0 boundary layer thickness
the approximation L̃ = 0 for r < 1 − δ is a reasonable one. We choose to step from the top of
the boundary layer at r = 1 − δ, with the initial condition L̃(1 − δ) = 0, to the lining at r = 1,
where the boundary condition L̃(1) = ωZ/(ω−Mk)−Zeff gives Zeff as a function of Z. Using the
analytic uniform solution defined in §2.1.1 we can treat as known the intermediate values of Lu(r)

that arise.

To perform the step, we define the fourth-order explicit Runge–Kutta difference equation L̃1 =

L̃0 + δ
6 (k1 + 2k2 + 2k3 + k4), where L̃0 = L̃(1− δ) = 0. Defining

A =
i(ω −Mk)

r
χ0, B = ir

k2 +m2/r2

ω −Mk
χ1, C = ir(ω −Mk)

[
1− k2 +m2/r2

ρ(ω − Uk)2

]
, (2.3.6)
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with χj defined as in (2.2.7), the kj terms become

k1 =A(1−δ) +B(1−δ)Lu(1−δ)2, (2.3.7a)

k2 =A(1−δ/2) +B(1−δ/2)Lu(1−δ/2)2 + C(1−δ/2)

(
2Lu(1−δ/2)

δ

2
k1 +

δ2

4
k2

1

)
, (2.3.7b)

k3 =A(1−δ/2) +B(1−δ/2)Lu(1−δ/2)2 + C(1−δ/2)

(
2Lu(1−δ/2)

δ

2
k2 +

δ2

4
k2

2

)
, (2.3.7c)

k4 =A(1) +B(1)Z2
eff + C(1)

(
2Zeffδk3 + δ2k2

3

)
. (2.3.7d)

The decomposition (2.3.3) may then be used to apply the boundary condition at r=1, giving

Zeff =
ω

ω −Mk
Z − δ

6
(k1 + 2k2 + 2k3 + k4). (2.3.8)

If we extract the Zeff from k4, defining k4 = k̃4 + [B(1)Zeff + 2C(1)δk3]Zeff , where k̃4 =

A(1) + δ2C(1)k2
3, we can rearrange (2.3.8) to find

Zeff =
ω

ω −Mk

Z − δ
6 (1−Mk/ω)(k1 + 2k2 + 2k3 + k̃4)

1 + δ
6 (B(1)Zeff + 2δC(1)k3)

, (2.3.9)

which then gives Zeff as a function of Z. To completely isolate Zeff we must multiply up by
the denominator on the right hand side and solve the resulting quadratic. In doing so, however,
a second root is introduced (leading to a problem similar to that faced in the derivation of the
implicit scheme method, below). The classical Myers condition is recovered in the limit δ → 0, as
we would hope (Eversman & Beckemeyer, 1972; Tester, 1973). The form of (2.3.9) bears a striking
resemblance to that of the modified Myers condition.

2.3.2 A single-step implicit scheme

Here we define a trapezoidal second-order, single-step implicit Runge–Kutta scheme and use it for
a single step to approximate Zeff . For this scheme, the fundamental difference equation for the
differential equation y′ = f(x, y) is

yn+1 = yn +
h

2
(f(xn, yn) + f(xn+1, yn+1)). (2.3.10)

The method is implicit due to the appearance of yn+1 on both sides of (2.3.10).

We use the scheme to first step back from the boundary, which has a known impedance Z,
through the sheared boundary layer profile to the edge of the boundary layer at r = 1 − δ; and
then to step forward from r = 1− δ to r = 1 assuming a uniform flow. The details of these steps
are found in §2.D.

The method results in the following effective impedance

Zeff = X1 +
1

2
δ(k̃1 + k̃2), (2.3.11)

where
X1 = X0 −

1

2
δ(k1 + k2), and X0 =

ω

ω −Mk
Z, (2.3.12)

with

k1 =A1(1) +B1(1)X2
0 , (2.3.13)
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k2 =

(
2

δ2B1(1−δ) + 2
X0

δ
− k1

)(
1

−
{

1− 4A1(1−δ)/B1(1−δ) + (2X0 − δk1)2(
2

δB1(1−δ) + 2X0 − δk1

)2

} 1
2
)
, (2.3.14)

for

A1(r) = − i
r

ρ(ω − Uk)2

ω −Mk
, B1(r) = ir(ω −Mk)

(
1− k2 +m2/r2

ρ(ω − Uk)2

)
;

and

k̃1 =A2(1−δ) +B2(1−δ)X2
1 , (2.3.15)

k̃2 =

(
2

δ2B2(1)
− 2

X1

δ
− k̃1

)(
1−

{
1−

4A2(1)/B2(1) +
(

2X1 + δk̃1

)2

(
2

δB2(1) − 2X1 − δk̃1

)2

} 1
2
)
, (2.3.16)

for

A2(r) = − i
r

(ω −Mk), B2(r) = ir(ω −Mk)

(
1− k2 +m2/r2

(ω −Mk)2

)
.

The two steps used here (back then forward) allow the resulting condition to be a direct map
from Z to Zeff (like the asymptotic boundary condition (2.2.8)), without intermediate values of ζu
having to be used (as in the explicit Runge–Kutta scheme (2.3.9)).

2.4 Accuracy of Zeff models

To measure the accuracy of the boundary conditions derived above, numerical solutions of the
full Pridmore-Brown equation were found. This was achieved using a sixth-order finite difference
discretisation on a computational grid spaced uniformly in ξ, where r = tanh(Aξ)/ tanh(A), and
A is a stretching parameter, in order to cluster points near r = 1 to resolve the boundary layer.
Regularity conditions were imposed at r = 0, and the wall boundary condition was p̃(1) = 1, with
ṽ free. Roots of the dispersion relation Z = p̃/ṽ were found via Newton–Raphson iteration over k.
More details of the numerical method can be found in §3.2 and Appendix 3.A. The tanh velocity
profile (Rienstra & Vilenski, 2008)

U(r) = M tanh

(
1− r
δ

)
+M(1− tanh (1/δ))

(
1 + tanh (1/δ)

δ
r + (1 + r)

)
(1− r), (2.4.1)

was used to generate the following results, with a constant density ρ(r) ≡ 1. This base flow has a
displacement thickness

δ∗ =
1

6δ

(
tanh2 (1/δ)− 1

)
+

1

3
(1 + 2 tanh (1/δ))− δ ln (cosh (1/δ)) , (2.4.2)

which for δ ∈ (10−7, 10−1) gives δ∗/δ = 0.69 to two decimal places.
A good initial test of the boundary conditions, and one which seems to be missing from the lit-

erature concerning such impedance boundary conditions, is to directly check how well the effective
impedance is approximated. By solving the Pridmore-Brown equation throughout the complex
k-plane for a given ω and m, a boundary impedance Z is generated at each k. This solution has
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Figure 2.2. Absolute errors in the complex k-plane of the predicted Zeff for each boundary condition. The colour
scheme is normalised such that the darkest blue is an error greater than or equal to 1.5 times the mean Myers error.
The red contour surrounds errors lower than the lowest quartile of the combined results for the Myers, modified
Myers, second-order asymptotic and the single-step implicit Runge–Kutta conditions. Error was calculated as
min{|Z1 − Z2|, |1/Z1 − 1/Z2|}. Parameters are ω = 31, m = 24, M = 0.5, δ = 2×10−3, for a tanh velocity profile
(2.4.1) and constant base density ρ(r) ≡ 1. The boundary impedance at each point is found from the numerical
solution of the Pridmore-Brown equation, (2.1.2a).

a unique uniform flow equivalent and the value of ζu(1) of this uniform flow mode, from (2.1.6), is
the Zeff against which we test the models.

Figure 2.2 shows the absolute errors in the complex k-plane of the predicted Zeff for each
boundary condition. For the thin boundary layer thickness δ = 2×10−3, the asymptotic conditions
perform well. As one would expect, the O(δ2) asymptotic solution, fig. 2.2c, is more accurate
throughout the plotted domain than the modified Myers condition, fig. 2.2b, which in turn is more
accurate than the Myers condition, fig. 2.2a. For the parameters ω = 31 and m = 24 (typical
values for rotor-alone noise in an aeroengine bypass duct at take-off (McAlpine et al., 2006)), and
the restriction to Im(k),Re(k) ∈ [−100, 100], we are well within the region of asymptotic validity,
ω,m, k � 1/δ. The single-step explicit Runge–Kutta scheme, fig. 2.2e, performs well in regions
where the scheme is stable, but blows up erratically due to the stiffness of the impedance Ricatti
equation (2.1.11). The single-step implicit scheme, fig. 2.2d, is reasonably accurate for most of the
domain, but has regions where the error is large. Sudden changes inside the boundary layer are
not modelled well by the implicit scheme, which utilises data points only at either side of the layer;
this suggests the implicit scheme is not suitable for predicting surface modes, and may explain the
loss of accuracy of the implicit scheme in the darker regions of fig. 2.2d. The Myers condition,
fig. 2.2a, also loses accuracy in these regions due to its vanishingly thin shear layer. The well-posed
asymptotic schemes in figs. 2.2b and 2.2c do not have this problem: the bulk treatment of the
shear as integrals across the boundary layer, (2.2.6), allow better modelling of variations inside the

24



CHAPTER 2. BOUNDARY CONDITIONS IN INVISCID SHEAR FLOW

−100 −50 0 50 100

Re(k)

−100

−50

0

50

100
Im

(k
) 0.14 0.

14

0.
24 0.
24

0.39

0.
39

0.65

0.6
5

1.08

1.08

2.12

(a) Myers, (2.1.5)

−100 −50 0 50 100

Re(k)

−100

−50

0

50

100

Im
(k
)

0.14

0.
14

0.24

0.24

0.3
90.65

1.
08

1.
08

(b) modified Myers, (2.1.7)

−100 −50 0 50 100

Re(k)

−100

−50

0

50

100

Im
(k
) 0.14

0.
24

0.24

0.24

0.39

0.39

0.39

0.65
0.65

0.65

1.
08

1.
08

1.08

2.
12

2.12

(c) O(δ2) condition, (2.2.8)
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Figure 2.3. As in fig. 2.2, but for a boundary layer thickness δ = 3×10−2. Note also the different error scale
compared with fig. 2.2.

boundary layer.

In the bypass duct of an aeroengine the boundary layer may be much thicker than 10−3.
Figure 2.3 shows results for δ = 3×10−2, with all other parameters as in fig. 2.2. For this relatively
thick boundary layer, the region of asymptotic validity is k � 33, so it is no surprise that the
breakdown of the asymptotic models (figs. 2.3b and 2.3c) occurs within the plotted domain. The
Myers condition, fig. 2.3a, is also only usefully accurate in a small region near the origin. The
instability of the explicit method makes it unusable in most circumstances (fig. 2.3e). The A-stable
single-step implicit scheme, however, comes into its own for thicker boundary layers. Figure 2.3d
shows the implicit scheme to be extremely accurate throughout the k domain. Importantly, the
accuracy is not lessened as k increases past 1/δ, meaning the single-step implicit scheme may also
be useful when short-wavelength, high-frequency waves interact with a thick boundary layer. There
are, however, larger errors near the Doppler-shifted origin, which is a region important for modes
close to cut-on. These errors can manifest as erroneous instabilities of the least cut-off upstream
modes, discussed in §2.6.

2.5 Simplified forms and limiting cases

Although expressible analytically, the boundary condition in (2.2.8) contains integrals across the
boundary layer that for a general boundary layer profile must be performed numerically. The
single-step implicit scheme boundary condition (2.3.11) is also complicated in its most general
form. We now investigate specific situations when fully closed, simplified forms of the conditions
may be found.
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2.5.1 Linear boundary profile

In the case of a linear boundary layer velocity profile

U(r) =

{
M(1− r)/δ, (1− r) < δ

M, (1− r) > δ
(2.5.1)

with a constant density ρ ≡ 1, the integrals Ij in (2.2.8) may be performed analytically and a
closed-form expression for the O(δ2) asymptotic solution can be written:

Zeff =
ω

ω −Mk

Z + δ iMk
3ω (3ω − 2Mk) + δ2 Mk

12ω

(
8Z
(
k2 +m2

)
− (ωZ − i)(4ω − 3kM)

)
1 + iδMkZ (k2+m2)

(ω−Mk)2 + δ2Υ3

, (2.5.2)

where

Υ3 =
Mk

12(ω −Mk)2

(
Mk3

(
4− 3M2

)
+ 2k2

(
5M2 − 4

)
ω +Mk

(
4m2 − 11ω2

)
− 8m2ω + 4ω3

)
− 6iMkωZ(m2 − k2)(2ω − 3Mk)

+
iωZ

k2M2
(m2 − k2) ln

(
ω

ω −Mk

)
. (2.5.3)

Equation (2.5.2), with (2.5.3), may be applied directly as a boundary condition assuming a uniform
base flow.

The single-step implicit scheme (2.3.11) simplifies greatly for the specific linear shear profile
(2.5.1). Using the sign convention for the roots as discussed in §2.D, the boundary condition
reduces to

Zeff =
iΩu

δµ2
− iΩu

δµ2

{
1 +

δZµ2

Ω2
u

(
2iω + δ(ω2 − k2 −m2)Z

)
− δ2Mkµ2 (2ω −Mk)

Ω2
u

} 1
2

, (2.5.4)

where, as before, Ωu = ω−Mk and µ2 = k2 +m2−Ω2
u. Expanding the square root in the small-δ

limit recovers the Myers condition at leading order.

Previous work has shown that the shape of the boundary layer profile is not as important for at-
tenuation predictions as parameters such as the displacement and momentum thicknesses (Gabard,
2013; Nayfeh et al., 1974). Thus, the explicit forms (2.5.2) and (2.5.4) could be used more generally
if the thickness is altered to match the required boundary layer parameters.

As an example, the displacement thickness for a compressible flow may be defined

δ∗ =

∫ 1

0

1− ρ(r)U(r)

ρ0U0
dr, (2.5.5)

where a subscript 0 denotes a duct centreline value. Given a displacement thickness of a boundary
layer profile that we wish to emulate, we could define a linear profile of the form (2.5.1) with
δ → 2δ∗. Momentum thickness and energy thickness might similarly be used.

2.5.2 Surface modes

Surface modes are waves localised near the boundary that decay exponentially into the core of the
duct. A surface with a finite impedance (not hard wall) and an infinitesimally thin boundary layer
can support up to four surface modes (Rienstra, 2003). Working to first-order in a finite boundary
layer thickness above such a surface allows up to six surface modes to be supported (Brambley,
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2013). To investigate the effect of the second-order corrections to the surface mode predictions, we
utilise the scaling k/ω � 1 and the surface mode dispersion relation (Brambley, 2013)

µ− ω −Mk

iZeff
= 0, (2.5.6)

where Zmod in Brambley (2013) translates to the notation used here as iωZmod = i(ω −Mk)Zeff ,
and µ2 = k2 + m2 − (ω − Mk)2, with Re(µ) > 0. By rearranging (2.2.8) such that we have
i(ω −Mk)Zeff = f(Z,Zeff), and using from (2.1.6)

Zeff = (ω −Mk)
Jm(α)

iαJ ′m(α)
, and

Jm(α)

αJ ′m(α)
∼ 1

µ
(2.5.7)

in the function f(Z,Zeff), the surface mode dispersion relation (2.5.6) for the O(δ2) asymptotic
solution may be written

0 = iωZ

[
µ− µ3δ2I2 + µ(k2 +m2)(δI0δI1 + δ2I3 − δ2I5)

− (k2 +m2)

(
δI1 +

(
2m2

µ2 − 1

)
δ2I3

)
− 2m2

(
δ2I4 −

1

µ2
(k2 +m2)δ2I6

)]
+ µ(ω −Mk)2(δI0 + δ2I2) + (k2 +m2)(ω −Mk)2(δ2I3 − δI0δI1)

+ (ω −Mk)4δ2I7 − (ω −Mk)2. (2.5.8)

To use the dispersion relation (2.5.8), the Ij integral terms must be evaluated in the regime
k/ω � 1 (or, in some cases, the wavenumber and frequency dependence extracted from the in-
tegrals). For the integrals I0, I1, I2, I4 and I7, this may be readily done. For the integrals I3,
I5 and I6, however, global contributions are important and, as such, the k dependence cannot be
extracted for a general boundary layer profile. To overcome this problem, the high-k/ω limit of the
analytical results for a linear profile are used. This is, of course, detrimental to the resulting surface
mode model, but it should give an idea of the number of possible new surface modes predicted by
the second-order model. The asymptotic forms of the Ij integrals are shown in §2.C. Using these
in (2.5.8) produces a polynomial in k of order 14 if we take Z to be locally reacting (independent
of k), meaning that for a given frequency ω the O(δ2) asymptotic solution predicts the existence
of a possible 14 surface modes. Not all of these solutions will correspond to real modes, however,
since they must satisfy Re(µ) > 0 in order to decay away from the boundary. The surface mode
asymptotics of the modified Myers condition by Brambley (2013) predict only six possible surface
modes. This suggests that either the modified Myers condition fails to predict all possible surface
modes (through the neglect of important physics, say); or the new second-order model predicts
spurious modes that are not shared by the Pridmore-Brown equation.

Repeating the above surface mode analysis for the single-step implicit Runge–Kutta scheme
(2.5.4) produces a sixth-order polynomial in k, meaning a possible six surface modes for a given
frequency. This matches the number predicted by the modified Myers condition (Brambley, 2013),
and suggests that the extra surface modes predicted by the second-order asymptotic condition
derived here are in fact spurious. This is investigated further in the next section.

2.6 Wavenumber spectrum and stability

Modes in the k-plane are found for the Myers, modified Myers, single-step implicit scheme (2.3.11),
and the O(δ2) asymptotic solution (2.2.8), and compared with those found via numerical solution
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Figure 2.4. Modes in the k-plane of the Myers condition (black circle), modified Myers condition (blue trian-
gle), single-step implicit scheme (2.3.11) (green cross), O(δ2) asymptotic solution (2.2.8) (red right-triangle) and
Pridmore-Brown numerics (purple plus). The tanh boundary layer profile (2.5.1) is used, with a constant base
density. Parameters are ω = 5, m = 0, M = 0.5, δ = 2 × 10−3. The boundary impedance for the markers is
Z = 3 + 0.52i. The lines track the surface mode for each boundary condition as Im(ω) is reduced from zero to −10,
or sufficiently negative, as Re(ω) is held constant, and the boundary impedance changes in line with (5.6.1).

of the full Pridmore-Brown equation. The liner model used for all results here (unless specifically
stated) is a mass–spring–damper impedance,

Z(ω) = R+ iωd− ib/ω, (2.6.1)

for R = 3, d = 0.15 and b = 1.15. Figure 2.4 shows the results for a tanh boundary layer profile
with a boundary impedance of Z = 3 − 0.52i and parameters ω = 5, m = 0 and δ = 2×10−3. In
fig. 2.4, the O(δ2) asymptotic solution is seen to reproduce the full numerical modes with great
accuracy. The single-step implicit condition predicts poorly the surface mode position in the right
half-plane, but this is expected: the method cannot fully resolve a wave existing predominantly in
the boundary layer; only information at the top and bottom edges of the boundary layer are used
in the numerical scheme. The Myers condition cannot predict the position or behaviour of surface
modes (see fig. 2.4), as it neglects boundary layer physics in favour of a vortex sheet.

The lines from the surface modes in the right half-plane of fig. 2.4 are Briggs–Bers (Bers, 1983;
Briggs, 1964) contours, and give us information about the stability of the modes (see the appendix
of Brambley (2009) for a full discussion). The modes are tracked as Im(ω) is reduced from zero to
sufficiently negative. The impedance changes with ω via (5.6.1). All of the boundary conditions
except the Myers condition predict a downstream propagating convective instability, due to their
crossing the real k-axis from the upper to the lower half-planes. This convective instability is also
present in the Pridmore-Brown numerics, visible in fig. 2.4.

Figure 2.5 shows the least cut-off modes in the k-plane for parameters typical of rotor–stator
interaction in a turbofan engine. The downstream propagating modes in the right half of fig. 2.5 are
well approximated by all the tested models. Discrepancies can be seen in the upstream propagating
modes of the Myers condition and single-step implicit scheme, however. The Myers condition modes
are too cut-off, which could be an explanation for the errors in sound absorption found in Gabard
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Figure 2.5. Least cut-off modes of the Myers condition (black circle), modified Myers condition (blue triangle), single-
step implicit scheme (2.3.11) (green cross), O(δ2) asymptotic solution (2.2.8) (red right-triangle) and Pridmore-
Brown numerics (purple plus), for ω = 31, m = 4, M = 0.5, δ = 2 × 10−3 and a tanh profile. The boundary
impedance is Z = 3 + 4.61i.

(2013) when using the Myers condition. In contrast, the single-step implicit scheme modes have
destabilised and have the wrong sign for Im(k); this could be due to either a failing of the method
or a wrong choice of sign for the square roots in the derivation (see §2.D for a detailed discussion).
Both asymptotic methods correctly predict the Pridmore-Brown result.

Figure 2.6a shows results for ω = 10, m = 5 and δ = 1×10−3, with the addition of modes
predicted by the O(δ2) asymptotic solution surface mode dispersion relation (2.5.8). The good
agreement between the O(δ2) asymptotic solution and its surface mode dispersion relation for the
four surface modes near the main spectrum on the right of fig. 2.6a shows that the reduced model
(2.5.8) is working as intended. Importantly, the two modes in the lower left corner are unique to
the O(δ2) asymptotic solution and its surface mode approximation, with no counterparts found
using either the modified Myers condition or the full numerics. These modes also fall outside the
range of validity of the asymptotics, since they do not satisfy |k| � 1/δ. Figure 2.6b shows the
movement of the modes as Im(Z) is increased from −2.5 to sufficiently positive, where the mass–
spring–damper liner model is not used. The four surface modes near the main spectrum join, or
interact with, the cut-off modes as the impedance is varied. However, the modes in the lower left
do not interact with the other modes in any way. These two pieces of information about the modes
in the lower left – their irreproducibility by the numerics; and their unphysical isolation from the
main spectrum – suggest they are spurious. Thus, as the surface mode dispersion relation (2.5.8)
has been shown to be a valid approximation of (2.2.8), we may use it to suggest that the O(δ2)

asymptotic solution predicts eight spurious surface modes. This may not be as harmful to the
predictive power of the model as it seems at first: new modes could only exist (for reasonable ω
and m) for k values large enough to bring the O(δ2) terms of (2.2.8) into balance with the O(δ)

or O(1) terms. This would inherently mean moving outside the region of asymptotic validity of
the model, and hence a careful use of the new condition should prevent spurious modes being
mistakenly deemed important. Indeed, the spurious modes in fig. 2.6 are outside the region of
asymptotic validity, given by |k| � 1000.
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Figure 2.6. (a) Surface modes near the origin for Z = 1 − 2.5i, where here the mass-spring-damper model is not
used. (b) A larger view of the k-plane, with tracks of surface modes as Im(Z) is increased from −2.5 with Re(Z) = 1
held constant. A spurious mode can be seen far from the origin. In both plots the parameters are ω = 10, m = 5,
δ = 1× 10−3, for a tanh profile with M = 0.5.

2.6.1 The unstable hydrodynamic mode

Surface modes are important for stability analyses. In a laminar boundary layer, linearly unsta-
ble surface modes can seed turbulence which subsequently causes the boundary layer to thicken.
Instability waves are also known to be a source of sound radiation (e.g. Tam & Morris, 1980), so
being better able to predict the linear stability of the boundary layer over a liner is extremely
important for aeroacoustic applications where noise suppression is the goal.

The unstable hydrodynamic modes (Brambley & Peake, 2006; Rienstra, 2003) of the asymptotic
boundary conditions (2.1.5), (2.1.7) and (2.2.8) are traced for increasing real k in fig. 2.7, and
compared with Pridmore-Brown numerics, where now we are solving for ω given k. The growth
rate of the mode is −Im(ω). The O(δ2) asymptotic solution (dashed) replicates the full numerical
solution (solid) accurately for moderate k. In this case, it is a quantitatively better approximation
than the modified Myers for k . 160, which would be considered a very large wavenumber for
most practical purposes. The O(δ2) asymptotic solution retains the regularisation that results
from considering a finite-thickness shear layer; that is, applying the condition (2.2.8) (within its
region of asymptotic validity) forms a well-posed system. It is therefore a usefully predictive tool for
investigating maximum growth rates and representative wavelengths of the linear instability of an
inviscid boundary layer over an impedance lining. For completeness, the Myers boundary condition
prediction is plotted in fig. 2.7 (black dotted); its ill-posedness manifests as an unbounded growth
rate. The Pridmore-Brown solution asymptotes to Im(ω) = 0 as k →∞ but never becomes stable
(Im(ω) > 0) for any real k. Viscosity controls the restabilisation at small wavelengths (Khamis &
Brambley, 2015): we would therefore not expect the inviscid numerics nor the inviscid boundary
conditions (2.1.7) and ?? to be stable at large real k without the addition of a small amount of
viscosity to stabilise the system for large wavenumbers.
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Figure 2.7. The unstable mode growth rate is plotted against real k for parameters δ = 2× 10−3, m = 12, M = 0.5,
with a tanh boundary layer profile and a mass–spring–damper impedance, Z(ω) = R + iωd − ib/ω, for R = 3,
d = 0.15, b = 1.15, as in (5.6.1).

2.7 Summary

In this chapter, the inviscid theory of sound propagation in an acoustically lined cylindrical duct
has been extended. A new effective impedance boundary condition, that accounts for both re-
fraction through the boundary layer and the impedance of the acoustic lining, was derived using
matched asymptotic expansions in a thin shear layer at the wall and a uniform outer flow in the
core of the duct. The new boundary condition, correct to second order in the boundary layer
thickness, showed improvements in accuracy over the Myers (Ingard, 1959; Myers, 1980) condition
and its first order correction (Brambley, 2011b) when compared with numerical solutions of the
linearised Euler equations. The second-order boundary condition out-performed existing boundary
conditions in the prediction of cut-on and real surface wave modes in the k-plane, and gave better
approximations of the characteristic wavelength and growth rate of instability via stability analysis
in the frequency domain. However, the new condition supports spurious surface modes that are
not shared by the linearised Euler equations. This result suggests that the physics in the inviscid
sheared boundary layer is adequately modelled by the first order modified Myers condition so as
to account for all possible surface wave modes—a maximum of six (Brambley, 2013) per frequency
and circumferential order, compared to the four supported by the Myers condition (Rienstra, 2003).

The spurious surface wave modes of the new second-order boundary condition occur outside
its region of asymptotic validity, kδ � 1, ωδ � 1, so their existence is not too damaging to the
model. An alternative method was proposed to probe the parameter space outside the region of
asymptotic validity of the second-order condition, where short wavelength, high frequency waves
interact with a thick boundary layer. A nonlinear Ricatti equation governing the evolution of
the ratio Z = p̃(r)/ṽ(r) was derived and subsequently solved via Runge–Kutta integration steps
performed analytically. Both a fourth-order explicit integration scheme and a second-order implicit
scheme were used, with the explicit scheme shown to be greatly unstable. The implicit scheme was
shown to accurately predict the effective impedance of a thick boundary layer at high wavenumbers
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(where the asymptotic boundary conditions fail), while failing to predict surface modes due to its
poor resolution of the boundary layer.

The general problem of a liner with grazing flow has many facets which themselves are open
problems; including viscothermal effects which are in the most part neglected in the literature. It is
known that viscosity by itself does not regularise the ill-posedness of the Myers condition (Bram-
bley, 2011a), but that viscous effects can be necessary to accurately predict experimental re-
sults (Burak et al., 2008, 2009; Renou & Aurégan, 2010, 2011). The next chapter investigates the
effects of viscosity and thermal conduction on sound propagation in an acoustically lined duct, and
attempts to quantify their importance in relation to mean flow shear.

Appendix

2.A Details of the asymptotics of the p̃ and ṽ governing equa-

tions

We solve (2.2.4) to second order for the inner solution by expanding the radial velocity as ṽ =

ṽ0 + δṽ1 + δ2ṽ2 +O(δ3). We match to the outer solution

ṽu(1− δy) = v∞ + δy

(
µ2

iΩu
p∞ + v∞

)
+

1

2
δ2y2

[(
2 + µ2

)
v∞ +

µ2 + 2m2

iΩu
p∞

]
+O(δ3) (2.A.1)

in the limit y →∞, where for brevity Ωu = ω −Mk, and µ2 = k2 +m2 − Ω2
u. With Ω = ω − Uk

and σ+ = k2 +m2, the leading order solution is

ṽ0 = A0Ω +B0Ω

∫ y

0

1− σ+

ρΩ2
dy′, (2.A.2)

which may be written in terms of bounded integrals as

ṽ0 = A0Ω−B0Ωy
µ2

Ω2
u

+B0Ω
σ+

Ω2
u

∫ y

0

1− Ω2
u

ρΩ2
dy′. (2.A.3)

Upon matching with the leading order of (2.A.1) as y → ∞ we find B0 ≡ 0 and A0 = v∞/Ωu.
Similarly at first-order,

ṽ1 = A1Ω +A0Ωy −B1Ωy
µ2

Ω2
u

+B1Ω
σ+

Ω2
u

∫ y

0

1− Ω2
u

ρΩ2
dy′. (2.A.4)

Matching with (2.A.1) gives B1 = ip∞ and A1 = −iσ+I1p∞/Ω
2
u, where

I1 =

∫ ∞
0

χ1(y)dy, χ1(y) = 1− (ω −Mk)2

ρ(ω − Uk)2
. (2.A.5)

At second order, we find

ṽ2 =A2Ω−B2Ωy
µ2

Ω2
u

+B2Ω
σ+

Ω2
u

∫ y

0

χ1dy′ +A1Ωy −B1Ω

∫ y

0

y
µ2

Ω2
u

dy′

+B1Ω
σ+

Ω2
u

∫ y

0

(∫ y′

0

χ1dy′′ − I1
)

dy′ +B1Ω
σ+

Ω2
u

I1y +
1

2
A0Ωy2
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− 2m2Ω
(
A0 −B1

µ2

Ω2
u

)∫ y

0

y′

ρΩ2 − σ+
dy′ − 2m2B1Ω

σ+

Ω2
u

∫ y

0

y′

ρΩ2 − σ+
χ1dy′

+A0Ω

∫ 1

0

y′
(

1 +
2m2

ρΩ2 − σ+

)
dy′ −A0Ω

∫ y

0

(
1− σ+

ρΩ2

)∫ y′

0

ρΩ2dy′′dy′. (2.A.6)

In terms of bounded integrals suitable for matching, (2.A.6) may be rewritten as

ṽ2 =A2Ω−B2Ωy
µ2

Ω2
u

+B2Ω
σ+

Ω2
u

∫ y

0

χ1dy′ +A1Ωy − µ2Ω

2Ω2
u

B1y
2 − m2Ω

Ω2
u

B1y
2

+B1Ω
σ+

Ω2
u

∫ y

0

(∫ y′

0

χ1dy′′ − I1
)

dy′ +B1Ω
σ+

Ω2
u

I1y +
1

2
A0Ωy2 +

m2Ω

µ2
A0y

2

+m2Ω

(
2B1

Ω2
u

− A0

µ2

)∫ y

0

y′
(

1− Ω2
u − σ+

ρΩ2 − σ+

)
dy′ +

2m2σ+

Ω2
u

Ω

µ2
B1

∫ y

0

χ1y
′dy′

− 2m2σ+

Ω2
u

Ω

µ2
B1

∫ y

0

χ1y
′
(

1− Ω2
u − σ+

ρΩ2 − σ+

)
dy′ +A0σ+Ω

∫ y

0

χ1

∫ y′

0

χ0 dy′′dy′

−A0Ωµ2

∫ y

0

(∫ y′

0

χ0dy′′ − I0
)

dy′ −A0Ωµ2I0y

−A0σ+Ω

∫ y

0

y′χ1dy′ +
1

2
A0Ωµ2y2, (2.A.7)

where
I0 =

∫ ∞
0

χ0(y)dy, χ0(y) = 1− ρ(ω − Uk)2

(ω −Mk)2
. (2.A.8)

At this order in the ṽ expansion we introduce spurious singularities at µ2 = 0 and ρΩ2 = σ+.
Taking y →∞ and matching with the outer solution gives

B2 =
Ω2

u

µ2
A1 +

σ+

µ2
I1B1 − Ω2

uI0A0 (2.A.9)

and

A2 = −B2Ω
σ+

Ω2
u

I1 −B1
σ+

Ω2
u

∫ ∞
0

(∫ y

0

χ1dy′ − I1
)

dy −m2

(
2B1

Ω2
u

− A0

µ2

)∫ y

0

y′χ2 dy′

− 2m2σ+

Ω2
uµ

2
I3B1 +

2m2σ+

Ω2
uµ

2
B1

∫ ∞
0

yχ1χ2dy −A0σ+

∫ ∞
0

χ1

∫ y

0

χ0 dy′dy

+A0µ
2

∫ ∞
0

(∫ y

0

χ0dy′ − I0
)

dy +A0σ+I3, (2.A.10)

where
I3 =

∫ ∞
0

yχ1(y)dy, and χ2(y) = 1− (ω −Mk)2 − k2 −m2

ρ(ω − Uk)2 − k2 −m2
. (2.A.11)

Evaluating ṽ at the wall, y = 0, leads to

ṽ(0) =
ω

Ωu

{
v∞ −

iσ+

Ωu
p∞δI1 − σ+

(
2im2p∞

Ωuµ2
− v∞

)
δ2I3 + σ+v∞δI0δI1

+
iσ+

Ωu
p∞δ

2I3 − µ2v∞δ
2I2 −

2im2p∞
Ωu

δ2I4 − σ+v∞δ
2I5

+
2im2σ+p∞

Ωuµ2
δ2I6

}
+O(δ3) , (2.A.12)

where

I4 =

∫ ∞
0

yχ2(y)dy, I5 =

∫ ∞
0

χ1(y)

∫ y

0

χ0(y′)dy′dy, I6 =

∫ ∞
0

yχ1(y)χ2(y)dy. (2.A.13)
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Equation (2.A.12) is equivalent to (2.2.5b) in the main part of the chapter.
The corresponding problem for p̃ is solved in the same way, using the governing equation (2.2.3)

and the outer solution (2.2.2a). The result is given in appendix A of Brambley (2011b) as

p̃(0) = p∞ + i(ω −Mk)v∞δI0 + p∞(k2 +m2)δI1δI0 + i(ω −Mk)v∞δ
2I2

− (ω −Mk)2p∞δ
2I7 − p∞(k2 +m2)δ2I3. (2.A.14)

where

I2 =

∫ ∞
0

yχ0(y)dy, and I7 =

∫ ∞
0

χ0(y)

∫ y

0

(
1− k2 +m2

ρ(y′)(ω − U(y′)k)2

)
dy′dy. (2.A.15)

The effective impedance is formed by taking the ratio Z = p̃(0)/ṽ(0) and dividing top and
bottom by v∞. This gives Z = f(Zeff) by virtue of the definition Zeff = p∞/v∞; rearranging for
Zeff produces

Zeff =
ω

Ωu

Z + δA+ δ2B
1 + δC + δ2D +O(δ3) (2.A.16)

where

A = − iΩ2
u

ω
I0, B = − iΩ

2
u

ω
I2 − Zµ2I2 + σ+Z(I0I1 + I3 − I5), C = iσ+

ωZ

Ω2
u

I1,

D =
iσ+ωZ

Ω2
u

(2m2

µ2
− 1
)
I3 + 2im2ωZ

Ω2
u

(
I4 −

σ+

µ2
I6

)
+ σ+(I0I1 − I3)− Ω2

uI7

which is equivalent to (2.2.8).

2.B Asymptotics of the impedance governing equation

Here we derive, asymptotically, two expressions for Zeff from the nonlinear impedance equation
(2.3.1), correct to first and second order in δ, respectively.

In the case of a nonuniform flow, where U = U(r) and ρ = ρ(r), we use (2.3.3) in (2.3.1) and
substitute for L′u from (2.3.4) to arrive at (2.3.5) which we repeat here for convenience:

1

(ω −Mk)
L̃′ =

i

r

[
1− ρ(ω − Uk)2

(ω −Mk)2

]
+ ir

k2 + m2

r2

(ω −Mk)2

[
1− (ω −Mk)2

ρ(ω − Uk)2

]
L2

u

+ ir

[
1− k2 + m2

r2

ρ(ω − Uk)2

]
(2LuL̃+ L̃2). (2.B.1)

The first two square brackets on the right-hand side of (2.B.1) are non-zero only in the thin
boundary layer near r = 1. This suggests that a power series expansion of L̃ in the boundary
layer thickness δ is appropriate, so we write L̃ = δL̃1 + δ2L̃2 + O(δ3). The last square bracket
is multiplied by terms proportional to L̃ and L̃2, so the order-of-magnitude assumptions are self-
consistent. We again rescale to lie within the boundary layer by writing r = 1 − δy. Expanding
(2.B.1) in terms of y and in powers of δ produces

1

Ωu
(L̃1 + δL̃2)′ = − iχ0 − i

σ+

Ω2
u

Lu(0)2χ1 − δ
{
iyχ0 + iy

σ−
Ω2

u

Lu(0)2χ1

− 2iy
σ+

Ω2
u

Lu(0)L′u(0)χ1 + 2i

(
1− σ+

ρΩ2

)
Lu(0)L̃1

}
, (2.B.2)

where σ± = m2 ± k2, Ω(y) = ω − U(y)k, Ωu = ω −Mk, and the χj are defined as in (2.2.7).
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Our boundary conditions are L̃j → 0 as y → ∞ for j = 1, 2. In (2.B.2) the Taylor expansion of
Lu about the lined wall, Lu(y) = Lu(0) − δyL′u(0) + O(δ2), is used. We note that in this section
all arguments are now in terms of y unless explicitly stated; a prime represents a derivative with
respect to y, and an argument of y=0 relates to a value at the wall, where r=1.

We may integrate the leading order terms in (2.B.2) to find an expression for L̃1,

L̃1 = iΩu

[
I0 −

∫ y

0

χ0(z)dz +
σ+

Ω2
u

L2
u(0)

(
I1 −

∫ y

0

χ1(z)dz

)]
, (2.B.3)

where the integration constants Ij are defined as in (2.2.6). This ensures that L̃1→ 0 as y→∞,
such that, as we move into the main body of the duct, where the flow is uniform, our L value tends
to its uniform flow value Lu. Evaluating (2.B.3) at y= 0 causes the integrals to vanish, and thus
we find an expression for L at the wall, correct to first order in δ:

L(0) = Lu(0) + iΩuδ

[
I0 + I1

σ+

Ω2
u

L2
u(0)

]
+O(δ2). (2.B.4)

From (2.3.2), no slip at the boundary implies L(0) = ωZ/Ωu. Similarly, a uniform slipping flow
implies Lu(0) = Zeff . At leading order, then, (2.B.4) becomes

Zeff =
ω

Ωu
Z +O(δ), (2.B.5)

which is the Myers effective impedance (2.1.5), as expected (Myers, 1980). If we make the approx-
imation L2

u(0) = ZZeff/(1−Mk/ω) +O(δ), we can rearrange (2.B.4) at first order to find

Zeff =
ω

Ωu

Z − i
ωΩ2

uδI0

1 + iσ+
ωZ
Ω2

u
δI1

+O(δ2), (2.B.6)

which is the modified Myers effective impedance (2.1.7), as derived using matched asymptotic
expansions of p̃ in Brambley (2011b).

Continuing, the first-order terms in (2.B.2) may be examined to find the second-order correction
terms. Upon integration,

L̃2 = iΩu

{
I2 −

∫ y

0

zχ0(z)dz + ΓLu(0)

(
I3 −

∫ y

0

zχ1(z)dz

)

+ 2Lu(0)

(
I8 −

∫ y

0

L̃1(z)

[
1− σ+

ρ(z)Ω(z)2

]
dz

)}
, (2.B.7)

where
Γ =

σ−
Ω2

u

Lu(0)− 2i
σ+

Ωu

[
1−

(
1− σ+

Ω2
u

)
Lu(0)2

]
and the new integration constant, I8, is defined by

I8 =

∫ ∞
0

L̃1

[
1− σ+

ρΩ2

]
dy. (2.B.8)

As before, this ensures that L̃2→0 as y→∞ such that we find the correct behaviour in the uniform
core of the duct. Using (2.B.3) and (2.B.7) in (2.3.3) we have, at the boundary,

L(0) = Lu(0) + iΩu

(
δ
[
I0 + I1

σ+

Ω2
u

L2
u(0)

]
+ δ2

[
I2 + ΓLu(0)I3 + 2Lu(0)I8

])
+O(δ3). (2.B.9)

35



2.C. SURFACE MODE ASYMPTOTICS OF IJ INTEGRALS

By rearranging (2.B.9) we find the effective impedance,

Zeff =
ω

Ωu

Z − i
ωΩ2

u

(
δI0 + δ2I2

)
1 + iδ σ+

Ωu
Lu(0)I1 + iΩuδ2(ΓI3 + 2I8)

+O(δ3), (2.B.10)

where the values of Lu(0) in the denominator, in the Γ term and in the I8 integral must be approx-
imated. Herein lies a key issue with this method: the nonlinear Lu terms force approximations
to be made for which there is no guiding modus operandi. In the matched asymptotic expansions
derivation which leads to the condition (2.2.8), no such Z2

eff splittings have to be made; the linear
form falls naturally out of the mathematics. Different asymptotic forms of (2.B.10) may be found
by using different approximations, and it transpires that the behaviour of the boundary condition
(2.B.10) is heavily dependent on the chosen form. While (2.2.8) and (2.B.10) are asymptotically
equivalent, it is difficult to see from (2.B.10) any reason to choose the approximation leading to
(2.2.8), although other approximations seem to give worse results than (2.2.8).

We conclude by remarking that although a unique, useful second-order condition does not fall
easily out of the impedance governing equation, the derivation of the first-order modified Myers
condition is cleaner than that of Brambley (2011b).

2.C Surface mode asymptotics of Ij integrals

The integrals Ij are approximated in the k/ω � 1 limit as

δI0 =
1

(ω −Mk)2
(ω2δmass − 2Mkωδmom +M2k2δke), δI1 ∼ δs

Mk

ω
,

δ2I2 =
1

(ω −Mk)2
(ω2δ̃2

mass − 2Mkωδ̃2
mom +M2k2δ̃2

ke),

δ2I3 ∼ δ2

[
3

2
+ ln

(
ω/k

ω/k −M

)]
,

δ2I4 ∼
∫ 1

0

(1− r)
(

1− M2 − 1

ρU2 − 1

)
dr +

ω

k

∫ 1

0

2(1− r)
ρU2 − 1

(
M − ρU(M2 − 1)

ρU2 − 1

)
dr,

δ2I5 ∼ δ2

[ 19
12M

2k2 − 13
3 Mkω

(ω −Mk)2
+ ln

(
ω/k

ω/k −M

)]
,

δ2I6 ∼ δ2

[
1

2
+M2 +M2 ln

(
ω/k

ω/k −M

)
+

1−M4

2M2
ln

(
1− Mk(Mk − 2ω)

(ω −Mk)2 − k2 −m2

)]
,

δ2I7 ∼
δs(k

2 +m2)

Mkω(ω −Mk)2
(ω2δmass − 2Mkωδmom +M2k2δke),

where I0 and I2 are exact, and

δs =
−M

ρ(1)U ′(1)
, δmass =

∫ 1

0

(1− ρ)dr, δmom =

∫ 1

0

1− ρU

M
dr

δke =

∫ 1

0

1− ρU2

M2
dr, δ̃2

mass =

∫ 1

0

(1− r)(1− ρ)dr,

δ̃2
mom =

∫ 1

0

(1− r)
(

1− ρU

M

)
dr, δ̃2

ke =

∫ 1

0

(1− r)
(

1− ρU2

M2

)
dr,

are measures of boundary layer thickness.
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2.D The implicit scheme

The second-order trapezoidal single-step implicit scheme is the highest-order such scheme for which
a closed-form solution can be written. The fundamental difference equation for the differential
equation y′ = f(x, y) is

yn+1 = yn +
h

2
(f(xn, yn) + f(xn+1, yn+1)), (2.D.1)

which may be written as

yn+1 = yn +
h

2
(k1 + k2), (2.D.2)

where
k1 = f(xn, yn), k2 = f

(
xn + h, yn +

h

2
k1 +

h

2
k2

)
. (2.D.3)

We use this scheme to solve (2.3.1) and (2.3.4), which we rewrite together here in the form

L′ = Aj(r) +Bj(r)L
2, (2.D.4)

for j = 1, 2, with

A1(r) = − i
r

ρ(ω − Uk)2

ω −Mk
, B1(r) = ir(ω −Mk)

(
1− k2 +m2/r2

ρΩ2

)
,

A2(r) = − i
r

(ω −Mk), B2(r) = ir(ω −Mk)

(
1− k2 +m2/r2

(ω −Mk)2

)
.

Equation (2.D.4) with j = 1 is the impedance governing equation for a sheared flow (our boundary
layer), while for j = 2 it is the corresponding equation for a uniform flow (our imagined slipping
flow with no sheared boundary layer).

This scheme actually performs two steps, one for each boundary layer, sheared and uniform.
Starting from the boundary r = 1 with the known impedance Z, we step backwards a distance δ
through the sheared boundary layer (equation (2.D.4) with j = 1):

k1 =A1(1) +B1(1)X2
0 , (2.D.5a)

k2± =
2

δ2B1(1−δ) + 2
X0

δ
− k1

±

√√√√( 2

δ2B1(1−δ) + 2
X0

δ
− k1

)2

− 4

δ2

(
A1(1−δ)
B1(1−δ) +

(
X0 −

1

2
δk1

)2
)

; (2.D.5b)

leading to

X1± = X0 −
1

2
δ(k1 + k2±). (2.D.6)

The quantity X0 = ωZ/(ω−Mk) is L(1) as defined in (2.3.2), and gives the recovery of the Myers
condition in the limit δ → 0. There are two possible solutions from the square root; however, it is
possible to disregard one by considering the small-δ limit. From (2.D.5b), k2± may be rewritten

k2± = Y ± Y
√

1 +W, (2.D.7)

where

Y =
2

δ2B1(1−δ) + 2
X0

δ
− k1, W = − 4

δ2Y 2

(
A1(1−δ)
B1(1−δ) + (X0 − δk1/2)2

)
. (2.D.8)
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Since Y is O(1/δ2), the term inside the square root in (2.D.7) may be Taylor–expanded as√
1 + δ2W ∼ 1 + δ2W/2 + O(δ4). Taking the positive root leads to k2+ = O(1/δ2), while taking

the negative root gives k2− = O(1). Considering (2.D.6), the single implicit Runge–Kutta step
would produce an O(1/δ) change between the quantities X1 and X0 if k2+ was chosen, and an
O(δ) change if k2− was chosen. Over a small distance we expect a stable solution to change by a
small amount; thus, we disregard the positive root and write X1± ≡ X1. Note, this assumption
may break down if δ2W is not a small quantity, or if a mode oscillates rapidly within the boundary
layer.

When computing the value of k2, we rewrite (2.D.7) to eliminate the possibility of rounding
errors for small W . The square root may be expanded as a binomial series when |W | < 1,

(1 +W )
1
2 =

∞∑
n=0

(
1/2

n

)
Wn. (2.D.9)

The leading coefficient of (2.D.9) is unity, which, when multiplied by the Y outside the root,
cancels with the first Y term in (2.D.7) when the correct negative root is taken (by the scaling
argument above). The remaining terms in the series, n ∈ [1,∞), may be approximated by the
Padé approximant r(z) = p(z)/q(z) (for polynomials p, q) with the zeroth-order coefficient of p(z)
set to zero. Then, k2 = −Y p(W )/q(W ). If |W | ≥ 1, the explicit square root form (2.D.7) may be
used.

Next, we step forward from the edge of the boundary layer at r = 1−δ through the imagined
uniform boundary layer (equation (2.D.4) with j = 2) to the boundary, where the impedance is the
effective impedance Zeff . The quantity X1 serves as our initial condition, and generates a further
two solutions:

k̃1 =A2(1−δ) +B2(1−δ)X2
1 , (2.D.10a)

k̃2± = Ỹ ± Ỹ
√

1 + W̃ , (2.D.10b)

where

Ỹ =
2

δ2B2(1)
− 2

X1

δ
− k̃1, W̃ = − 4

δ2Ỹ 2

(
A2(1)

B2(1)
+

(
X1 +

1

2
δk̃1

)2
)
, (2.D.11)

and where we again take the negative root of k̃2± in (2.D.10b), writing k̃2± ≡ k̃2. The computation
of k̃2 may again be done via Padé approximation if |W̃ | < 1. Since we have a binomial series with
index 1/2, the same polynomials p(z) and q(z) from above may be used, and evaluated at the new
argument W̃ . We arrive at a single value for Zeff ,

Zeff = X1 +
1

2
δ(k̃1 + k̃2), (2.D.12)

which is the result in the main part of the chapter.
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Chapter 3

A numerical study of the effects of
shear and viscosity on sound
attenuation and flow stability

In this chapter, the effects of viscosity and thermal conduction on the propagation of sound in
a lined duct with shear flow are analysed by numerically solving the linearised Navier–Stokes
equations (given in §3.1). The work presented in this chapter has been submitted for publication
in the Journal of Fluid Mechanics (Khamis & Brambley, 2016b); some of this work was presented
at the AIAA Aeroacoustics conference (Khamis & Brambley, 2015). Details of the numerical
solution are given in §3.2. Comparisons are made with inviscid computations in inviscid shear flow
in §3.3. To quantify the results, separate comparisons are made between the inviscid shear flow
computations and analytical solutions for the acoustics in inviscid uniform flow. Since it is widely
accepted that the effects of shear are important to the acoustics in a duct (Gabard, 2013), we use
this second comparison as a baseline against which to judge the relative importance of viscosity.

3.1 Governing equations

A fluid can be described by six variables: three orthogonal components of the velocity u = (u, v, w),
and three state variables (P, ρ, T ), the pressure, density, and temperature respectively. The dy-
namics of a viscous, compressible perfect gas are governed by the Navier–Stokes equations (1.1.10).

Each flow variable Qtotal is assumed to have a time-averaged base flow part and a time harmonic
acoustic part, such that Qtotal(r, t) = Q(r) + εaq(r) exp {iωt}, where εa � 1 is the magnitude of
acoustic oscillations, and ω is the dimensionless frequency (the Helmholtz number).

3.1.1 Steady base flow

Rather than solve the steady Navier–Stokes equations, or indeed solve the unsteady Navier–Stokes
equations (possibly together with a sub-grid-scale turbulence model) and then time average, we
approximate the steady base flow as a simple analytic profile, which we do not therefore require
to satisfy (1.1.10). This is in order to compare with inviscid results with similar assumptions and
with empirical profiles derived from experiments. We consider flow along a cylinder with coordinate
system r = (x, r, θ), as shown in fig. 1.3, and take the steady base flow velocity and temperature
to be independent of x and θ, and the base flow velocity to be in the axial direction. This is a
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3.1. GOVERNING EQUATIONS

reasonable approximation for viscous flow provided we are sufficiently far from a leading edge that
the boundary layer varies little over the x range to be considered (Brambley, 2011a). At the duct
wall, we require no slip, U(1) = 0, and thermal equilibrium, Tr(1) = 0, where a subscript denotes
differentiation. Subject to these constraints, no restriction is placed on the mean flow velocity
profile U(r) and temperature profile T (r). The base flow density is given by 1/ρ(r) = (γ − 1)T (r)

from the constitutive law (1.1.10d) and the fact that the base flow pressure is constant. Note
that if T (r) were a constant independent of r then the base flow sound speed c0(r) would also be
constant, although this is not assumed in what follows.

All results presented here are for a hyperbolic velocity and temperature profile,

U(r) = M tanh

(
1− r
δ

)
+M

(
1− tanh

(
1

δ

))(
1 + tanh(1/δ)

δ
r + (1 + r)

)
(1− r) (3.1.1a)

T (r) = T0 + τ

(
cosh

(
1− r
δ

))−1

, (3.1.1b)

where δ is a measure of boundary layer thickness, with U(1−δ) ≈ 0.76M and U(1−3δ) ≈ 0.995M .
Motivated by the compressible Blasius boundary layer temperature profile, we take τ = 0.104 to
three significant figures in what follows. We vary M and δ later.

3.1.2 The linearised Navier–Stokes equations

To derive the linearised Navier–Stokes equations (LNSE) we Fourier transform the acoustic quan-
tities in the axial coordinate, and define a Fourier series in the azimuthal coordinate. Then we
consider a single mode as in (1.1.12). Linearising (1.1.10) about the base flow leads to (1.1.13),
which we rewrite here for convenience as

0 = i(ω − Uk)γp̃− i(ω − Uk)(γ − 1)ρT̃ − ikũ+ T

(
ṽ

T

)
r

+
1

r
ṽ − im

r
w̃ (3.1.2a)

0 = iρ(ω − Uk)ũ+ ρUrṽ − ikp̃−
1

Re

{
(Hũr + UrH̃)r +

1

r
(Hũr + UrH̃)− m2

r2
Hũ

− (2 + β)k2Hũ− ik(1 + β)(Hṽ)r + ikβHrṽ −
ik

r
(1 + β)Hṽ − km

r
(1 + β)Hw̃

}
(3.1.2b)

0 = iρ(ω − Uk)ṽ + p̃r −
1

Re

{
(2 + β)(Hṽr)r −

2

r
Hrṽ −

(
k2 +

m2

r2

)
Hṽ + (2 + β)

(Hṽ
r

)
r

− ik(1 + β)(Hũ)r + ik(Hrũ− UrH̃)− im(1 + β)
(Hw̃
r

)
r
+
im

r
Hrw̃ +

2im

r2
Hw̃
}

(3.1.2c)

0 = iρ(ω − Uk)w̃ − im

r
p̃− 1

Re

{
− km

r
(1 + β)Hũ− im

r2
(3 + β)Hṽ − im

r
(1 + β)(Hṽ)r

+
im

r
βHrṽ −

(
k2 +

m2

r2

)
Hw̃ + (Hw̃r)r −

m2

r2
(1 + β)Hw̃ +H

(
w̃

r

)
r

− 1

r
Hrw̃

}
(3.1.2d)

0 = iρ(ω − Uk)T̃ + ρTrṽ − i(ω − Uk)p̃− 1

Re

{
U2
r H̃+ 2HUrũr − 2ikHUrṽ

+
1

Pr

(
(HT̃r + TrH̃)r +

1

r
(HT̃r + TrH̃)−

(
k2 +

m2

r2

)
HT̃
)}

, (3.1.2e)
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CHAPTER 3. A NUMERICAL STUDY OF SHEAR AND VISCOSITY

The system (3.1.2) is closed by assigning a functional form to H(r, T ), introduced in (1.1.16), and
Taylor expanding; to leading order in the acoustic perturbations we find

H̃ =
∂H(r, T )

∂T

∣∣∣∣
(r,T )

T̃ . (3.1.3)

In this chapter we forego the radial dependence of the viscosity and choose a linear temperature
dependence as a ‘leading order’ approximation of the true dependence (Kadoya et al., 1985).1

Thus, we define

H(r, T ) =
T

T0
. (3.1.4)

The shear and bulk viscosities are assigned the same temperature dependence, as their ratio µB∗/µ∗

is relatively insensitive to temperature variations in both air and water (Pierce, 1994, chap. 10).

The LNSE, as given in (3.1.2) with (3.1.4), form a system of five linear ordinary differential
equations in r for the five acoustic quantities (p̃, ũ, ṽ, w̃, T̃ ). The system is first order in p̃ and
second order in ũ, ṽ, w̃ and T̃ so we may apply nine boundary conditions. At r = 0, each variable
must satisfies a regularity condition. At the duct wall r = 1, no slip specifies ũ(1) = w̃(1) = 0 while
the isothermal assumption of the duct wall specifies T̃ (1) = 0. As the ninth boundary condition we
choose to normalise our solution by specifying p̃(1) = 1 in order to force a nonzero solution, which
therefore leaves ṽ(1) unconstrained. Note that a unique solution with these boundary conditions
may be expected for any values of ω, k and m.

At the wall, the acoustic pressure drives a nonzero radial velocity given by the impedance Z
(nondimensionalised by Z∗ = ρ∗0c

∗
0Z). Because of the no slip condition, this unambiguously implies

the additional boundary condition
p̃(1)

ṽ(1)
= Z, (3.1.5)

which is a dispersion relation relating allowable values for ω, k and m. Each allowable value of
(ω, k,m) is referred to as a duct mode. The impedance Z may depend upon ω, k or m through
an appropriate, causal liner model (Rienstra, 2006). For example, a mass–spring–damper model
of the boundary with a mass d, spring constant b and damping coefficient R gives the impedance

Z(ω) = R+ iωd− ib/ω. (3.1.6)

However, for now we make no assumption of the specific form of Z(ω, k).

3.2 Numerical method

Here, we describe the method used here to solve the LNSE (3.1.2) numerically. The domain of the
problem is r ∈ [0, 1], although near the wall at r = 1 we will consider a thin boundary layer. We
therefore choose to discretise the domain non-uniformly, with more grid points clustered near the
boundary r = 1. This non-uniform grid is then mapped to a uniformly-spaced computational grid,
ψ ∈ [0, 1], using the map

r =
tanhSψ

tanhS
, (3.2.1)

1The reference gives the viscosity of dry air as µ = B(A1T + A0.5T 0.5 +
∑−4
i=0 AiT

i) + ∆µρ, where B and the
Aj are empirical fitting parameters and the ∆µρ is some small “excess” viscosity that depends on the density.
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where S > 0 is a stretching parameter. Larger values of S allow more points to be clustered near
r = 1. The LNSE (3.1.2) are then rewritten using ψ as the independent variable using

d

dr
=
∂ψ

∂r

d

dψ
. (3.2.2)

It was found that this mapping allowed the numerical derivatives to be calculated more stably
than using directly a nonuniform computational discretisation for r.

The computational domain is then discretised into N equally spaced points, forming a matrix
equation Ax = b where A is a 5N × 5N sparse matrix and x is the solution vector. The vector
b contains zeros in 5N − 1 entries (the homogeneous equations and eight boundary conditions),
with the the pressure normalisation being enforced by the remaining (nonzero) entry. In forming
A, radial derivatives are approximated using a sixth-order seven-point centred finite difference
stencil (Brambley, 2015, 2016), since exponential growth and decay is expected in the r-direction
as well as oscillations. The system is solved using a sparse matrix solver, with in general N = 8000

being sufficient for convergence to typical errors of . 10−8 (see §3.A), and S chosen large enough
to place at least 400 points inside the boundary layer irrespective of its thickness. The convergence
of the numerical method is further evidenced by the good agreement with the asymptotics seen
in §4.2.

The same solver may be used to produce the inviscid results by numerically setting 1/Re = 0.
In the inviscid case, only two boundary conditions may be applied, which we take to be the p̃(1) = 1

normalisation and the ṽ(0) regularity condition, with regularity of the other variables at r = 0

following automatically in this case.
For a given azimuthal mode m and impedance model for Z, a Newton–Raphson iteration is

used to find complex values of k (or ω) given ω (or k) such that the dispersion relation (3.1.5) is
satisfied. More information is given in §3.A.

3.3 Comparisons of viscous and shear effects

We make two types of comparisons in this study: comparing sheared viscous solutions of the
LNSE (labelled sv) with sheared inviscid solutions (labelled si), both of which are found using the
numerical method described above; and comparing sheared inviscid (si) solutions with uniform flow
inviscid solutions (labelled ui). The uniform inviscid solutions are found analytically by setting
(U(r), ρ(r), T (r), 1/Re) = (M, 1, 1/(γ − 1), 0), giving solutions in terms of Bessel functions,

p̃ui(r) =
Jm(αr)

Jm(α)
, ṽui(r) =

iαJ ′m(αr)

(ω −Mk)Jm(α)
, α2 = (ω −Mk)2 − k2, (3.3.1)

where J ′m(αr) denotes the first derivative of Jm with respect to its argument. In equations (3.3.1)
we make no assumption about the impedance boundary at r = 1.

As an initial illustrative example, fig. 3.1 compares the mode shapes of the three solutions, the
uniform inviscid solutions rescaled (by varying p̃(1)) to match the numerical solutions in the core
of the duct r < 1 − 3δ where shear and viscothermal effects are negligible (as anticipated from
Khamis & Brambley, 2015). Shear and viscothermal effects are seen only to be significant within
the boundary layer region r > 1 − 3δ, where they produce O(1) effects at the wall r = 1. The
plots in fig. 3.1 would correspond to a mode (i.e. a solution of the dispersion relation (3.1.5)) if
Z = −1.27 + 0.97i for the sheared, viscous numerics, if Z = −0.64 + 0.02i for the sheared, inviscid
numerics, and if Z = 0.12 + 0.35i for the inviscid uniform flow solution. This suggests that these
three solutions will have significantly different interactions with an impedance wall, as we see next.
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Figure 3.1. The (a) Re(ṽ) and (b) Re(p̃) mode shapes of the three solutions: q̃ui (uniform inviscid, dashdot), q̃si
(sheared inviscid, dashed), and q̃sv (sheared viscous, solid) where in (a) q̃ = ṽ and in (b) q̃ = p̃. The dotted vertical
line lies at r = 1 − 3δ, where U ' 0.99M . Parameters are ω = 5, k = 26 − 14i, m = 12, M = 0.5, δ = 7 × 10−3,
Re = 1 × 106, with the hyperbolic base flow (3.1.1). The mean squared error between the solutions for r < 1 − 5δ
is 10−6.
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Figure 3.2. (a,b,c) viscous impedance error, comparing the sheared inviscid numerics with the sheared viscous
numerics. (d,e,f) shear impedance error, comparing the uniform inviscid numerics with the sheared inviscid numerics.
(a,d) ω = 4 + 0.04i; (b,e) ω = 8 + 0.08i; (c,f) ω = 31 + 0.31i. Parameters are m = 6, M = 0.5, Re = 5 × 105,
δ = 3× 10−2. Base profiles as in (3.1.1).

3.3.1 Impedance errors

Setting Zsv = p̃sv(1)/ṽsv(1) and Zsi = p̃si(1)/ṽsi(1), we define the impedance error due to assuming
an inviscid fluid (henceforth referred to as viscous impedance error) as

min{|Zsv − Zsi|, |1/Zsv − 1/Zsi|}, (3.3.2)

which was chosen to handle correctly near-zero and near-infinite impedances. With this definition,
this impedance error is also the admittance error for the admittance Y = 1/Z. Note that, since we
are not solving the dispersion relation (3.1.5), the impedance Z at the wall is not prescribed here;
we are merely comparing the impedance produced by the viscous and inviscid equations. Similarly,
the impedance error associated with neglecting base flow shear in an inviscid system (henceforth
referred to as shear impedance error) is given by

min{|Zsi − Zui|, |1/Zsi − 1/Zui|}, (3.3.3)

where Zui = p̃ui(1)/ṽui(1). To avoid division by zero in the calculation of Zui, a small imaginary
part is added to the frequency in the following computations, equal to 1% of Re(ω).

There are many parameters that affect the acoustics in the boundary layer, and the importance
of both shear and viscosity will depend on the particular values used. In order to draw meaningful
conclusions, we calculate the impedance error for axial wavenumbers across a section of the complex
plane |Re(k)| ≤ 100, |Im(k)| ≤ 100, and choose two main parameters to investigate: the frequency
and Mach number.

The impedance errors are plotted in the wavenumber plane in fig. 3.2 forM = 0.5, δ = 3×10−2

and Re = 5×105. For these parameters, for large sectors of the k-plane and for all three frequencies,
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Figure 3.3. (a,b,c) viscous impedance error. (d,e,f) shear impedance error. (a,d) ω = 7 + 0.07i; (b,e) ω = 28 + 0.28i;
(c,f) ω = 56 + 0.56i. Parameters are m = 12, M = 0.5, Re = 1× 105, δ = 2× 10−3. Base profiles as in (3.1.1).

the shear error is an order of magnitude larger than the viscous error. However, at low frequencies,
figs. 3.2a and 3.2b, the viscous error in the region Re(k) > ω/M , Im(k) < 0 is comparable to the
shear error in the same region, figs. 3.2d and 3.2e. This region, bounded by the viscous branch
cut k = ω/M − iq and inviscid branch cut k = ω/M + q was labelled the “anomalous region” by
Brambley (2011a), as the behaviour in this region is unlike the rest of the k-plane and its origin is
unknown.

Figure 3.3 shows, for a thinner boundary layer δ = 2 × 10−3, the viscous errors become more
prevalent than before, as can be seen by comparing fig. 3.3a with fig. 3.3d. At lower frequencies,
the viscous error is significant throughout the wavenumber plane, not just in the anomalous region.
Figure 3.3a shows large regions of the k-plane suffer from O(1) viscous errors, with a median error
(calculated using all values in the plotted domain) of 0.5 to one decimal place (compared to the
median shear error of 1.3 in fig. 3.3d). As the frequency increases, the viscous error becomes
smaller, with the median error reducing to 0.05 in fig. 3.3c (compared to the median shear error
of 0.27 in fig. 3.3f). This could be attributed to the dependence of the acoustic boundary layer
thickness δac on frequency: a larger ratio δac/δ occurs at lower frequencies, hence viscous effects
are stronger.

Figures 3.4 and 3.5 show the effect of increasing Mach number on the error, with the Reynolds
number held fixed2. As the Mach number increases, so too does the shear error, as might be
anticipated since a higher Mach number means neglecting larger velocity gradients in the uniform
flow case. However, it is seen (particularly in figs. 3.5a–3.5c) that increasing the Mach number
leads to larger viscous errors throughout the k-plane and not just inside the anomalous region,
with the median error increasing from 0.02 in fig. 3.5a to 0.14 in fig. 3.5c.

2Recall that Re is defined here with respect to the sound speed, Re = c∗0l
∗ρ∗0/µ

∗
0, rather than with respect to

the flow speed, Re = U∗
0 l

∗ρ∗0/µ
∗
0 = MRe. Hence, figs. 3.4 and 3.5 show that, for a given fluid with fixed µ∗0 and

c∗0, increasing the flow speed U∗
0 leads to increasing Re but, confusingly, larger viscous error, justifying our previous

choice of Re as the Reynolds number.
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Figure 3.4. (a,b,c) viscous impedance error. (d,e,f) shear impedance error. (a,d) M = 0.1; (b,e) M = 0.3; (c,f)
M = 0.5. Parameters are ω = 15 + 0.15i, m = 24, Re = 1× 105, δ = 3× 10−2. Base profiles as in (3.1.1).
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Figure 3.5. (a,b,c) viscous impedance error. (d,e,f) shear impedance error. (a,d) M = 0.1; (b,e) M = 0.3; (c,f)
M = 0.5. Parameters are ω = 5 + 0.05i, m = 7, Re = 5× 106, δ = 2× 10−3. Base profiles as in (3.1.1).

46



CHAPTER 3. A NUMERICAL STUDY OF SHEAR AND VISCOSITY

−100 −80 −60 −40 −20 0 20

Re(k)

−1.0

−0.5

0.0

0.5

1.0

1.5

Im
(k
)

Sheared viscous numerics

Sheared inviscid numerics

Myers boundary condition

(a)

−22.0 −21.5 −21.0 −20.5 −20.0 −19.5 −19.0

Re(k)

−400

−300

−200

−100

0

100

200

300

400

Im
(k
)

Sheared viscous numerics

Sheared inviscid numerics

Myers boundary condition

(b)

Figure 3.6. (a) Cut-on modes of the Myers boundary condition, sheared inviscid numerics (LEE), and sheared
viscous numerics (LNSE), for ω = 56, m = 12, M = 0.5, δ = 2 × 10−3, Re = 1 × 105 with a mass–spring–damper
boundary impedance (3.1.6) with R = 3, d = 0.15 and b = 1.15 giving Z = 3 + 8.38i. (b) Cut-off modes for ω = 31,
m = 24, M = 0.5, δ = 2× 10−4, Re = 2.5× 107 with a boundary impedance of Z = 2 + 0.6i. In both (a) and (b)
the hyperbolic boundary layer profiles in (3.1.1) are used.

3.3.2 Accuracy of modes in the k-plane

As described in the introduction, the Myers (Ingard, 1959; Myers, 1980) boundary condition cor-
responds to the limit of a sheared inviscid boundary layer with a vanishing thickness (Eversman
& Beckemeyer, 1972; Tester, 1973), and for the situation considered here may be written as

ωṽ(1) = (ω −Mk)p̃(1)/Z ⇒ Zeff =
ω

ω −Mk
Z, (3.3.4)

where Zeff is the effective impedance for which the Myers boundary condition is p̃(1)/ṽ(1) = Zeff .
We use the Myers condition here to find k-plane modes under the uniform inviscid assumption.
For the sheared viscous and sheared inviscid results, the numerics of §3.2 are used along with the
dispersion relation (3.1.5). Unless stated, the impedance boundary model (3.1.6) is used in the
following computations.

Figure 3.6 plots the solutions to the dispersion relations (3.1.5) for the sheared viscous and
sheared inviscid numerics, together with the solutions to the dispersion relation (3.3.4) for the
uniform inviscid solution together with the Myers boundary condition. The modes near the real
axis may be considered propagating (cut on), with |Im(k)| giving the axial decay rate of the mode
due to the lined wall; |Im(k)| is therefore extremely important in aeroengine design, as it predicts
how much of the engine noise is absorbed by the liner and how much is available to propagate to
the far field. One effect of a thin sheared boundary layer is to change the impedance of the wall as
seen by the acoustics outside the boundary layer (Brambley, 2011a), thus changing the amount by
which the nearly propagating modes are damped. Figure 3.6a shows that viscosity can also play a
vital role in determining the damping rate of the modes, even at the high frequency of ω = 56 used
in this case, and that inviscid calculations underestimate the decay rate of these cut-on modes.
This may also explain the result in Boyer et al. (2011) where the growth rate of the surface wave
was overestimated by inviscid computations.

Figure 3.6b shows viscosity has less of an effect on the well cut-off modes, although the agree-
ment is parameter dependent. Accurate prediction of these cut-off modes is far less important in
aeroengine design than that of the nearly cut-on modes, since all models predict the cut-off modes
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Figure 3.7. In (a) and (b), markers show modes in the k-plane for the viscous sheared numerics, tracks follow surface
wave modes as Re is increased. At the end of the tracks the computations are purely inviscid. Parameters are: (a)
ω = 5, m = 0, M = 0.5, δ = 2×10−3, Z = 3 + 0.52i calculated using (3.1.6), markers at Re = 2.5×105; (b) ω = 31,
m = 24, M = 0.5, δ = 5.8 × 10−3, Z = 3 + 4.61i calculated using (3.1.6), markers at Re = 3.0 × 104. In both
(a) and (b) the hyperbolic boundary layer profiles in (3.1.1) are used. (c) shows the behaviour of the surface mode
ksm on the right side of (b) as Re is increased on a log–log scale, demonstrating that |ksm| is tending to infinity as
1/Re→ 0.

to decay extremely fast along the axis of the duct.

3.3.3 Surface waves

Surface waves (Rienstra, 2003) are an important consideration when investigating lined surfaces, as
certain surface waves may represent a hydrodynamic instability of flow over the surface (Brambley,
2011b; Rienstra, 2003). Asymptotic analysis has shown that an inviscid finite thickness boundary
layer can support a maximum of six modes localised near the boundary (Brambley, 2013) while a
vanishingly thin boundary layer can support only up to four (Rienstra, 2003). Here, we investigate
whether the inclusion of viscosity changes the number or character of the surface wave modes, by
tracking the modes as viscosity is turned off in the computations (1/Re→ 0).

Figure 3.7 shows the behaviour of modes of the viscous linearised Navier–Stokes equations as the
Reynolds number is increased. The markers signify the most viscous point (lowest Re) considered,
and the lines end where 1/Re = 0 (inviscid). In both fig. 3.7a and fig. 3.7b the change in the
acoustic modes is small compared to that in the surface wave modes. Figure 3.7a is an example
where the viscous surface wave mode (marker in the bottom right quadrant) moves substantially as
Re is increased, crossing the real axis at Re ' 1.35× 106 and therefore changing in character from
being exponentially decaying as x increases to being exponentially growing. Figure 3.7b shows
a viscous surface wave mode originating in the lower right quadrant and tending to infinity as
1/Re→ 0, as confirmed in fig. 3.7c. This mode therefore has no inviscid equivalent, and hence the
inclusion of viscosity in the boundary layer is seen to support a greater number of surface waves
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Figure 3.8. Briggs–Bers trajectories in the k-plane for inviscid and viscous sheared numerics. Markers at ω = 5,
Z = 3 + 0.52i; lines showing trajectories as Im(ω) is reduced from zero to −15 with Re(ω) = 5 held constant. The
boundary impedance evolves as in (3.1.6), with R = 3, d = 0.15, b = 1.15. Parameters are m = 0, M = 0.5,
δ = 2× 10−3, Re = 2.5× 105. The hyperbolic base profiles (3.1.1) are used.

modes than a purely inviscid boundary layer.

3.3.4 Stability

Viscosity is intrinsically linked to stability in shear flow. For example, it was reported by Brambley
(2011a) that viscous effects change the growth rate of the Myers vortex sheet instability from
having a k1/2 to a k1/3 wavenumber dependence. In the previous section, a surface wave mode
was found as the Reynolds number was increased to switch from exponential decay to exponential
growth as x increases. We further investigate stability here by performing a Briggs–Bers (Bers,
1983; Briggs, 1964) stability analysis, reducing Im(ω) from zero with Re(ω) held fixed, for a mass–
spring–damper impedance (3.1.6) with R = 3, d = 0.15, and b = 1.15. The resulting Briggs–Bers
trajectories for the k-plane modes are shown in fig. 3.8. All of the viscous modes are stable for
the plotted parameters, since the trajectories do not cross the Re(k) axis. All but one of the
inviscid modes are stable, with the surface wave in the right half plane crossing the Re(k) axis
as Im(ω) is reduced from zero, indicating the mode to be a right-running convective instability.
Importantly, this mode is found to stabilise as the Reynolds number is decreased past a critical
value Re ' 1.35× 106, well within the normal operating range of an aircraft engine.

A temporal stability analysis may also be performed by choosing a real wavenumber k and
solving the dispersion relation (3.1.5) for the complex frequency ω(k), with − Im(ω(k)) then giving
the growth rate at that wavenumber. Figure 3.9 shows the behaviour of the growth rate of the
unstable surface wave as the (real) wavenumber is increased. The Myers boundary condition
displays the well-known instability, the growth rate of which is unbounded in k. The inviscid
sheared numerics have an instability for all real k, with Im(ω) asymptoting to zero but remaining
negative. Results for the viscous sheared numerics are shown for three Reynolds numbers. At the
highest value, Re = 1 × 106, it can be seen that: viscosity stabilises short wavelengths; the most
unstable wavelength is altered from the inviscid value; and the maximum growth rate is reduced
in the viscous case, although there are possibly some wavenumbers where the viscous system gives
faster growing instability than the inviscid system. As the Reynolds number is reduced (below
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Figure 3.9. The decay rate Im(ω) of the unstable mode is plotted as the real wavenumber k increases. The mode
stabilises as Re is decreased past Re = 4 × 105. Parameters are m = 0, M = 0.5, δ = 5 × 10−3, with the mass–
spring–damper liner model of (3.1.6), with R = 3, d = 0.15, b = 1.15. The hyperbolic base profiles (3.1.1) are
used.

Re = 4× 105 for these parameters) the flow becomes stable for all real k (as shown by the stable
Re = 2 × 105 mode). This may explain the apparent difficulty, expressed in the literature, of
observing this instability experimentally.

It is important to remember that absolute, as well as convective, instabilities could be present.
Absolute instabilities occur when two surface modes, one originating in the upper–half k-plane for
Im(ω) = 0 and one originating in the lower–half plane, collide for Im(ω) < 0, causing a pinch
at the resulting double root in the k-Fourier inversion contour (Bers, 1983; Briggs, 1964). These
absolute instabilities would dominate any convective instability at large times. Brambley (2013)
showed asymptotically and numerically that for an inviscid sheared flow, the boundary layer must
be extremely thin (δ ∼ 10−4) for an absolute instability to arise. In the viscous case, we conjecture
that absolute instabilities require a large Re (i.e. weak viscosity) coupled with a thin boundary
layer; however, this is purely a conjecture, and in the present chapter we do not investigate absolute
instabilities.

3.4 Summary

Numerical solutions of the linearised compressible Navier–Stokes equations and the linearised Euler
equations were used in this chapter to investigate the effects of viscosity and thermal conduction
on sound propagation in an acoustically lined duct, and quantify their importance in relation to
mean flow shear. It was shown that viscosity has greatest effect in thin boundary layers, at low
frequencies, and at high flow rates (high centreline Mach numbers). In some cases, the inclusion
of viscosity can be as important for accuracy as the inclusion of mean flow shear, in particular for
upstream propagating cut-on modes.

Viscosity also changes the stability properties of the boundary layer. In the k-plane, surface
modes that are convectively unstable in an inviscid system are stable for a low enough Reynolds
number in the viscous system. In the ω-plane, unstable modes are seen to stabilise past a critical
wavenumber, in contrast to the inviscid instability mode for which the inviscid critical layer prevents
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the mode becoming stable. The number of surface modes, as well as their stability, is altered by
viscosity. By tracing a viscous surface mode as Re → ∞, it was shown that the mode tends to
infinity in the inviscid limit. The conclusion may thus be drawn that a viscous sheared boundary
layer supports a greater number of possible surface wave modes that a corresponding inviscid
boundary layer.

The following two chapters aim to include viscous and thermal conductive effects in theoretical
models of a sheared boundary layer above an acoustic lining. This is done with the aim that the
important effects of viscosity on flow stability and mode attenuation (as described in the current
chapter) may be captured by an effective impedance boundary condition, applicable to an inviscid
plug flow.

Appendix

3.A Details of numerical method

Details of our numerical method are given below.

3.A.1 Regularity at r = 0

The behaviour of the acoustics near r = 0 are investigated by assuming for each acoustic quantity a
series expansion in r, q̃ ∼ α0 +α1r+ . . . , and analysing the O(1/rn) terms of the viscous governing
equations (3.1.2). By ensuring cancellation at O(1/rn) for each governing equation, consistent
regularity conditions are derived. Below, each equation is considered in turn. In this derivation
we assume m ≥ 0, but the same results hold for negative m.

Irregular terms appear in the continuity equation (3.1.2a) only at O(1/r):

ṽ

r
− im

r
w̃ = 0 =⇒

{
ṽ(0) = 0, m = 0, ṽ ∼ b1r + . . .

ṽ(0) = imw̃(0), m 6= 0.
(3.A.1)

No other information may be gathered from this equation.

In the axial momentum equation (3.1.2b), the most singular terms at r = 0 are O(1/r2), which
gives us

m2

r2
ũ = 0 =⇒

{
Identically true, m = 0,

ũ(0) = 0, m 6= 0, ũ ∼ a1r + . . .
(3.A.2)

where we have set a0 = 0 in the ũ expansion for m 6= 0, but left a1 6= 0 to provide a contribution
at O(1/r). The O(1/r) terms of (3.1.2b) give

1

r
(Hũr + UrH̃)− m2

r2
Hũ− (1 + β)

1

r
H (ikṽ + kmw̃) = 0. (3.A.3)

In the m = 0 case, we may use (3.A.1) and the fact that Ur → 0 as r → 0 to find ũr(0) = 0. If
m 6= 0, (3.A.1) and (3.A.2) imply

(1−m2)

r
Hũr = 0 =⇒

{
Identically true, m = 1,

ũr(0) = 0, m > 1.
(3.A.4)
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At O(1/r2) the radial momentum equation (3.1.2c) behaves like

− m2

r2
Hṽ − (2 + β)H ṽ

r2
+ (3 + β)

im

r2
Hw̃ = 0, (3.A.5)

from which in the m = 0 case we recover (3.A.1). If m 6= 0, we use the expansions

ṽ ∼ b0 + b1r + . . . , w̃ ∼ c0 + c1r + . . . (3.A.6)

in (3.A.5), with (3.A.1) implying b0 = imc0, to find

(1−m2)

r2
ṽ = 0 =⇒

{
Identically true, m = 1,

ṽ(0) = 0, m > 1, ṽ ∼ b1r + . . .
(3.A.7)

where again b1 is left to contribute to the O(1/r) system. At O(1/r) we find, with Hr → 0 as
r → 0,

− m2

r2
Hṽ + (2 + β)H

(
ṽr
r
− ṽ

r2

)
+ (3 + β)

im

r2
Hw̃ − (1 + β)

im

r
Hw̃r = 0. (3.A.8)

If m = 0, the left hand side is identically zero by the ṽ expansion in (3.A.1). If m 6= 0 we use
(3.A.6) and (3.A.1) in (3.A.8) to find mb1 = 2ic1, implying

mṽr(0) = 2iw̃r(0). (3.A.9)

Now, since for m = 0 the O(1/r) system was redundant, we may use the O(1) system to derive
a boundary condition for p̃. Using (3.A.2) and setting the derivatives of the base flow to zero at
r = 0, we find for m = 0

p̃r =
H
Re

(2 + β)

(
ṽrr −

ṽ

r2
+
ṽr
r

)
. (3.A.10)

Now, using ṽ ∼ b1r+ b2r
2 + . . . from the m = 0 case of (3.A.1), the O(1) contribution of the large

bracket is simply 3b2. This implies

p̃r(0) =
3

2

H
Re

(2 + β)ṽrr(0), m = 0. (3.A.11)

The azimuthal momentum equation (3.1.2d) at O(1/r2) is

− (3 + β)
im

r2
Hṽ − m2

r2
Hw̃ − (1 + β)

m2

r2
Hw̃ − 1

r2
Hw̃ = 0. (3.A.12)

When m = 0 (3.A.12) simply reduces to w̃(0) = 0 (and indeed w̃(r) ≡ 0). If m 6= 0, we may use
(3.A.1) to derive the relation

(m2 − 1)

r2
w̃ = 0 =⇒

{
Identically true, m = 1,

w̃(0) = 0, m > 1, w̃ ∼ c1r + . . .
(3.A.13)

where c1 contributes at O(1/r), and the m > 1 series expansion is also valid for m = 0. At O(1/r),
setting gradients of mean flow quantities to zero, (3.1.2d) reduces to

im

r
p̃ = − H

Re

{
−(1 + β)

km

r
ũ− (3 + β)

im

r2
ṽ − (1 + β)

im

r
ṽr − (2 + β)

m2

r2
w̃ +

w̃r
r
− w̃

r2

}
,

(3.A.14)
which is identically zero when m = 0 and the series expansion (3.A.13) for m > 1 is assumed.
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When m 6= 0, we may use (3.A.2) and the expansions (3.A.6), along with (3.A.9) which implies
mb1 = 2ic1, to form the boundary condition

p̃(0) =
H

2Re
(2 + β)(4−m2)ṽr(0), m 6= 0. (3.A.15)

The energy equation (3.1.2e) is relatively simple. At O(1/r2) we find

m2

r2
HT̃ = 0 =⇒

{
Identically true, m = 0,

T̃ (0) = 0, m 6= 0, T̃ ∼ d1r + . . .
(3.A.16)

while at O(1/r) we find
1

r

(
HT̃r + TrH̃

)
− m2

r2
HT̃ = 0, (3.A.17)

where the O(1/r) contribution of the term ∝ T̃ /r2 is considered. Now, Tr → 0 as r → 0, which
leads to

(1−m2)

r
HT̃r = 0 =⇒

{
Identically true, m = 1,

T̃r(0) = 0, m > 1.
(3.A.18)

Collecting the information above, our regularity conditions at r = 0 are:

p̃r =
3

2

H
Re

(2 + β)ṽrr, ũr = 0, ṽ = 0, w̃ = 0, T̃r = 0, (3.A.19)

for m = 0, and

p̃ =
1

2

H
Re

(2 + β)(4−m2)ṽr,

ũ = 0, ṽ = imw̃, w̃r = − im
2
ṽr, T̃ = 0,

(3.A.20)

for m ≥ 1.

3.A.2 Mode finding

To find acoustic modes, we solve the dispersion relation (3.1.5) numerically. This is done by
iterating on k (or ω) via a Newton–Raphson procedure, given a fixed ω (or k). For the majority of
modes (e.g. the cut-off and cut-on acoustic modes in the k-plane) the solutions of the Ingard–Myers
dispersion relation

Z =
(ω −Mk)2

iω

Jm(α)

αJ ′m(α)
(3.A.21)

are used as an initial guess. Then, to find surface modes in the k-plane and unstable modes in
the ω-plane, a fine two-dimensional mesh of complex-valued initial guesses is fed into the Newton–
Raphson solver. This is done to minimise the chance of missing solutions.

The following test gives an example of the time taken to find modes using the dispersion
relation (3.1.5). To find 102 acoustic modes (not surface waves) with Myers condition modes as
initial guesses, the time taken was 1416.5s for the LNSE numerics (3.1.2). For comparison we list
here the time taken by the asymptotic models derived in the next chapter, for which modes are
found using the asymptotic dispersion relation (5.6.2): we find 40.7s for the high frequency model
(4.1.13) and 527.4s for the O(δ) model (4.1.2). This test was performed on a laptop with a 2.5GHz

Intel i5 processor.
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Figure 3.A.1. Relative error ε = |Z/Zc − 1| of calculated impedance value as number of grid points N is increased,
with respect to a well-converged case with N = 50000. (a) Viscous numerics with ω = 31, k = 15 + 5i, m = 12,
M = 0.5, δ = 7×10−3, Re = 106. (b) Inviscid numerics with ω = 5, k = 3−15i, m = 4, M = 0.5 and δ = 2×10−3.
In both (a) and (b) the hyperbolic boundary layer profiles in (3.1.1) are used.

3.A.3 Numerical convergence

The numerical solver was checked for consistency and convergence in a number of ways: by com-
parison with analytical solutions in the inviscid uniform flow case; by comparison with asymptotic
mode shapes in the boundary layer; by checking convergence of the solver with respect to number
of grid points used; and by checking that the asymptotics agree with the numerics to the stated
order of accuracy. The first of these is trivial – the cylindrical solution p̃ = Jm(αr) in the uniform
inviscid case is well known – and will not be discussed further. The second point may be verified
by comparing the numerics to the asymptotic models derived in the next chapter (see fig. 4.2—it
is clear that the numerical and asymptotic solutions have the same near-wall behaviour).

The third point may be assessed by varying the number of grid points and checking the values
of Z calculated at the wall in each case, and calculating the relative error with respect to some
well-converged case. The convergence plots in fig. 3.A.1 show that for N ≈ 8000 the numerics are
achieving errors of . 10−8 in both the viscous and inviscid cases. The rate of convergence is set by
the treatment of the end-points of the numerical domain, where the sixth-order stencil is reduced
to fourth order to retain the use of central difference approximations close to the domain edge.
Upwind and downwind fourth-order stencils are used at the boundary points.

The final point is addressed by checking the convergence of the asymptotic models derived in
the next chapter, see fig. 4.1. This may be thought of conversely as a consistency check for the
numerical solver. The correct gradients of asymptotic error shown in the figure indicate that the
numerical solver is consistent down to very small errors (∼ 10−8 or smaller).
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Chapter 4

Asymptotic analysis of viscous effects
on the acoustics and stability of a
shear layer over an impedance wall

In this chapter the acoustics of a viscothermal sheared boundary layer above a lined wall are
investigated asymptotically for a boundary layer of thickness 0 < δ � 1, for both an O(1) frequency
and in a high frequency limit. In the latter case, analytical forms for the acoustics in the boundary
layer are found, and a closed-form effective impedance boundary condition is derived which includes
the effects of both shear and viscosity. The accuracy of these asymptotics are compared in §4.2,
together with their predictions for surface waves on the lined surface. The work presented in
this chapter has been submitted for publication in the Journal of Fluid Mechanics (Khamis &
Brambley, 2016b); some of this work was presented at the AIAA Aeroacoustics conference (Khamis
& Brambley, 2015).

Several simplified boundary conditions have been proposed which take account of near-wall
effects on the wall impedance. These include: models based on an inviscid fluid with a vanishingly
thin shear layer (Myers, 1980), meaning O(δ) quantities are neglected; an inviscid fluid with a
finite-thickness shear layer (Brambley, 2011b; Myers & Chuang, 1984), meaning O(δ) quantities
are included but viscosity is neglected; a viscous fluid with a vanishingly thin shear layer (Brambley,
2011a), meaning O(δ) quantities are neglected; or other restrictive simplifying assumptions (e.g.
Aurégan et al., 2001; Nayfeh et al., 1974). In this chapter we derive a simplified boundary layer
model capable of reproducing the important effects of both shear and viscosity seen in the previous
chapter, both including finite-thickness shear by including O(δ) quantities and including viscosity.

4.1 Asymptotic analysis

We first present asymptotics based on a reasonably straightforward rescaling in §4.1.1. Because
these result in equations that still need to be solved numerically, an alternative asymptotic solution
in the high frequency limit is presented in §4.1.2 that yields tractable equations with analytic
solutions. Both asymptotic solutions are subsequently compared with full LNSE solutions in §4.2.
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4.1.1 Boundary layer asymptotics

We analyse asymptotically the near-wall behaviour of the linearised Navier–Stokes equations (3.1.2)
by rescaling into the boundary layer,

r = 1− δy, with µ =
H
Re

= Hξδ2, (4.1.1)

where ξ measures the magnitude of the molecular viscosity, µ, compared with that expected from
a Blasius boundary layer of thickness δ. We assume here ξ ≤ O(1), with ξ = O(1) for a Blasius
boundary layer, ξ � 1 for a turbulent boundary layer, and ξ = 0 for an inviscid boundary layer.
These scalings are supplemented by û = δũ and T̂ = δT̃ , which are required to balance the
viscous with the inertial terms at leading order in the axial momentum, energy, and continuity
equations (Brambley, 2011a). These scalings lead to a system of ordinary differential equations in
the boundary layer variable y and in powers of the boundary layer thickness δ. Brambley (2011a)
keeps only the leading order terms. As a direct extension of that work, and in order to model the
effects of both the shear and the viscosity, we work here to O(δ). We find

i(ω − Uk)T̂ + ikT û+ T 2

(
ṽ

T

)
y

= δ[γi(ω − Uk)T p̃+ T ṽ − imTw̃] , (4.1.2a)

i(ω − Uk)û− Uy ṽ − ξ(γ − 1)2T (T ûy + UyT̂ )y =

δ
[
i(γ − 1)kT p̃− ξ(γ − 1)2T (T ûy + UyT̂ )

]
,

(4.1.2b)

p̃y = δ
[
iρ(ω − Uk)ṽ − ξ(2 + β)(γ − 1)(T ṽy)y

− iξβk(γ − 1)(T û)y − iξk(γ − 1)(T ûy + UyT̂ )
]
,

(4.1.2c)

ξ(Tw̃y)y −
i(ω − Uk)

(γ − 1)2T
w̃ +

im

γ − 1
p̃ = O(δ), (4.1.2d)

i(ω − Uk)T̂ − Ty ṽ −
1

Pr
ξ(γ − 1)2T (T T̂ )yy − ξ(γ − 1)2T (U2

y T̂ + 2TUyûy) =

δ

[
(γ − 1)i(ω − Uk)T p̃− 1

Pr
ξ(γ − 1)2T (T T̂ )y

]
.

(4.1.2e)

Note that the azimuthal momentum equation (4.1.2d) is written to leading order as the azimuthal
acoustic velocity w̃ appears only in the first order forcing in the continuity equations (4.1.2a). If
the parameter ξ were set to zero in (4.1.2), an inviscid system would be recovered which, when
solved, would lead to the modified Myers condition as derived by Brambley (2011b). Immediately
deducible from (4.1.2c) is that, in contrast with the leading order viscous model of Brambley
(2011a), the pressure is not constant across the boundary layer; instead, variation in the pressure
appears at first order as an integral across the boundary layer. The system (4.1.2) may be solved
asymptotically assuming expansions of the acoustic quantities of the form q = q0 + δq1 +O(δ2).

The acoustic axial and azimuthal velocities satisfy no slip at the lining r = 1, y = 0, to all
orders, and the acoustic temperature satisfies the isothermal wall condition to all orders. The
leading order pressure is a constant, and our chosen normalisation therefore dictates that p̃0 ≡ 1

and p̃1(0) = 0. Similarly, we choose for the impedance boundary condition to be satisfied exactly,
such that ṽ0(0) = 1/Z and ṽ1(0) = 0. Prohibiting exponentially growing solutions as y →∞ gives
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further boundary conditions, as described in Appendix 4.A. This leads to

û0(0) = 0, T̂0(0) = 0, w̃0(0) = 0, p̃0 ≡ 1, ṽ0(0) =
1

Z
,

û0(y)→ 0, T̂0(y)→ 0, w̃0(y)→ m

ω −Mk
as y →∞,

(4.1.3)

at O(1), and
û1(0) = 0, T̂1(0) = 0, p̃1(0) = 0, ṽ1(0) = 0,

û1(y)→ k

ω −Mk
, T̂1(y)→ 1, as y →∞,

(4.1.4)

at O(δ). The limit y → ∞ of this boundary layer solution must match to the uniform inviscid
acoustics outside the boundary layer, (3.3.1). Defining p∞ and v∞ as the values of pressure and
normal velocity of the uniform inviscid solution at the lining r = 1, we expand p∞ = p

(0)
∞ + δp

(1)
∞

and similarly for v∞, so that the uniform inviscid solutions (3.3.1) close to the lining may be
expanded as

pui(1− δy) = p(0)
∞ + δp(1)

∞ + δyi(ω +Mk)v(0)
∞ +O(δ2), (4.1.5a)

vui(1− δy) = v(0)
∞ + δv(1)

∞ + δy

(
v(0)
∞ −

(ω −Mk)2 − k2 −m2

i(ω −Mk)
p(0)
∞

)
+O(δ2). (4.1.5b)

In practice, the system (4.1.2), (4.1.3) and (4.1.4) is solved across the boundary layer for a finite
range y ∈ [0, Y ], with the values of p̃0, p̃1, ṽ0, ṽ1 at y = Y extrapolated to infinity (see Ap-
pendix 4.A) and matched with the relations (4.1.5) to find p(j)

∞ and v(j)
∞ ; the effective impedance

Zeff = (p
(0)
∞ + δp

(1)
∞ )/(v

(0)
∞ + δv

(1)
∞ ) may then be formed.

The system (4.1.2), (4.1.3) and (4.1.4) must in general be solved numerically. It does not,
therefore, suggest an easily applicable closed-form boundary condition capable of capturing the
behaviour of the acoustics in a sheared viscothermal boundary layer. With this in mind, we now
consider the high frequency limit of the LNSE.

4.1.2 High frequency asymptotics

We now consider the limits ω � 1 and δ � 1 with ωδ ∼ ε � 1 (where ε is not to be confused
with the acoustic amplitude εa used earlier). If we were to expand the outer solutions (3.3.1) near
the wall r = 1 − δy in powers of ω and δ, then at order n (in δ) the largest term would be of
the form (ωδ)n. Thus, for a useful outer expansion, we need δ ∼ 1/ωa with a > 1. We choose
here the distinguished scaling ε = 1/

√
ω (informed by the expansion of the outer solution near

the boundary, (4.1.6) below), and hence the two small parameters are related by δ = ε3δ̄ where
δ̄ = O(1).1 This scaling agrees well with reported parameters for a turbofan intake (Gabard, 2013),
with a blade passing frequency ω = 28 and upstream boundary layer thickness δ = 7×10−3 giving
δ̄ ≈ 1.04. With the above scaling choices, the outer solutions expand as

pui(1− δy) = p∞ + iεδ̄(1−ML)yv∞ +
1

2
ε2δ̄2(N2 − ᾱ2)y2p∞ +O(ε3), (4.1.6a)

vui(1− δy) = v∞ + iεδ̄
ᾱ2 −N2

1−ML
yp∞ +

1

2
ε2δ̄2(N2 − ᾱ2)y2v∞ +O(ε3), (4.1.6b)

where
ᾱ2 = (1−ML)2 − L2, (4.1.7)

1An alternative scaling is given in Appendix 4.C in which both small parameters are left in the problem, connected
by a weaker constraint than the one used here: δ ∼ ε(2+n) for n ∈ R+. The two methods result in solutions that
are asymptotically equivalent to at least first order in ε.
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and L = k/ω, N = m/ω with L, N assumed to be O(1).

To find the inner solution, we follow Brambley (2011a) in introducing a multiple scales WKB
ansatz for the acoustic quantities,

d

dy
=

∂

∂ȳ
+

1

ε
η(ȳ)

∂

∂θ
, with ȳ(y) = y, θ(y) =

1

ε

∫ y

0

η(y′)dy′, (4.1.8)

then relabel ȳ to y. The function η(y) is a combination of base flow quantities,

η2(y) =
i(1− U(y)L)

ξ(γ − 1)2T 2(y)
, (4.1.9)

with Re{η(y)} > 0 as y → ∞, and represents the viscous decay rate of vorticity away from the
boundary. The acoustic quantities are assumed to vary over both the short length-scale, θ, and
the long length-scale, y. The base flow quantities vary only over the long length-scale, y. The
short length-scale θ can be thought of as equivalent to the classical acoustic boundary layer scaling
r = 1−δθ/√ωη (Ingard, 2010, chap. 2, pg. 11). From the system (3.1.2), we make the pre-emptive
scalings

ũ =
ŭ

ωδ
, T̃ =

T̆

ωδ
, (4.1.10)

and expand in powers of ε,

ŭθθ − ŭ =
iUy ṽ

1− UL −
εδ̄L

ρ(1− UL)
p̃− ε

η2T

[
(ηT ŭθ)y + ηT ŭθy + ηUyT̆θ

]
− ε2

η2T

[
(T ŭy)y + (UyT̆ )y

]
− ε3

[
δ̄2(1 + β)

iL

η
ṽθ

]
+O(ε4),

(4.1.11a)

1

Pr
T̆θθ − T̆ =

iTy ṽ

1− UL − ε
δ̄

ρ
p̃− ε

η2T

[ 1

Pr
(ηT T̆θ)y +

1

Pr
η(T T̆θ)y + 2ηTUyŭθ

]
− ε2

η2T

[ 1

Pr
(T T̆ )yy + 2TUyŭy + U2

y T̆
]

+O(ε4),

(4.1.11b)

ṽθ = −ε
[i(1− UL)

ηT
T̆ +

iL

η
ŭ+

T

η

( ṽ
T

)
y

]
+ ε2

[
i(1− UL)

δ̄γ

η
p̃− iδ̄N

η
w̃
]

+O(ε4), (4.1.11c)

p̃θ = −ε p̃y
η
− δ̄iρ(1− UL)

η

{
ε2
[
(2 + β)ṽθθ − ṽ

]
+ ε3

[ (2 + β)

η2T

(
(ηT ṽθ)y + ηT ṽθy

)
+ (1 + β)

iL

η
ŭθ

]}
+O(ε4),

(4.1.11d)

w̃θθ − w̃ = − N

ρ(1− UL)
p̃− ε

η2T

[
(ηT w̃θ)y + ηT w̃θy

]
− ε2

η2T

[
(Tw̃y)y + iδ̄N(1 + β)ηT ṽθ

]
+O(ε3).

(4.1.11e)

The equations (4.1.11) are not quite a high frequency expansion of the boundary layer equations
(4.1.2); the high frequency has caused some terms to jump order, and consequently we retain some
terms that are absent in the standard O(δ) analysis in §4.1.1. Also note that in contrast with the
high frequency asymptotics of Brambley (2011a), the model proposed here has variation in the
acoustic pressure at O(ε), and ‘finite thickness shear’ terms (i.e. first order in the boundary layer
thickness, δ) appearing at O(ε2).

Solving the system (4.1.11) for the inner solutions leads to the acoustic pressure and radial
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velocity

p̃(y, θ) =F0(y) + εF1(y) + ε2F2(y), (4.1.12a)

ṽ(y, θ) =A0(y) + ε
[
A1(y) +

iL

η(y)
B0(y)e−θ +

i(1− U(y)L)

ση(y)T (y)
D0(y)e−σθ

]
+ ε2

[
A2(y) +

iL

η
B1(y)e−θ + a0(y)e−θ +

i(1− U(y)L)

ση(y)T (y)
D1(y)e−σθ

]
. (4.1.12b)

where σ2 = Pr. The functions Fj(y), Aj(y), Bj(y), Dj(y) and a0(y) are determined by boundary,
secularity and matching conditions, as described in Appendix 4.B. We note that p̃ does not vary
on the short length scale θ until O(ε3), which is beyond the order of solution we present here.
We asymptotically match (4.1.12) with the outer solutions (4.1.6) in the limit y → ∞ (see sec-
tion 4.B.1), which, using the definitions Z = p̃(0)/ṽ(0) and Zeff = p∞/v∞, leads to the effective
impedance

Zeff =
1

ω −Mk

ωZ − kUy(0)√
ωη(0)

Z − iδI0(ω −Mk)2 + ωBZ

1 + iωZδI1
k2 +m2

(ω −Mk)2
+A+ CZ

, (4.1.13)

where

A = (δI0δI1 + δ2I11 − δ2I01)(k2 +m2)− δ2I2
(
(ω −Mk)2 − k2 −m2

)
, (4.1.14a)

B = (δI0δI1 + δ2I3 − δ2I10)(k2 +m2)− δ2I00

(
(ω −Mk)2 − k2 −m2

)
− i (γ − 1)2

ωRe

[
Iµ
δ2

+ 2
σ

1 + σ
T (1)Ur(1)2 − 5k2

4ω2
T (1)2Ur(1)2

]
,

(4.1.14b)

C =
(γ − 1)T (1)√

iωRe

[
ikUr(1)δI1

k2 +m2

(ω −Mk)2
+
i

ω
(k2 +m2)(γ − 1)T (1) +

iω

σ
(γ − 1)

]
, (4.1.14c)

and Ij are the integrals

δI0 =

∫ 1

0

χ0 dr, δI1 =

∫ 1

0

χ1 dr, δ2I2 =

∫ 1

0

(1− r)χ0 dr,

δ2I3 =

∫ 1

0

(1− r)χ1 dr,
Iµ
δ2

=

∫ 1

0

χµ
δ3

dr, δ2I01 =

∫ 1

0

χ0(r)

∫ 1

r

χ1(r′) dr′dr,

δ2I10 =

∫ 1

0

χ1(r)

∫ 1

r

χ0(r′) dr′dr, δ2I00 =

∫ 1

0

(∫ 1

r

χ0(r′) dr′ − δI0
)

dr,

δ2I11 =

∫ 1

0

(∫ 1

r

χ1(r′) dr′ − δI1
)

dr,

with

χ0 = 1− ρ(ω − Uk)2

(ω −Mk)2
, χ1 = 1− (ω −Mk)2

ρ(ω − Uk)2

χµ
δ3

=
−ω

ω − Uk
[ 1

2σ2
(T 2)rrr + (TU2

r )r +
kT

ω − Uk (TUr)rr

]
.

At leading order, the boundary condition (4.1.13) reduces to the Myers condition, (3.3.4). At
O(ε), and in the limit of a vanishingly thin shear layer δ → 0, (4.1.13) reduces to the O(ε) high
frequency result presented in Brambley (2011a), while at O(ε) in the limit of infinite Reynolds
number (ξ = 0) (4.1.13) reduces to the modified Myers boundary condition (Brambley, 2011b).
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Figure 4.1. Asymptotic accuracy plots with relative error defined as |Zeff(Z)/(p̃ui(1)/ṽui(1))−1|, where the function
Zeff(Z) is the asymptotic effective impedance (from either §4.1.1 or §4.1.2) with the input boundary impedance
Z = p̃sv(1)/ṽsv(1). (a) accuracy of the reduced boundary layer model (4.1.2), (4.1.3) and (4.1.4) with respect
to δ. The first order solution has an error of O(δ2) (gradient 2). Parameters are ω = 10, m = 0, M = 0.5,
k = ±1± i, ±1, ±i, Re = 1/δ2. (b) accuracy of the high frequency effective impedance (4.1.13) with respect to ω;
the error is O(ε3) = O(ω−3/2) (gradient −3/2). Parameters are M = 0.5, δ = ω−3/2, Re = 1/δ2, m/int(ω) = 1,
k/ω = exp {i arg (k̃)} where k̃ = ±1± i, 1, −i. In both (a) and (b) the hyperbolic base flow profiles (3.1.1) are used.

4.2 Comparison of asymptotic and numerical results

The two asymptotic boundary layer models presented above are compared here against numerical
solutions of the linearised Navier–Stokes equations, (1.1.13). Figure 4.1 shows that the two models
are correct to their stated order of accuracy in their respective limits δ → 0 and ω →∞.

Figure 4.2 shows the mode shapes of the acoustic radial velocity of the two asymptotic solutions,
O(δ) (4.1.2) and high frequency (4.1.12b), compared with viscous numerics. For reference, the
inviscid uniform flow solution, ṽui in (3.3.1), to which the asymptotic solutions match, is also
plotted. Both models replicate the viscous mode shape well inside the boundary layer. It appears
in fig. 4.2b that the high frequency asymptotics outperform the O(δ) asymptotics due to the high
frequency (ω = 31) used in this case.

4.2.1 k-plane modes

To find duct modes for the asymptotic models, a dispersion relation must be satisfied,

Zeff(Z) =
p̃ui(1)

ṽui(1)
, (4.2.1)

where the effective impedance Zeff(Z) is the result of the asymptotic model (e.g. from (4.1.13))
given the actual boundary impedance Z as input (see Appendix 3.A for more information). In this
section, we choose a frequency ω and find complex k(ω) that satisfy (5.6.2).

The asymptotic models are seen in fig. 4.3 to replicate the k-plane modes of the LNSE well. As
with fig. 3.6, the attenuation (given by Im(k)) of the nearly propagating upstream modes is badly
predicted by the Myers condition. The effect of viscosity is to increase the attenuation of these
cut-on modes, as seen in fig. 4.3a, while the effect of shear is to reduce attenuation (for modes
travelling upstream). Both asymptotic models perform well, suggesting the physics of both the
shear and the viscosity have been correctly captured in both asymptotic formulations. In fig. 4.3b,
the asymptotic boundary conditions accurately predict the viscous surface wave mode in the upper
left quadrant, unlike either the inviscid numerics or the Myers condition.
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Figure 4.2. Acoustic radial velocity mode shapes of the viscous numerics, the O(δ) boundary layer asymptotics
(4.1.2), the high frequency boundary layer asymptotics (4.1.12b), and the inviscid uniform outer solution (3.3.1) to
which the asymptotic solutions match in the limit y → ∞. The asymptotic solutions are defined in the space of a
boundary layer variable y, and plotted in the r domain using r = 1 − δy. (a) shows the full duct, (b) shows the
boundary layer. Parameters are ω = 31, k = 14 + i, m = 2, M = 0.5, δ = 7 × 10−3, Re = 5 × 105; the hyperbolic
base flow (3.1.1) is used.
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Figure 4.3. (a) Upstream cut-on modes of the two asymptotic models (4.1.2) and (4.1.13), the viscous and inviscid
numerics, and the Myers boundary condition, for ω = 28, m = 0, M = 0.5, δ = 2 × 10−3, Re = 5 × 106 with
a boundary impedance of Z = 3 + 4.16i (calculated using the mass–spring–damper impedance (5.6.1)). (b) Mode
spectra showing one surface wave mode in the upper left quadrant. Parameters are ω = 31, m = 24, M = 0.5,
δ = 1 × 10−3, Re = 1 × 106, with a boundary impedance of Z = 0.6 − 2i. In both (a) and (b) the hyperbolic
boundary layer profiles in (3.1.1) are used.
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Figure 4.4. Markers show modes in the k-plane of the two asymptotic models (4.1.2) and (4.1.13), the viscous and
inviscid numerics, and the Myers boundary condition, for ω = 31, m = 24, M = 0.5, δ = 2× 10−4, Re = 2.5× 107

with a boundary impedance of Z = 2 + 0.6i. Also shown are Briggs–Bers trajectories of the surface wave modes in
the upper right quadrant as Im(ω) is reduced from zero to around −20 with Re(ω) = 31 held fixed. The impedance
is governed by a mass–spring–damper model Z(ω) = R + iωd − ib/ω, with R = 2, d = 0.02, b = 0.62, such that
Z = 2 + 0.6i at ω = 31. The track labelled “Varying Re” follows the inviscid numerical surface wave mode as the
Reynolds number is reduced from Re = ∞; it passes through the viscous mode at Re = 2.5 × 107 and crosses the
real axis when Re ' 1.04× 107. The hyperbolic boundary layer profiles in (3.1.1) are used.

In fig. 4.4 the inviscid numerics and Myers boundary condition again predict a surface wave
in a very different position to the viscous numerical surface wave (upper right quadrant). The
dashed “Varying Re” line traces the movement of this surface wave mode as the Reynolds number
is decreased from infinity; as both the inviscid and the viscous surface wave mode lie along this
line, we identify the viscous surface wave mode as the viscous equivalent of the inviscid surface
wave mode. The O(δ) asymptotics (4.1.2) perform very well, while the high frequency asymptotics
(4.1.13) do not do so well in predicting the position of the LNSE surface wave mode. This can
be explained by the large value of the axial wavenumber at the LNSE surface wave mode being
outside the range of validity of the high-frequency asymptotics, since k ' 226 + 88i for this mode
gives |L| = 1.6/ε, contradicting the assumption of L = k/ω being O(1) following (4.1.7).

Also shown in fig. 4.4 are the Briggs–Bers trajectories of the surface wave modes as Im(ω) is
reduced from zero to around −10. The LEE mode (sheared inviscid numerics) remains far above
the real k axis as Im(ω) is reduced, while the LNSE mode (viscous numerics) crosses the real axis,
indicating a downstream propagating convective instability. The two asymptotic models predict
the correct convective instability, although the high frequency asymptotics are inaccurate for the
reasons discussed in the previous paragraph.

4.2.2 ω-plane modes

The temporal stability properties of the new asymptotic models are investigated here. We choose
a real k and solve the dispersion relation (5.6.2) to find complex frequency roots w(k). The
exponential factor exp {iωt} implies that the temporal growth rate of a mode is given by − Im(ω).

Figure 4.5 compares the behaviour of the ω modes as k, real, is increased for the LNSE, O(δ)

asymptotics, and high frequency asymptotics. As in §3.3.4, the LNSE displays an instability that
has a well-defined maximum growth rate and restabilises at a finite k. The O(δ) asymptotic model
reproduces this behaviour: the growth rate of the instability is bounded (due to the regularising
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Figure 4.5. Temporal growth rates, − Im(ω), of modes as k, real, is increased. A mode below the k axis is a growing
instability. Plotted are modes for the LNSE, O(δ) asymptotics (4.1.2), and high frequency asymptotics (4.1.13).
Parameters are m = 0, M = 0.5, Re = 3× 106, δ = 7× 10−3 with the hyperbolic base flow (3.1.1). The boundary
impedance is modelled as a mass–spring–damper (5.6.1) with a mass d = 0.01, spring b = 10 and damping R = 0.75.

effect of a finite thickness shear layer), and the mode restabilises for small enough wavelength (due
to the small-scale damping by viscosity); this model is well-posed. Recall that neither the Myers
boundary condition (Ingard, 1959; Myers, 1980) nor the leading order viscous boundary condi-
tion (Brambley, 2011a) lead to a bounded growth rate, while the first order inviscid boundary
correction (Brambley, 2011b) gives a bounded growth rate that remains unstable for all k. Fig-
ure 4.5 also shows that the high frequency viscous asymptotics of §4.1.2 perform poorly with regard
to temporal instability, so there is no guarantee of well-posedness; this is because the temporal
instability occurs either for low frequencies or for |k/ω| � 1, which are both outside the region of
asymptotic validity of the high frequency boundary condition (4.1.13).

4.2.3 Accuracy of high frequency asymptotics at lower frequencies

In §4.2.1 it was shown that the high frequency asymptotics (4.1.13) are efficient in predicting
cut-off and cut-on acoustic modes at high frequencies, but that the model can fail relative to the
O(δ) asymptotics in its prediction of surface waves. Here, we investigate the accuracy of the high
frequency asymptotics at moderate to low frequencies for the cut-off and cut-on acoustic modes.

For the nearly cut-on acoustic modes, the parameter of most interest is the rate of attenuation
per axial distance travelled. The accuracy of the asymptotic models with respect to the LNSE
numerics can be expressed as the difference in the predicted attenuation rate, given in decibels per
duct radius as

∆dB = 20 log10

[
Im(k)

Im(kLNSE)

]
. (4.2.2)

Table 4.1 shows that the attenuation rate of the cut-on modes is well predicted by the high
frequency asymptotics (4.1.13), and even at the low frequency of ω = 5 the O(δ) asymptotics
are only marginally more accurate.2 For ω = 2, the O(δ) asymptotics are significantly more
accurate than the high frequency asymptotics, but the high frequency asymptotics still predict the
attenuation of the two cut-on modes to within 1dB per duct radius travelled—that is, with much

2For a duct of radius l∗ = 1m, a dimensionless frequency ω = 5 corresponds to a sound frequency of f∗ ≈ 270Hz.
The value ω = 31 gives f∗ ≈ 1.6kHz.
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greater accuracy than the Myers boundary condition. A similar situation is shown in table 4.2 for
different parameters. We see that the high frequency asymptotics can achieve impressive accuracy
even at low frequencies, and may even out-perform the O(δ) asymptotics.
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Figure 4.6. Cut-off modes in the k-plane of the Myers boundary condition, the LNSE numerics, the high frequency
(HF) asymptotics (4.1.13) and the O(δ) (OD) asymptotics (4.1.2) for ω = 5, m = 2, Re = 1 × 105, δ = 4 × 10−3.
The boundary impedance Z is found using (5.6.1) with d = 0.08, b = 6 and R = 1.6. Base profiles as in (3.1.1).

In fig. 4.6, the spectra of cut-off acoustic modes in the k-plane is plotted for the LNSE numerics,
the Myers boundary condition and the two new asymptotic models, for the relatively low frequency
ω = 5. The accuracy of the high frequency asymptotics is seen to have dropped with this reduction
in frequency, although the behaviour of these cut-off modes is far less important than that of the
cut-on modes considered above.

4.2.4 The ratio Zeff/Z

In this section the effective impedance Zeff predicted by the high frequency asymptotics (4.1.13) –
which accounts for a sheared and viscous boundary layer over an acoustic lining – is compared with
the boundary impedance Z. This is done by considering the values of |Zeff/Z| and arg(Zeff/Z)

over the complex k-plane for a given set of parameters. The parameters (Z, ω,M,Re, δ) are chosen
to correspond to typical experimental facilities (e.g. Aurégan & Leroux, 2008; Jones et al., 2005;
Marx et al., 2010; Renou & Aurégan, 2011). Due to our scheme of nondimensionalisation, in which
the frequency is scaled by the ratio of the speed of sound and the radius of the duct, c∗0/l∗, the
small ducts typically used in such facilities (∼ 1cm wide) lead to dimensionless frequencies that
are too small to satisfy the asymptotic regimes assumed in the derivation of (4.1.13). Therefore,
we choose to scale the system up to the size of a typical aeroengine, where the fan diameters are
typically 2–3.5m. The mean flow profiles used to evaluate (4.1.13) are boundary layer expansions
of the hyperbolic profiles (3.1.1),

U(y) = M tanh(y), T (y) = T0 + τ (cosh(y))
−1
, (4.2.3)

where y ∈ [0, 16] is sufficient to capture the boundary layer, and we identify δ with the momentum
thicknesses of the experimentally determined (fully turbulent) profiles.

Figures 4.7–4.10 display results for two different experimental setups, with two parameter sets
for each (details are given in the figure captions). Figures 4.7a and 4.8a show that for the zeroth-
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Figure 4.7. Contour plots in the k-plane of (a) |Zeff/Z|, (b) arg(Zeff/Z) for the experimental setup of Jones et al.
(2005), with f∗ = 2500Hz, Z = 0.93−1.43i,M = 0.335. For a duct radius l∗ = 1.5m and sound speed c∗0 = 340ms−1,
our dimensionless parameters are ω = 69.3, m = 0, Re = 3.4× 107, δ = 9%. Base profiles as in (4.2.3).
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Figure 4.8. Contour plots in the k-plane of (a) |Zeff/Z|, (b) arg(Zeff/Z) for the experimental setup of Marx
et al. (2010), with f∗ = 1200Hz, Z = 0.25 − 0.39i and M = 0.32. For a duct radius l∗ = 1m and sound speed
c∗0 = 363ms−1, dimensionless parameters are ω = 20.8, m = 0, Re = 2.4× 107, δ = 5%. Base profiles as in (4.2.3).

order azimuthal mode (m = 0) there can occur large areas of the complex k-plane where |Zeff/Z|
lies close to unity. However, the corresponding plots of arg(Zeff/Z), figs. 4.7b and 4.8b, show that
Zeff and Z commonly lie in different quadrants of the complex plane, hence their close relative
magnitudes belie their disparity. For the higher azimuthal order shown in figs. 4.9a and 4.10a,
|Zeff/Z| & 2 over large sections of the k-plane. This suggests that modes that rapidly vary in
the azimuthal direction – m = 24 is indeed rapidly varying, but typical of rotor-alone noise at
take-off (McAlpine et al., 2006) – interact differently with the coupled boundary layer–acoustic
lining system to a plane wave, say, and hence see an appreciably different effective impedance.
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Figure 4.9. Contour plots in the k-plane of (a) |Zeff/Z|, (b) arg(Zeff/Z) for the experimental setup of Jones et al.
(2005), with f∗ = 500Hz, Z = 0.61 − 0.59i and M = 0.335. For a duct radius l∗ = 1.5m and sound speed
c∗0 = 340ms−1, dimensionless parameters are ω = 13.9, m = 24, Re = 3.4× 107, δ = 9%. Base profiles as in (4.2.3).
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Figure 4.10. Contour plots in the k-plane of (a) |Zeff/Z|, (b) arg(Zeff/Z) for the experimental setup of Marx
et al. (2010), with f∗ = 5000Hz and M = 0.32. The impedance Z = 3.33 + 1i was found by extrapolating to a
higher frequency the expression of Aurégan & Leroux (2008): Z = −iă cot(b̆ω∗ + (1 − i)c̆

√
ω∗), where ă = 1.25,

b̆ = 1.85 × 10−4 and c̆ = 2 × 10−3. For a duct radius l∗ = 1m and sound speed c∗0 = 363ms−1, dimensionless
parameters are ω = 86.5, m = 24, Re = 2.4× 107, δ = 5%. Base profiles as in (4.2.3).
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4.3 Summary

In this chapter we have used matched asymptotic expansions and the WKB multiple scales method
to solve for the acoustics in a finite-thickness sheared, viscous boundary layer above an acoustic
lining. The first asymptotic regime, using a relatively simple boundary layer rescaling, resulted
in a simplified set of governing equations for the acoustics that must be solved numerically. The
second asymptotic regime, which linked the modal frequency and boundary layer thickness via
a non-trivial asymptotic scaling, resulted in an analytically tractable system of equations that
when solved led to a closed-form expression for the effective impedance of a sheared and viscous
boundary layer above an acoustic lining, valid at high frequencies.

The high frequency regime is usually relevant in aeroacoustic applications, but this may not
always be the case. Also, attempting to reformulate a frequency-domain boundary condition that
was derived in the high-frequency limit in the time domain leads to troubling questions. The next
chapter seeks to address these two problems by abusing the different lengthscales associated with
eddy and molecular viscosity to derive an analytical effective impedance boundary condition that
does not rely on an asymptotically large frequency.

Appendix

4.A Numerical boundary conditions and extrapolating to in-

finity

Equation (4.1.2) gives the governing equations for the acoustics in a thin boundary layer y > 0,
r = 1− δy. Outside this boundary layer, as y →∞, the mean flow is considered uniform and the
outer inviscid acoustic solution is given in (3.3.1). Here we consider matching the two. To aid this
matching, we assume that the mean flow varies within the boundary layer only for y < Y , within
which region (4.1.2) must be solved numerically. For y > Y , however, the governing equations
may be solved analytically. The solutions may be used to extend the numerical solutions found
in y ∈ [0, Y ] and extrapolate them in the limit y → ∞ in order to match with the outer inviscid
acoustic solution (3.3.1). For y > Y , the governing equations (4.1.2) reduce to

ξûyy − i(ω −Mk)û = δ [ξûy − ikp̃] , (4.A.1a)

ξ

Pr
T̂yy − i(ω −Mk)T̂ = δ

[
ξ

Pr
T̂y − i(ω −Mk)p̃

]
, (4.A.1b)

ξw̃yy − i(ω −Mk)w̃ = −imp̃, (4.A.1c)

ṽy = −i(ω −Mk)(γ − 1)T̂ − ikû+ δ [iγ(ω −Mk)p̃+ ṽ − imw̃] , (4.A.1d)

p̃y = δ [i(ω −Mk)ṽ − ξ(2 + β)ṽyy − ikξ(1 + β)ûy] , (4.A.1e)

which are uncoupled. At leading order these have the bounded solutions

û0(y) = ū0e−η∞y, T̂0(y) = T̄0e−ση∞y, w̃0(y) = w̄e−η∞y +
mp0

ω −Mk
, (4.A.2a)

ṽ0(y) = v̄0 + i(ω −Mk)
(γ − 1)

ση∞
T̄0e−ση∞y +

ik

η∞
ū0e−η∞y, p̃0 = p0, (4.A.2b)
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for some constants ū0, T̄0, w̄, v̄0. At first order the solutions are

û1(y) = ū1e−η∞y +
1

2
ū0ye−η∞y +

kp0

ω −Mk
, (4.A.3a)

T̂1(y) = T̄1e−ση∞y +
1

2
T̄0ye−ση∞y + p0, (4.A.3b)

ṽ1(y) = v̄1 +

(̄
v0 +

(ω −Mk)2 − k2 −m2

ω −Mk
ip0

)
y + i(ω −Mk)

(γ − 1)

ση∞
(T̂1 − p0)

+
ik

η∞

(
û1 −

kp0

ω −Mk

)
+
im

η∞

(
w̃0 −

mp0

ω −Mk

)
− ξ(γ − 1)

2σ2
T̂0 −

ξk

2(ω −Mk)
û0, (4.A.3c)

p̃1(y) = p̄1 + i(ω −Mk)v̄0y + iξ(ω −Mk)(γ − 1)
(
2 + β − 1/Pr

)
T̂0, (4.A.3d)

where σ2 = Pr and η2
∞ = i(ω −Mk)/ξ, with Re(η∞) > 0, and some constants ū1, T̄1, v̄1 and

p̄1. Note that η∞ has a branch cut along k = ω/M − iq for q ≥ 0 to ensure that the solutions
remain bounded as y →∞. In the limit y →∞, the relations (4.A.2a), (4.A.3a) and (4.A.3b) give
boundary conditions on û, T̂ and w̃,

û0(y)→ 0, T̂0(y)→ 0, w̃0(y)→ mp0

ω −Mk
, as y →∞, (4.A.4)

at O(1), and

û1(y)→ kp0

ω −Mk
, T̂1(y)→ p0, as y →∞, (4.A.5)

at O(δ).

To form the effective impedance we match the solutions (4.A.2b), (4.A.3c) and (4.A.3d) in the
limit y →∞ to the outer solutions, which are the uniform inviscid acoustics outside the boundary
layer, (3.3.1). The outer solutions may be expanded near the lining to give

p̃ui(1− δy) = p∞ − δyp′∞ +O(δ2), ṽui(1− δy) = v∞ − δyv′∞ +O(δ2), (4.A.6)

where the derivatives p′∞, v′∞ may be rewritten

p′∞ = −i(ω −Mk)v∞, v′∞ =
(ω −Mk)2 − k2 −m2

i(ω −Mk)
p∞ − v∞. (4.A.7)

Since we have applied a known normalisation at the lining – causing constant terms to arise at
O(δ) in the boundary layer solutions – we must expand p∞ = p

(0)
∞ + δp

(1)
∞ and similarly for v∞.

Hence the expansions (4.A.6) become

pui(1− δy) = p(0)
∞ + δp(1)

∞ + δyi(ω +Mk)v(0)
∞ +O(δ2), (4.A.8a)

vui(1− δy) = v(0)
∞ + δv(1)

∞ + δy

(
v(0)
∞ +

(ω −Mk)2 − k2 −m2

(ω −Mk)
ip(0)
∞

)
+O(δ2). (4.A.8b)

These are the outer solutions to which we match our numerical solutions of (4.1.2) in the limit
y → ∞, via the analytical solutions for y > Y . The numerical solutions may be found by, for
instance, discretising the domain and approximating the y derivatives using finite differences.

If we are solving in a finite numerical domain y ∈ [0, Y ], we may use the relations (4.A.2b),
(4.A.3c) and (4.A.3d) to extrapolate our solutions out to infinity. At leading order this is simple
due to the exponentially decaying terms; we identify v̄0 with v(0)

∞ and rearrange (4.A.2b) for v(0)
∞

to find
v(0)
∞ = ṽ0(Y )− η∞ξ

σ
(γ − 1)T̂0(Y )− ik

η∞
û0(Y ). (4.A.9)
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For the pressure we simply find p(0)
∞ = p0. At first order consider the following: if

ṽ1(y) = v̄1 + (ay + b)e−η∞y + (cy + d)e−ση∞y + ey, (4.A.10)

which is the form of (4.A.3c), then in the limit y →∞

ṽ1(y) ∼ v̄1 + ey. (4.A.11)

Evaluating (4.A.3c) at y = Y and rearranging to leave v̄1 and the terms linear in Y on the right
hand side, as in (4.A.11), gives

ṽ1(Y )− (aY + b)e−η∞Y − (cY + d)e−ση∞Y = v̄1 + eY. (4.A.12)

We may identify v̄1 with v
(1)
∞ and p̄1 with p

(1)
∞ , and thus use the extrapolated forms of (4.A.3c)

and (4.A.3d) – which are of the form (4.A.12) – to rearrange for p(1)
∞ and v(1)

∞ :

p(1)
∞ = p̃1(Y )− i(ω −Mk)Y v(0)

∞ − iξ(ω −Mk)(γ − 1)

(
2 + β − 1

Pr

)
T̂0(Y ), (4.A.13a)

v(1)
∞ = ṽ1(Y )−

(
v(0)
∞ +

(ω −Mk)2 − k2 −m2

(ω −Mk)
ip(0)
∞

)
Y

− i(ω −Mk)(γ − 1)

ση∞

(
T̂1(Y )− p(0)

∞

)
− ik

η∞

(
û1(Y )− kp

(0)
∞

ω −Mk

)

− im

η∞

(
w̃0(Y )− mp

(0)
∞

ω −Mk

)
+
ξ(γ − 1)

2σ2
T̂0(Y ) +

ξk

2(ω −Mk)
û0(Y ). (4.A.13b)

The effective impedance is then given by

Zeff =
p

(0)
∞ + δp

(1)
∞

v
(0)
∞ + δv

(1)
∞

; (4.A.14)

this is the function used in the dispersion relation (5.6.2) to find eigenmodes of the O(δ) asymp-
totics.

4.B Solving the high frequency boundary layer equations

Here we solve equations (4.1.11) to O(ε2). At leading order we find

ṽ0(y, θ) = A0(y), ŭ0(y, θ) = 0(y)e−θ − iUy
1− ULA0(y),

p̃0(y, θ) = F0(y), T̆0(y, θ) = D0(y)e−σθ − iTy
1− ULA0(y),

(4.B.1)

w̃0 = G0(y)e−θ +
N

ρ(1− UL)
F0(y),

where exponentially growing solutions have been excluded. The explicit y and θ dependencies will
be dropped henceforth. Homogeneous boundary conditions on ŭ0, T̆0 and w̃0 at y = 0 give

B0(0) = iUy(0)A0(0), D0(0) = iTy(0)A0(0) = 0, G0(0) = − N

ρ(0)
F0(0). (4.B.2)

The D0(0) = 0 relation arises from our isothermal boundary condition Ty(0) = 0. Matching p̃
and ṽ to the outer solution will fix the values of A0(0) and F0(0) in section 4.B.1, and similarly at
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subsequent orders.

At first order, we find secularity conditions by disallowing resonant terms. The first-order ṽ
equation is

ṽ1,θ = − i(1− UL)

ηT
D0e−σθ − iL

η
B0e−θ −

{ Ty
ηT

A0 −
LUy

η(1− UL)
A0 −

T

η

(A0

T

)
y

}
, (4.B.3)

where the curly brackets enclose terms that are functions of y only, and hence are resonant. To
prevent powers of θ arising, we equate the curly brackets with zero and form the secularity condition
for A0(y):

A0,y − 2
(

ln ηT
)
y
A0 = 0 ⇒ A0(y) = Ā0(1− UL), (4.B.4)

where Ā0 is a constant. In going from (4.B.3) to (4.B.4), the definitions of η(y), (4.1.9), and its
derivative are used. Similarly, the first-order p̃ equation is

p̃1,θ = −1

η
F0,y, (4.B.5)

where the right hand side is a function of y only and hence resonant. As above, we set this to zero
to form the secularity condition for F0(y):

F0(y) = F̄0, (4.B.6)

where F̄0 is a constant. To ascertain Ā0 and F̄0 we could, for instance, force ṽ and p̃ to satisfy
some impedance condition at the wall y = 0; or match to a known solution outside the boundary
layer in the limit y →∞. Solving at first order now gives

ṽ1 = A1 +
iL

η
B0e−θ +

i(1− UL)

σηT
D0e−σθ, p̃1 = F1. (4.B.7)

Expanding the first-order equation for ŭ we find

ŭ1,θθ − ŭ1 =
iUy

1− UL
(
A1 +

iL

η
B0e−θ +

i(1− UL)

σηT
D0e−σθ

)
− δ̄L

ρ(1− UL)
F0

+
1

η2T

(
(ηTB0)y + ηTB0,y

)
e−θ +

σUy
ηT

D0e−σθ.

(4.B.8)

The resonant3 terms on the right hand side of (4.B.8) are those ∝ exp (−θ). Equating the resonant
terms with zero, we find

1

ηT
(ηTB0)y −

LUy
1− ULB0 +B0,y = 0, (4.B.9)

which may be written

B0,y +
3

2

(
ln ηT

)
y
B0 = 0 ⇒ B0(y) = B0(0)(1− UL)−3/4. (4.B.10)

In the same vein, the secularity condition for G0 can be found from the first-order w̃ equation

w̃1,θθ − w̃1 = − N

ρ(1− UL)
F1 +

1

η2T

(
(ηTG0)y + ηTG0,y

)
e−θ, (4.B.11)

3We use the term ‘resonant’ here even though these resonant terms are exponentially decaying.
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where again the secular terms are ∝ exp (−θ). This leads to

G0,y +
1

2

(
ln ηT

)
y
G0 = 0 ⇒ G0(y) = G0(0)(1− UL)−1/4. (4.B.12)

For the first-order T̆ equation

1

Pr
T̆1,θθ − T̆1 =

iTy
1− UL

(
A1 +

iL

η
B0e−θ +

i(1− UL)

σηT
D0e−σθ

)
− δ̄

ρ
F0

+
1

ση2T

(
(ηTD0)y + η(TD0)y

)
e−σθ +

2Uy
η
B0e−θ,

(4.B.13)

the secular terms are ∝ exp (−σθ). Equating these with zero we find

1

ηT
(ηTD0)y +

1

T
(TD0)y −

Ty
T
D0 = 0, (4.B.14)

which may be written

D0,y +
1

2

(
ln ηT

)
y
D0 = 0 ⇒ D0(y) = D0(0)(1− UL)−1/4. (4.B.15)

In fact, the boundary condition D0(0) = 0 from (4.B.2) tells us that D0(y) ≡ 0. This is a direct
consequence of our isothermal wall condition Ty(0) = 0. The first-order solutions for ŭ, T̆ and w̃
are then

ŭ1 = B1e−θ − iUy
1− ULA1 +

δ̄L

ρ(1− UL)
F0, w̃1 = G1e−θ +

N

ρ(1− UL)
F1,

T̆1 = D1e−σθ + d0e−θ − iTy
1− ULA1 +

δ̄

ρ
F0, (4.B.16)

where
d0(y) =

Pr

1− Pr

(
2Uy −

LTy
1− UL

)B0

η
. (4.B.17)

No slip and isothermal wall boundary conditions at first order lead to

B1(0) = iUy(0)A1(0)− δ̄L

ρ(0)
F0(0), D1(0) = −d0(0)− δ̄

ρ(0)
F0(0),

G1(0) = − N

ρ(0)
F0(0).

(4.B.18)

At second order we find the secularity conditions for A1 and F1 by the same method as the
preceding order, giving

A1,y − 2
(

ln ηT
)
y
A1 =

[
δ̄i(1− UL)− δ̄i(L2 +N2)

ρ(1− UL)

]
F0, (4.B.19a)

F1,y = δ̄iρ(1− UL)A0, (4.B.19b)

which may be solved to find

A1(y) = Ā1(1− UL) + iδ̄(1− UL)

∫ y

0

(
1− L2 +N2

ρ(1− UL)2

)
F0dy′, (4.B.20a)

F1(y) = F̄1 + iδ̄Ā0

∫ y

0

ρ(1− UL)2dy′. (4.B.20b)

The solution to the F1 secularity condition in (4.B.20b), we see, is not in general a constant. The
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high frequency forces variation in the acoustic pressure over the boundary layer at an order at
which it was previously assumed to be constant (Brambley, 2011a). (Or, rather, the relationship
between frequency and boundary layer thickness assumed here allows the pressure variation to
jump to a lower order). Solving at second order with the secular terms removed,

ṽ2 = A2 +
iL

η
B1e−θ + a0e−θ +

i(1− UL)

σηT
D1e−σθ, p̃2 = F2, (4.B.21)

where

a0 =
iLT

η

(B0

ηT

)
y

+
i(1− UL)

ηT
d0 +

iδ̄N

η
G0. (4.B.22)

To find the secularity conditions for A2 and F2 which would close our solutions, we need
solutions for ŭ2 and T̆2, and secularity conditions for B1 and D1. The latter are found by removing
resonant terms, as before, giving

B1,y +
3

2

(
ln ηT

)
y
B1 = −Uy

2T
d0 −

iUyη

2(1− UL)
a0 +

1

2ηT
(TB0,y)y, (4.B.23a)

D1,y +
1

2

(
ln ηT

)
y
D1 = 0. (4.B.23b)

Solving (4.B.23) leads to

B1(y) = (1− UL)−3/4

{
B1(0) +

∫ y

0

(1− UL)3/4

[
Uy
2T

d0 −
iUyη

1− UL
a0

2

+
1

2ηT
(TB0,y)y

]
dy

}
(4.B.24a)

D1(y) = D1(0)(1− UL)−1/4. (4.B.24b)

The solutions for ŭ2 and T̆2 are then found to be

ŭ2 = B2e−θ + b0e−σθ − iUy
1− ULA2 + b1, (4.B.25a)

T̆2 = D2e−σθ + d1e−θ − iTy
1− ULA2 + d2, (4.B.25b)

where

b0 =
Uy
σηT

D3, b1 = − i

η2T

(TUyA0

1− UL
)
yy

+
δ̄L

ρ(1− UL)
F1, (4.B.26a)

d1 =
Pr

1− Pr

{(
2Uy −

LTy
1− UL

)B1

η
+

iTy
1− ULa0

− 2Uy
η2

B0,y +
1

Pr η2T

(
(ηTd0)y + η(Td0)y

)}
, (4.B.26b)

d2 = − i

η2T

{
1

Pr

( TTyA0

1− UL
)
yy

+
1− UL
A0

( TU2
yA

2
0

(1− UL)2

)
y

}
+
δ̄

ρ
F1. (4.B.26c)

Although we are not solving for ṽ and p̃ to O(ε3), we must use the third-order equations to form
the secularity conditions for A2 and F2. As before in (4.B.19), we find

A2,y − 2
(

ln ηT
)
y
A2 = − i(1− UL)

T
d2 − iLb1 + δ̄iγ(1− UL)F1 −

δ̄iN2

ρ(1− UL)
F1, (4.B.27a)

F2,y = δ̄iρ(1− UL)A1. (4.B.27b)
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Solving (4.B.27) we find

A2(y) = (1− UL)

{
Ā2 + iδ̄

∫ y

0

− i

T
d2 −

iL

1− ULb1 + δ̄iγF1 −
iδ̄N2

ρ(1− UL)2
F1 dy′

}
, (4.B.28a)

F2(y) = F̄2 + iδ̄

∫ y

0

ρ(1− UL)A1dy′, (4.B.28b)

which are the final conditions needed to close our solutions for ṽ and p̃ to O(ε2).

4.B.1 Matching the high frequency solutions to the outer flow

We must match the inner solutions found above:

p̃(y, θ) =F0(y) + εF1(y) + ε2F2(y) +O(ε3), (4.B.29a)

ṽ(y, θ) =A0(y) + ε
[
A1(y) +

iL

η(y)
B0(y)e−θ +

i(1− U(y)L)

ση(y)T (y)
D0(y)e−σθ

]
+ ε2

[
A2(y) +

iL

η
B1(y)e−θ + a0(y)e−θ +

i(1− U(y)L)

ση(y)T (y)
D1(y)e−σθ

]
+O(ε3). (4.B.29b)

with the outer solutions (4.1.6),

pui(1− δy) = p∞ + iεδ̄(1−ML)yv∞ +
1

2
ε2δ̄2(N2 − ᾱ2)y2p∞ +O(ε3), (4.B.30a)

vui(1− δy) = v∞ + iεδ̄
ᾱ2 −N2

1−ML
yp∞ +

1

2
ε2δ̄2(N2 − ᾱ2)y2v∞ +O(ε3), (4.B.30b)

in the limit y →∞.
Matching (4.B.29) with (4.B.30) at leading order leads to

F̄0 = p∞, Ā0 =
v∞

1−ML
. (4.B.31)

Next, we write the secularity conditions (4.B.20) and (4.B.28) in terms of bounded integrals to aid
matching:

F1(y) = F̄1 + iδ̄Ā0(1−ML)2
[
y −

∫ y

0

χ̄0dy′
]
, (4.B.32a)

A1(y)

1− UL = Ā1 + iδ̄F̄0

{(
1− L2 +N2

(1−ML)2

)
y +

L2 +N2

(1−ML)2

∫ y

0

χ̄1dy′
}
, (4.B.32b)

F2(y) = F̄2 + iδ̄(1−ML)2Ā1

[
y −

∫ y

0

χ̄0dy′
]
− δ̄2(L2 +N2)F̄0

{
I1y

−
∫ y

0

χ̄0(y′)

∫ y′

0

χ̄1(y′′)dy′′dy′ +

∫ y

0

(∫ y′

0

χ̄1(y′′)dy′′ − I1
)

dy′
}
,

− δ̄2(1−ML)2F̄0

(
1− L2 +N2

(1−ML)2

)[1

2
y2 −

∫ y

0

y′χ̄0dy′
]

(4.B.32c)

A2(y)

1− UL = iδ̄F̄1

{(
1− L2 +N2

(1−ML)2

)
y +

L2 +N2

(1−ML)2

∫ y

0

χ̄1dy′
}

+ iξ(γ − 1)2Ā0

∫ y

0

χ̄µ dy′

+ Ā2 − δ̄2(1−ML)2Ā0

{(
1− L2 +N2

(1−ML)2

)y2

2
+

L2 +N2

(1−ML)2

∫ y

0

y′χ̄1dy′
}

+ δ̄2(1−ML)2Ā0

{
L2 +N2

(1−ML)2

∫ y

0

χ̄1(y′)

∫ y′

0

χ̄0(y′′) dy′′dy′

+
(

1− L2 +N2

(1−ML)2

)
I0y +

(
1− L2 +N2

(1−ML)2

)∫ y

0

(∫ y′

0

χ̄0(y′′)dy′′ − I0
)

dy′

}
, (4.B.32d)
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where

I0 =

∫ ∞
0

χ̄0dy, I1 =

∫ ∞
0

χ̄1dy,

χ̄0 = 1− ρ(1− UL)2

(1−ML)2
, χ̄1 = 1− (1−ML)2

ρ(1− UL)2
, (4.B.33)

χ̄µ(y) =
1

1− UL
[ 1

2 Pr
(T 2)yyy + (TU2

y )y +
LT

1− UL (TUy)yy

]
.

Matching at first order provides the relations

F̄1 = iδ̄I0(1−ML)v∞, Ā1 = −iδ̄I1
L2 +N2

(1−ML)2
p∞, (4.B.34)

while at second order we find

F̄2 = δ̄2(I0I1 + I11 − I01)(L2 +N2)p∞ − δ̄2I2
(
(1−ML)2 − L2 −N2

)
p∞ (4.B.35a)

Ā2 = − iξ(γ − 1)2Iµ
v∞

1−ML
+ δ̄2(I0I1 + I3 − I10)(L2 +N2)

v∞
1−ML

− δ̄2I00

(
(1−ML)2 − L2 −N2

) v∞
1−ML

, (4.B.35b)

where we have introduced

I2 =

∫ ∞
0

yχ̄0dy, I3 =

∫ ∞
0

yχ̄1dy, Iµ =

∫ ∞
0

χ̄µdy,

I01 =

∫ ∞
0

χ̄0

∫ y

0

χ̄1(y′)dy′dy, I10 =

∫ ∞
0

χ̄1

∫ y

0

χ̄0(y′)dy′dy, (4.B.36)

I00 =

∫ ∞
0

(∫ y

0

χ̄0(y′)dy′ − I0
)

dy, I11 =

∫ ∞
0

(∫ y

0

χ̄1(y′)dy′ − I1
)

dy.

4.B.2 The effective impedance

To form the effective impedance we evaluate the pressure and velocity at the wall, y = 0:

p̃(0) =F0(0) + εF1(0) + ε2F2(0), (4.B.37)

ṽ(0) =A0(0) + ε
[
A1(0) +

iL

η(0)
B0(0)

]
+ ε2

[
A2(0) +

iL

η(0)
B1(0) + a0(0) +

i

ση(0)T (0)
D1(0)

]
, (4.B.38)

where the Aj(0) and Fj(0) are found in the previous section. The remaining required quantities
are

B0(0) = iUy(0)
v∞

1−ML
, B1(0) =

[
δ̄I1Uy(0)

L2 +N2

(1−ML)2
− δ̄L

ρ(0)

]
p∞, (4.B.39a)

a0(0) = − iδ̄N2

η(0)ρ(0)
p∞ −

[ Pr

1− Pr

2Uy(0)2

η(0)2T (0)
+

5L2Uy(0)2

4η(0)2

] v∞
1−ML

, (4.B.39b)

D1(0) = − δ̄

ρ(0)
p∞ −

Pr

1− Pr

2iUy(0)2

η(0)

v∞
1−ML

, (4.B.39c)

The wall impedance Z = p̃(0)/ṽ(0), so we may write

Z =
p∞ + εiδ̄I0(1−ML)v∞ + ε2Āp∞

v∞
1−ML

[
1− εLUy(0)

η(0)
+ ε2B̄

]
+ p∞

[
− εiδ̄I1

L2 +N2

(1−ML)2
+ ε2C̄

] (4.B.40)
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where

Ā = δ̄2(I0I1 + I11 − I01)(L2 +N2)− δ̄2I2
(
(1−ML)2 − L2 −N2

)
, (4.B.41a)

B̄ = − iξ(γ − 1)2Iµ + δ̄2(I0I1 + I3 − I10)(L2 +N2)− δ̄2I00

(
(1−ML)2 − L2 −N2

)
+
σ(1− σ)

1− Pr

2Uy(0)2

η(0)2T (0)
− 5L2Uy(0)2

4η(0)2
, (4.B.41b)

C̄ = δ̄I1
iLUy(0)

η(0)

L2 +N2

(1−ML)2
− iδ̄(L2 +N2)

η(0)ρ(0)
− iδ̄(γ − 1)

ση(0)
. (4.B.41c)

Dividing top and bottom by v∞ allows us to introduce the effective impedance Zeff = p∞/v∞;
rearranging for Zeff gives

Zeff =
1

1−ML

Z − εLUy(0)

η(0)
Z − εiδ̄I0(1−ML)2 + ε2B̄Z

1 + εiδ̄I1
L2 +N2

(1−ML)2
Z + ε2(Ā − C̄Z)

. (4.B.42)

which is equivalent to the result in the main text (4.1.13) once the expressions for ε, δ̄, ξ, η(0),
L and N are substituted, and the Ij integrals are written in terms of r. If the strict constraint
δ = ε3δ̄ is relaxed, and instead the weaker constraint δ = ε(2+n), n > 0, is used, an expansion in
powers of the two small parameters δ, ε can be found to O(δ/ε2) and shown to be asymptotically
equivalent to (4.1.13) at O(ε) (see Appendix 4.C).

4.C Alternate high frequency asymptotics: two small param-

eters

Here we derive the high frequency solutions corresponding to a weaker constraint on the boundary
layer thickness δ, and leave both δ and ε in the problem as two related yet independent small
parameters. As before, the distinguished scaling for the WKB multiples scales approach gives
ω = 1/

√
ε, and by analysing the outer solutions (4.1.6) we need δ � ε2. We may constrain δ by

the expression δ ∼ ε(2+n) for n ∈ R+. We then expand (1.1.13) in a thin boundary layer r = 1−δy,
and use the WKB multiple scales approach as in (4.1.8). The resulting governing equations are

ŭθθ − ŭ =
iUy ṽ

1− UL −
ε

η2T

[
(ηT ŭθ)y + ηT ŭθy + ηUyT̆θ

]
− ε2

η2T

[
(T ŭy)y + (UyT̆ )y

]
+ δ

{
− 1

ε2

L

ρ(1− UL)
p̃− δ

ε3
(1 + β)

iL

η
ṽθ −

δ

ε2

iL

η2T

[
(1 + β)T ṽy + Ty ṽ

]
+
ε

η
ŭθ +

ε2

η2T

[
T ŭy + UyT̆

]}
+O

(
δ3

ε4

)
, (4.C.1a)

1

Pr
T̆θθ − T̆ =

iTy ṽ

1− UL −
ε

η2T

[ 1

Pr
(ηT T̆θ)y +

1

Pr
η(T T̆θ)y + 2ηTUyŭθ

]
− ε2

η2T

[ 1

Pr
(T T̆ )yy + 2TUyŭy + U2

y T̆
]

+ δ

{
− 1

ε2

1

ρ
p̃− δ

ε2

[2iLUy
η2

ṽ

− L2 +N2

η2
T̆
]

+
ε

Pr η
T̆θ +

ε2

Pr η2T

(
T T̆
)
yy

}
+O

(
δ3

ε2

)
, (4.C.1b)

ṽθ = −ε
[ i(1− UL)

ηT
T̆ +

iL

η
ŭ+

T

η

( ṽ
T

)
y

]
+ δ

{
1

ε

[
i(1− UL)

γ

η
p̃− iN

η
w̃
]

+
ε

η
ṽ

}
+O

(
δ2

ε

)
, (4.C.1c)
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p̃θ = −ε p̃y
η
− δiρ(1− UL)

η

{
1

ε

[
(2 + β)ṽθθ − ṽ

]
+
[ (2 + β)

η2T

(
(ηT ṽθ)y + ηT ṽθy

)
+ (1 + β)

iL

η
ŭθ

]
+

δ

ε2
(1 + β)

iN

η
w̃θ +

ε

η2T

[
(1 + β)iLT ŭy

+ iL(βTyŭ+ UyT̆ ) + (2 + β)(T ṽy)y

]}
+O

(
δ2

ε

)
, (4.C.1d)

w̃θθ − w̃ = − N

ρ(1− UL)
p̃− ε

η2T

[
(ηT w̃θ)y + ηT w̃θy

]
− ε2

η2T

[
(Tw̃y)y

+ iδ̄N(1 + β)ηT ṽθ

]
+O(ε3), (4.C.1e)

where ũ = ε2ŭ/δ and T̃ = ε2T̆ /δ and η is defined in (4.1.9). For different values of n, the term
ordering in (4.C.1) may change. As an example, consider the three possibilties: if 0 < n < 1 then
δ2/ε3 � δ; if n = 1 then δ2/ε3 ∼ δ; while if 1 < n < 2 then δ2/ε3 � δ. In fact this example shows
the lowest order for which the term ordering changes (for these three ranges of n): lower order
terms do not jump order, for instance δ/ε� δ, δ2/ε3 for 0 < n < 2.

We will solve (4.C.1) by assuming the following power series expansions for the acoustic quan-
tities, where the subscript jk refers to the order of δε,

q̃ = q̃00 + εq̃01 + ε2q̃02 + δ

(
1

ε2
q̃1(−2) +

1

ε
q̃1(−1) +

[
q̃10 +

δ

ε3
q̃2(−3)

])
, (4.C.2)

where terms in the square brackets may jump order depending on the value of the exponent n, as
discussed in the previous paragraph. The δ leading order – those terms that are not affected by
the finite thickness of the shear layer, q̃0j – may be solved independently of higher δ orders. This
must be the case if the model is to be consistent with a zero-thickness boundary layer system.

At O(1), the radial velocity and pressure equations (4.C.1c) and (4.C.1d) may be integrated to
give

ṽ00 = A00(y), p̃00 = F00(y), (4.C.3)

which may be used in (4.C.1a), (4.C.1b) and (4.C.1e) to produce the solutions

ŭ00 = B00(y)e−θ − iUy
1− ULA00(y), T̆00 = D00(y)e−σθ − iTy

1− ULA00(y),

w̃00 = G00(y)e−θ +
N

ρ(1− UL)
F00(y),

(4.C.4)

where exponentially growing solutions have been dropped. The functions of y in (4.C.3) and (4.C.4)
are determined by secularity conditions at the next order in ε, and by boundary conditions. The
explicit dependence of these functions on y will henceforth be dropped.

At O(ε), the analysis proceeds in much the same way as in Appendix 4.B. Equation (4.C.1c) is

ṽ01,θ = − i(1− UL)

ηT

(
D00e−σθ − iTy

1− ULA00

)
− iL

η

(
B00e−θ − iUy

1− ULA00

)
− T

η

(A00

T

)
y
, (4.C.5)

where the solutions at O(1) have been inserted on the right hand side. Those terms in (4.C.5) that
are only functions of y, and hence solve the homogeneous equation ṽ01,θ = 0, are resonant and are
set to zero:

i(1− UL)

ηT

iTy
1− ULA00 +

iL

η

iUy
1− ULA00 −

T

η

(A00

T

)
y

= 0. (4.C.6)

Equation (4.C.6) is a first-order ordinary differential equation in y for the function A00(y), and
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may be solved by rewriting in terms of a logarithmic derivative and integrating. The definition of
η(y) may then be used to express the solution as

A00(y) = Ā00(1− UL), (4.C.7)

where Ā00 is a constant determined by the boundary condition either at y = 0 or as y → ∞.
The resonant terms at O(ε) in the pressure equation (4.C.1d) are more simple, and we find the
secularity condition

F00,y = 0 =⇒ F00(y) = F̄00, (4.C.8)

with F̄00 a constant. Solving for ṽ01 and p̃01 with the resonant terms removed gives

ṽ01 = A01 +
iL

η
B00e−θ +

i(1− UL)

σηT
D00e−σθ, p̃01 = F01. (4.C.9)

Equation (4.C.1b) at O(ε) is

1

Pr
T̆01,θθ − T̆01 =

iTy
1− UL

(
A01 +

iL

η
B00e−θ +

i(1− UL)

σηT
D00e−σθ

)
+

1

ση2T

(
(ηTD00)y + η(TD00)y

)
e−σθ +

2Uy
η
B00e−θ,

(4.C.10)

and the secular terms are ∝ exp (−σθ) (where the same murky definition of “secular” is exploited
here as in the previous high frequency analysis in Appendix 4.B—a solution of the homogeneous
system is considered secular, regardless of whether it grows or decays). Equating these terms with
zero we find

1

ηT
(ηTD00)y +

1

T
(TD00)y −

Ty
T
D00 = 0, (4.C.11)

which may solved to give
D00(y) = D00(0)(1− UL)−1/4. (4.C.12)

The isothermal wall condition Ty(0) = 0 gives the boundary condition D00(0) = 0 and hence
D00(y) ≡ 0. At O(ε), (4.C.1a) gives

ŭ01,θθ − ŭ01 =
iUy

1− UL
(
A01 +

iL

η
B00e−θ

)
+

1

η2T

(
(ηTB00)y + ηTB00,y

)
e−θ.

(4.C.13)

The resonant terms on the right hand side are those ∝ exp (−θ). Equating these terms with zero,
we find

1

ηT
(ηTB00)y −

LUy
1− ULB00 +B00,y = 0, (4.C.14)

which gives the secularity condition

B00(y) = B00(0)(1− UL)−3/4, B00(0) = iUy(0)A00(0). (4.C.15)

The boundary condition used to determine B00(0) is the viscous no slip condition. Similarly, the
secularity condition for G00 can be found from (4.C.1e) at O(ε):

w̃01,θθ − w̃01 = − N

ρ(1− UL)
F01 +

1

η2T

(
(ηTG00)y + ηTG00,y

)
e−θ, (4.C.16)
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where the secular terms are ∝ exp (−θ). This leads to the secularity condition

G00(y) = G00(0)(1− UL)−1/4, G00(0) = − N

ρ(0)
F00(0), (4.C.17)

where again no slip sets the boundary value G00(0). Solving for ŭ01, T̆01 and w̃01 with the resonant
terms suppresed then gives

ŭ01 = B01e−θ − iUy
1− ULA01, w̃01 = G01e−θ +

N

ρ(1− UL)
F01,

T̆01 = D01e−σθ + ψ0e−θ − iTy
1− ULA01,

(4.C.18)

where
ψ0(y) =

Pr

1− Pr

(
2Uy −

LTy
1− UL

)B00

η
. (4.C.19)

At O(ε2) we proceed as above, but now with both the O(1) and O(ε) solutions inserted into
the governing equations (4.C.1). The secularity conditions on the ṽ01 and p̃01 solutions are found
to be

A01(y) = Ā01(1− UL), F01(y) = F̄01, (4.C.20)

where the barred terms are constants. For completeness, solving (4.C.1c) and (4.C.1d) at this
order, with the secular terms suppressed, gives

ṽ02 = A02 +
( iL
η
B01 +

iLT

η

(B00

ηT

)
y

+
i(1− UL)

ηT
ψ0

)
e−θ +

i(1− UL)

σηT
D01e−σθ, (4.C.21)

for the radial velocity and p̃02 = F02 for the pressure, but these solutions will not be used as we will
not determine the functions A02 and F02. The secularity conditions for the solutions in (4.C.18)
are found to be

B01,y +
3

2

(
ln ηT

)
y
B01 =

Uy
T
ψ0 +

LUyT

1− UL
(B00

ηT

)
y

+
1

ηT
(TB00,y)y, (4.C.22)

with B01(0) = iUy(0)A01(0) for ŭ01;

D01(y) = D01(0)(1− UL)−1/4, D01(0) =
Pr

Pr−1

2Uy(0)

η(0)
B00(0), (4.C.23)

for T̆01; and

G01,y +
1

2

(
ln ηT

)
y
G01 =

1

ηT
(TG00,y)y , G01(0) = − N

ρ(0)
F01(0), (4.C.24)

for w̃01.

We now derive the δ expansion, which accounts for the finite thickness of the shear layer.
At O(δ/ε2), (4.C.1c) is simply ṽ1(−2),θ = 0, hence we find ṽ1(−2) = A1(−2). Similarly we find
p̃1(−2) = F1(−2). The equations (4.C.1a) and (4.C.1b) at this order are

ŭ1(−2),θθ − ŭ1(−2) =
iUy

1− ULA1(−2) −
L

ρ(1− UL)
F00, (4.C.25)

for ŭ and
1

Pr
T̆1(−2),θθ − T̆1(−2) =

iTy
1− ULA1(−2) −

1

ρ
F00, (4.C.26)
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for T̆ , where now the forcing from the leading-order pressure appears on the right hand sides.
Solving (4.C.25) and (4.C.26) gives

ŭ1(−2) =B1(−2)e
−θ − iUy

1− ULA1(−2) +
L

ρ(1− UL)
F00, (4.C.27a)

T̆1(−2) =D1(−2)e
−σθ − iTy

1− ULA1(−2) +
1

ρ
F00. (4.C.27b)

The next order is O(δ/ε), at which equation (4.C.1c) is

ṽ1(−1),θ = − i(1− UL)

ηT

[
D1(−2)e

−σθ − iTy
1− ULA1(−2) +

1

ρ
F00

]
− iL

η

[
B1(−2)e

−θ − iUy
1− ULA1(−2) +

L

ρ(1− UL)
F00

]
(4.C.28)

− T

η

(
A1(−2)

T

)
y

+
i(1− UL)

η
γF00 −

iN

η

[
G00e−θ +

N

ρ(1− UL)
F00

]
.

As before, the resonant terms are those that are only functions of y; we find the secularity condition

A1(−2),y − 2 (ln ηT )y A1(−2) = i(1− UL)F00 −
i(L2 +N2)

ρ(1− UL)
F00. (4.C.29)

The pressure equation (4.C.1d) at δ/ε is

p̃1(−1),θ = −1

η
F1(−2),y +

i(1− UL)

(γ − 1)ηT
A00, (4.C.30)

from which we find the secularity condition

F1(−2),y = iρ(1− UL)A00, (4.C.31)

where we have used the substitution (γ − 1)T = 1/ρ. Solving for the pressure and radial velocity
at this order, with the resonant terms suppressed, gives

ṽ1(−1) = A1(−1) +
( iL
η
B1(−2) +

iN

η
G00

)
e−θ +

i(1− UL)

σηT
D1(−2)e

−σθ, (4.C.32)

and p̃1(−1) = F1(−1). For ŭ and T̆ we find the secularity conditions

B1(−2),y +
3

2

(
ln ηT

)
y
B1(−2) =

1

2

NUy
1− ULG00, (4.C.33)

with
B1(−2)(0) = iUy(0)A1(−2)(0)− L

ρ(0)
F00(0); (4.C.34)

and

D1(−2)(y) = D1(−2)(0)(1− UL)1/4, D1(−2)(0) = − F00

ρ(0)
. (4.C.35)

Solving with the resonant terms suppressed gives

ŭ1(−1) =B1(−1)e
−θ +

Uy
σηT

D1(−2)e
−σθ − iUy

1− ULA1(−1) +
L

ρ(1− UL)
F01, (4.C.36a)
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T̆1(−1) =D1(−1)e
−σθ + ψ1e−θ − iTy

1− ULA1(−1) +
1

ρ
F01, (4.C.36b)

where
ψ1 =

Pr

1− Pr

[
2Uy
η
B1(−2) −

Ty
(1− UL)η

(
LB1(−2) +NG00

)]
. (4.C.37)

The final step is finding the secularity conditions to close the solutions at O(δ/ε). At this
order, the discussion of term ordering at the beginning of this section becomes important. The
next largest asymptotic order is either O(δ2/ε3) for 0 < n < 1 or O(δ) for 1 < n < 2, or a balance
of these two orders when n = 1. It turns out that to find the secularity conditions on A1(−1)

and F1(−1) at the next order, we need to include the O(δ) terms. Working to O(δ2/ε3) does not
produce equations that include either ṽ1(−1) or p̃1(−1), and hence no closure conditions are found
until the next order. For completeness the equations for 0 < n < 1 would be

ṽ2(−3),θ =
i(1− UL)

η
γp̃1(−2) −

iN

η
w̃1(−2), (4.C.38a)

p̃2(−3),θ =
iρ(1− UL)

η

[
ṽ1(−2) − (2 + β)ṽ1(−2),θθ

]
, (4.C.38b)

which throw up another problem: the appearance of an O(δ/ε2) azimuthal velocity term, which
we have been calculating to only leading order in δ in all preceding asymptotics. We thus make
the judgement that by including O(δ2/ε3) terms we would in fact be opening a new δ2 expansion,
rather than closing the desired δ expansion. So, working with the three guiding principles that (i)
we want to close the system at O(δ/ε), (ii) we do not want to calculate O(δ2) effects, and (iii) we
do not want to calculate O(δ) terms for the azimuthal velocity w̃, we choose to neglect O(δ2/ε3)

terms in favour of O(δ) terms. This leads to the implicit restriction 1 ≤ n < 2, the equality at the
lower bound because the resulting secularity conditions

A1(−1),y − 2 (ln ηT )y A1(−1) = i(1− UL)F01 −
i(L2 +N2)

ρ(1− UL)
F01. (4.C.39a)

F1(−1),y = iρ(1− UL)A01, (4.C.39b)

are unaffected by the inclusion of O(δ2/ε3) terms in a formulation of the balanced–order equations
for n = 1. In fact, the secularity conditions (4.C.39) would most likely be unchanged for the
0 < n < 1 case, but would be found an order later.

To form an effective impedance boundary condition using the above high-frequency boundary
layer solutions, we must match with the uniform flow outer solutions in the limit y →∞. Expanded
near the boundary and in the high frequency limit, these outer solutions are

p̃u ∼ p(0)
∞ + εp(1)

∞ +
δ

ε2
p(2)
∞ +

δ

ε
p(3)
∞ +

δ

ε2
i(1−ML)y(v(0)

∞ + εv(1)
∞ ), (4.C.40a)

ṽu ∼ v(0)
∞ + εv(1)

∞ +
δ

ε2
v(2)
∞ +

δ

ε
v(3)
∞ −

δ

ε2

(
L2 +N2 − (1−ML)2

)
1−ML

iy(p(0)
∞ + εp(1)

∞ ), (4.C.40b)

where the expansions p∞ and v∞ have been expanded as in (4.C.2). We will apply the boundary
conditions p̃00(0) = 1, ṽ00(0) = 1/Z, and homogeneous boundary conditions at all subsequent
orders. Thus, (4.C.7) implies A00 = (1 − UL)/Z which, in the limit y → ∞, matches with
(4.C.40b) to give

v(0)
∞ =

1

Z
(1−ML). (4.C.41)

Solving (4.C.8) gives F00 = 1, and matching with (4.C.40a) implies p(0)
∞ = 1. At O(ε), homogeneous
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boundary conditions on ṽ and p̃ imply F01 = 0 and

A01 =
LUy(0)

η(0)Z
(1− UL). (4.C.42)

Matching in the limit y →∞ to (4.C.40) then gives

p(1)
∞ = 0, v(1)

∞ =
LUy(0)

η(0)Z
(1−ML). (4.C.43)

At O(δ/ε2), we may solve (4.C.29) with the boundary condition A1(−2)(0) = 0 to find

A1(−2) = i(1− UL)

{(
1− L2 +N2

(1−ML)2

)
y +

L2 +N2

(1−ML)2

∫ y

0

χ̄1dy′
}
, (4.C.44)

and solve (4.C.31) with the boundary condition F1(−2)(0) = 0 to find

F1(−2) =
i

Z
(1−ML)2

{
y −

∫ y

0

χ̄0dy′
}
, (4.C.45)

where χ̄0 and χ̄1 are defined in (4.B.33). In the limit y →∞ we see that the terms ∝ y in (4.C.44)
and (4.C.45) match automaticall with those in (4.C.40). Matching the constant terms at this order
gives

p(2)
∞ = − i

Z
(1−ML)2I0, (4.C.46a)

v(2)
∞ = i

L2 +N2

1−ML
I1, (4.C.46b)

where again the definitions of I0 and I1 are as in (4.B.33). The final order is O(δ/ε), at which the
homogeneous ṽ and p̃ boundary conditions give

A1(−1)(0) =
i(γ − 1)

ση(0)
+
i(L2 +N2)

η(0)ρ(0)
(4.C.47)

and F1(−1)(0) = 0. Since F01 ≡ 0, the solution of (4.C.39a) is just A1(−1) = A1(−1)(0)(1 − UL)

and hence matching with (4.C.40b) in the limit y →∞ gives

v(3)
∞ =

i(1−ML)

η(0)

(
(γ − 1)

σ
+

(L2 +N2)

ρ(0)

)
. (4.C.48)

The p̃ problem (4.C.39b) has the same structure as the preceding order, and hence the solution is
of the form (4.C.45). The terms ∝ y match exactly with those of (4.C.40a) as y → ∞, while the
constant terms match if

p(3)
∞ = − iLUy(0)

η(0)Z
(1−ML)2I0. (4.C.49)

The effective impedance is then just the ratio of the uniform flow wall-pressure and radial velocity:

Zeff =
p

(0)
∞ + εp

(1)
∞ + δ

ε2 p
(2)
∞ + δ

εp
(3)
∞

v
(0)
∞ + εv

(1)
∞ + δ

ε2 v
(2)
∞ + δ

εv
(3)
∞
, (4.C.50)
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Figure 4.C.1. (a) Cut-on and (b) cut-off modes in the k-plane of the linearised compressible Navier–Stokes numerics
(LNSE), the high-frequency asymptotic model (4.1.13) (HF1) and the alternate high-frequency asymptotic model
(4.C.51) (HF2). Parameters are ω = 28, m = 0, M = 0.5, δ = 2× 10−3, Re = 5× 106 with a boundary impedance
of Z = 3 + 4.16i and the hyperbolic boundary layer profiles in (3.1.1).

which may be rewritten as

Zeff =
1

1−ML

Z − δ
ε2 i(1−ML)2I0

(
1 + ε

LUy(0)
η(0)

)
1 + ε

LUy(0)
η(0) + δ

ε2
L2+N2

(1−ML)2 iZI1 + δ
ε
iZ
η(0)

(
(γ−1)
σ + L2+N2

ρ(0)

) . (4.C.51)

This may be shown to be asymptotically equivalent to (4.B.42) to O(δ/ε2).
In figs. 4.C.1 and 4.C.2 the effective impedance boundary condition (4.C.51) is compared with

the high-frequency asymptotic condition derived in the main part of the chapter, (4.1.13), and
with numerical solutions of the linearised compressible Navier–Stokes equations, (3.1.2). The cut-
on modes of (4.C.51) are close to those of the LNSE, fig. 4.C.1a; the cut-off modes of the LNSE
are mostly predicted well by (4.C.51), with (4.1.13) faring slightly better. The high-frequency
boundary conditions (4.1.13) and (4.C.51) predict surface modes of the LNSE with similar accuracy:
fig. 4.C.2a shows an example where the surface mode lies in the region of asymptotic validity of
the models, while fig. 4.C.2b shows an example where the surface mode lies outside the region of
asymptotic validity.
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Figure 4.C.2. Mode spectra showing surface modes of the linearised compressible Navier–Stokes numerics (LNSE),
the high-frequency asymptotic model (4.1.13) (HF1) and the alternate high-frequency asymptotic model (4.C.51)
(HF2). Parameters are (a) ω = 31, m = 24, M = 0.5, δ = 1 × 10−3, Re = 1 × 106, with a boundary impedance
of Z = 0.6 − 2i and (b) ω = 31, m = 24, M = 0.5, δ = 2 × 10−4, Re = 2.5 × 107 with a boundary impedance of
Z = 2 + 0.6i. The hyperbolic boundary layer profiles in (3.1.1) are used.
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Chapter 5

Analytic solutions for the acoustics
in a two-deck viscothermal boundary
layer

In this chapter we seek to exploit the difference in viscous lengthscales between eddy viscosity and
molecular viscosity in order to derive analytical solutions for the acoustics via matched asymptotic
expansions in three scaling regions that cover an entire cylindrical, acoustically lined duct. This
work has been submitted for publication in the AIAA Journal (Khamis & Brambley, 2016c); some
of this work was presented at the AIAA Aeroacoustics conference (Khamis & Brambley, 2016d).

As is common in acoustics, we work predominantly in the frequency domain here. The results
of such work are not always directly applicable to time-domain numerical solvers. Recent work
has made progress in implementing an inviscid impedance boundary condition in the time domain
to account for a finite region of shear (Brambley & Gabard, 2016). By incorporating the modi-
fied Myers boundary condition (reformulated in the time domain) into a linearised Euler solver,
the unphysical numerical instabilities associated with time-domain formulations of the ill-posed
classical Ingard–Myers boundary condition can be avoided. The physical surface wave instability
is always present in the inviscid case (Khamis & Brambley, 2016a), however, so the time-domain
implementation in Brambley & Gabard (2016) still yields instabilities. In the present chapter,
we suggest a time-domain formulation that accounts for viscothermal effects in a thin, sheared
boundary layer. Although the boundary condition is not implemented here, it is hoped that the
good frequency-domain stability behaviour translates to a stable time-domain boundary condition,
provided it is suitably implemented (Brambley & Gabard, 2016) and the boundary layer thickness
and Reynolds number are chosen appropriately.

5.1 Governing equations

The dynamics of a viscous, compressible perfect gas are considered, as governed by the (dimension-
less) Navier–Stokes equations (1.1.10). Using the linearisation scheme set out in section 1.1.2, the
acoustics are governed by the linearised Navier–Stokes equations (LNSE) (1.1.13). The viscosities
and thermal conductivity are taken to be linearly dependent on the temperature:

µ =
T

T0Re
, µB =

T

T0Re

µB∗0

µ∗0
, κ =

T

T0Re Pr
, (5.1.1)
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which is equivalent to setting the dimensionless viscosity function H, introduced in (1.1.16), to be

H(r, T ) =
T

T0
, (5.1.2)

as in the previous two chapters. We want to solve (1.1.13) in the sheared boundary layer above an
impedance lining with nonzero, non-constant viscosity and thermal conductivity without assuming
a high- or low-frequency limit.

Outside the boundary layer, we assume the flow to be uniform and essentially inviscid, with
the acoustics being well approximated by the Bessel function solutions (1.2.5) and (1.2.6). The
relations (1.2.5) allow us to form an analytical expression for the effective impedance that the
inviscid uniform flow solution sees at the wall,

Zeff =
p̃u(1)

ṽu(1)
= (ω −Mk)

Jm(α)

iαJ ′m(α)
. (5.1.3)

We are interested in how the physics of the boundary layer effect connects the actual boundary
impedance p̃/ṽ = Z to the effective impedance Zeff .

5.2 Main boundary layer solution

It is thought that the Reynolds number of the flow in an aeroengine bypass duct is between 105

and 107 in-flight, and at take-off and landing (Jones et al., 2005). Common assumptions for the
thickness δ of the boundary layer are between 0.2 and 3% of the duct radius (Gabard, 2013).
Experimental studies generally use fully developed turbulent boundary layers, and are a useful
benchmark for choices of parameter values. In one such study, Renou & Aurégan (2011) report
a Reynolds number of 3.38 × 105 (by the current definition); the boundary layer displacement
(δd) and momentum (δm) thicknesses may be deduced from the data given in the reference to
be δd ≈ 5.1% and δm ≈ 3.9% of the duct radius. The authors also give measurements of the
(frequency dependent) acoustic boundary layer thickness, which lies in the range 0.26–0.67% of
the duct radius, and is therefore far thinner than the mean flow boundary layer. In another study,
Marx et al. (2010) report Re ≈ 2.4×105 (by the current definition); the boundary layer parameters
were δd ≈ 9% and δm ≈ 5% of the duct radius. Assuming a laminar Blasius boundary layer gives
the scaling δ ∼ 1/

√
Re; this choice of scaling generally underestimates the boundary layer thickness

in aeroengines, possibly due to the boundary layer being turbulent. We propose the new scaling
δ ∼ Re−1/3, which models a slightly thicker boundary layer (or a slightly weaker viscosity) and is
more in keeping with the scalings found in practice, as listed in table 5.1. Note, however, that we
do not in any way model turbulence here.

The explicit boundary layer scaling used here is

r = 1− δy, ξδ3 = 1/Re, (5.2.1)

with ξ = O(1). The governing equations (1.1.13) are expanded in this regime, where y is the bound-
ary layer variable. As in Brambley (2011a), the axial acoustic velocity and acoustic temperature
perturbation are scaled as

ũ =
û

δ
, T̃ =

T̂

δ
(5.2.2)

to balance the leading order of the continuity equation. The governing equations to first order in
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δ 0.2% 1% 3%
Re

105 2.5 : 1250 0.1 : 10 0.01 : 0.4
106 0.25 : 125 0.01 : 1 0.001 : 0.04
107 0.025 : 12.5 0.001 : 0.1 0.0001 : 0.004

Table 5.1. Values of ξb:ξc where ξb = 1/Reδ2 is the Blasius scaling parameter, and ξc = 1/Reδ3 is the parameter
for the new scaling proposed here. A value of ξ close to unity indicates a pertinent scaling choice. Boundary layer
thicknesses given as a percentage of duct radius.

δ are

i(ω − Uk)T̂ + ikT û+ T 2

(
ṽ

T

)
y

= δ [γi(ω − Uk)T p̃+ T ṽ − imTw̃] , (5.2.3a)

i(ω − Uk)û− Uy ṽ = δ
[
ξ(γ − 1)2T (T ûy + UyT̂ )y + i(γ − 1)kT p̃

]
, (5.2.3b)

p̃y = δ
i(ω − Uk)

(γ − 1)T
ṽ, (5.2.3c)

i(ω − Uk)

(γ − 1)2T
w̃ =

im

γ − 1
p̃+O(δ), (5.2.3d)

i(ω − Uk)T̂ − Ty ṽ = δ
[ 1

Pr
ξ(γ − 1)2T (T T̂ )yy + ξ(γ − 1)2T (U2

y T̂ + 2TUyûy)

+(γ − 1)i(ω − Uk)T p̃
]
. (5.2.3e)

It is clear from (5.2.3) that the choice of scaling (5.2.1) has pushed viscosity back to being a first
order effect. This has the advantage that the leading order solution is exactly the inviscid uniform
solution, with the correction at O(δ) including both shear and viscothermal corrections.

To solve the system (5.2.3) we expand the acoustic quantities in powers of δ: q̃ = q̃0+δq̃1+O(δ2).
At leading order, we use the relations

û0 = − iUy
ω − Uk ṽ0, T̂0 = − iTy

ω − Uk ṽ0 (5.2.4)

from (5.2.3b) and (5.2.3e) to rearrange the continuity equation (5.2.3a). The continuity equation
reduces to

T (ω − Uk)

(
ṽ0

ω − Uk

)
y

= 0, (5.2.5)

which has the solution ṽm,0 = Ā0(ω−Uk), where Ā0 is a constant and the subscript m, 0 denotes the
leading order of the main boundary layer. Thus we may write ûm,0 = −iUyĀ0 and T̂m,0 = −iTyĀ0.
The pressure equation (5.2.3c) is readily integrated at leading order to produce p̃m,0 = P̄0, a
constant. We may use this in equation (5.2.3d) to find w̃m,0 = m(γ− 1)T P̄0/(ω−Uk). This is the
highest order of the azimuthal acoustic velocity solution that we need for the current study.

At first order, the û and T̂ solutions may be written

ûm,1 = − iUy
ω − Uk ṽm,1 +

(γ − 1)kT

ω − Uk P̄0 − ξĀ0
(γ − 1)2T

ω − Uk (UyT )yy, (5.2.6)

T̂m,1 = − iTy
ω − Uk ṽ1 + (γ − 1)T P̄0 − ξĀ0

(γ − 1)2T

ω − Uk

(
1

2 Pr
(T 2)yyy + (TU2

y )y

)
, (5.2.7)

where the subscript 1 denotes the first order. These are used in (5.2.3a) which, when integrated,
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gives

ṽm,1 = Ā1(ω − Uk) + Ā0(ω − Uk)y + iP̄0(ω − Uk)y
(

1− k2 +m2

(ω −Mk)2

)
+ iP̄0(ω − Uk)

k2 +m2

(ω −Mk)2

∫ y

0

χ1 dy + iξĀ0(γ − 1)2(ω − Uk)

∫ y

0

χ̄µ dy, (5.2.8)

where Ā1 is a constant, and

χ1 = 1− (ω −Mk)2

ρ(ω − Uk)2
, χ̄µ =

1

ω − Uk

(
(T 2)yyy

2 Pr
+ (TU2

y )y +
kT

ω − Uk (UyT )yy

)
. (5.2.9)

Note that viscous terms, identifiable by the parameter ξ, have arisen at this order in eqs. (5.2.6)–
(5.2.8). The first order pressure is found by integrating (5.2.3c):

p̃m,1 = P̄1 + iĀ0(ω −Mk)2y − iĀ0(ω −Mk)2

∫ y

0

χ0 dy, (5.2.10)

where P̄1 is a constant, and

χ0 = 1− ρ(ω − Uk)2

(ω −Mk)2
. (5.2.11)

In summary, the solutions for the acoustic pressure and radial velocity in the main boundary
layer, correct to first order, are

ṽm = (ω − Uk)

{
Ā0 + δĀ1 + δĀ0y + iδP̄0y

(
1− k2 +m2

(ω −Mk)2

)
+ iδP̄0

k2 +m2

(ω −Mk)2

∫ y

0

χ1 dy + iδξĀ0(γ − 1)2

∫ y

0

χ̄µ dy

}
, (5.2.12a)

p̃m = P̄0 + δP̄1 + iδĀ0(ω −Mk)2y − iδĀ0(ω −Mk)2

∫ y

0

χ0 dy. (5.2.12b)

These are identical in form to the pressure and radial velocity found by Brambley (2011b) by as-
suming an inviscid, thin-but-nonzero thickness boundary layer—but for the addition of the viscous
integral χ̄µ at first order in ṽ. The constants Ā0, Ā1, P̄0 and P̄1 will be found by matching to the
outer solution as y →∞.

The axial and azimuthal velocities in this scaling regime do not satisfy no slip at the wall y = 0.
We have not, therefore, captured the full viscous dynamics of the boundary layer. The solutions
(5.2.12) should be viewed as the less viscous main boundary layer solution that sits atop a viscous
acoustic sublayer, which will be considered in section 5.3.

5.2.1 Matching the main boundary layer solution to the outer flow

The acoustics in the outer flow to which we asymptotically match are the uniform flow acoustics
(1.2.5) expanded near the boundary in the limit r → 1, as in (1.2.9). These are repeated here:

p̃u(1− δy) ∼ p∞ + δyi(ω −Mk)v∞ +O(δ2), (5.2.13a)

ṽu(1− δy) ∼ v∞ − δy
(

(ω −Mk)2 − k2 −m2

i(ω −Mk)
p∞ − v∞

)
+O(δ2), (5.2.13b)

where
p∞ = EJm(α), and v∞ =

iαEJ ′m(α)

(ω −Mk)
. (5.2.14)
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We match (5.2.12) to (5.2.13) in the limit y →∞. At leading order we find

Ā0 =
v∞

ω −Mk
, P̄0 = p∞. (5.2.15)

At first order, we require the terms proportional to y in (5.2.12) to match with the outer solutions,
while the constant terms should cancel. Thus,

Ā1 = − ip∞
k2 +m2

(ω −Mk)2
I1 −

iξ(γ − 1)2

ω −Mk
v∞Īµ, (5.2.16a)

P̄1 = i(ω −Mk)v∞I0 (5.2.16b)

where
I0 =

∫ ∞
0

χ0 dy, I1 =

∫ ∞
0

χ1 dy, Īµ =

∫ ∞
0

χ̄µ dy. (5.2.17)

The viscous integral (that of χ̄µ) is bounded as y →∞ because the gradients of the base flow are
non-zero only inside the boundary layer.

5.2.2 Behaviour of the main boundary layer solutions near the boundary

Here we find the limiting behaviour of the solutions found in the previous section, (5.2.12), as
y → 0. This will be needed in section 5.3.1 when matching to the viscous sublayer solution.
Expanding first the integrals, we find∫ y

0

χ0 dy ∼
(

1− ρ(0)ω2

(ω −Mk)2

)
y +O(y2), (5.2.18a)∫ y

0

χ1 dy ∼
(

1− (ω −Mk)2

ρ(0)ω2

)
y +O(y2), (5.2.18b)∫ y

0

χ̄µ dy ∼ y

ω2

(
kT (0)2U ′′′(0) + kT (0)T ′′(0)U ′(0) + 2ωT (0)U ′(0)U ′′(0)

+
ω

Pr
T (0)T ′′′(0)

)
+O(y2), (5.2.18c)

where we assume the base flow is non-slipping and satisfies isothermal wall conditions, U(0) = 0

and T ′(0) = 0, such that U(y) ∼ U ′(0)y and T (y) ∼ T (0), and similar for their derivatives. A
prime denotes a derivative with respect to y. Thus for small y the pressure and velocity behave as

ṽ(I)
m ∼ Ā0

(
ω − U ′(0)ky − 1

2
U ′′(0)ky2

)
+ δĀ1(ω − U ′(0)ky) + δĀ0ωy + iδyP̄0ω

− iδyP̄0
k2 +m2

ρ(0)ω
+ iδyξĀ0(γ − 1)2ω

(
k

ω2
T (0)2U ′′′(0) +

k

ω2
T (0)T ′′(0)U ′(0)

+
2

ω
T (0)U ′(0)U ′′(0) +

1

Prω
T (0)T ′′′(0)

)
+O(δ2, δy2, y3), (5.2.19a)

p̃(I)
m ∼ P̄0 + δP̄1 + iδyĀ0ρ(0)ω2 +O(δ2, δy2). (5.2.19b)

These forms, (5.2.19), will be used as the outer solutions to which the viscous sublayer solutions,
derived in the next section, should match.
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5.3 Viscous sublayer solution

We assume the existence of a thin viscous sublayer within which the base flow does not change
quickly, but the acoustics change rapidly enough to satisfy viscous wall conditions at r = 1, y = 0.
We scale into this sublayer by

y = εz, ε =
√
δ/ω ∼ Re−1/6, (5.3.1)

as described in Appendix 5.A. We may expand the base flow near the wall using the no slip and
isothermal wall conditions,

U ∼ εzU ′(0) +
1

2
ε2z2U ′′(0), Uy ∼ U ′(0) + εzU ′′(0) +

1

2
ε2z2U ′′′(0),

Uyy ∼U ′′(0) + εzU ′′′(0) +
1

2
ε2z2U ′′′′(0), T ∼ T (0) +

1

2
ε2z2T ′′(0), (5.3.2)

Ty ∼ εzT ′′(0) +
1

2
ε2z2T ′′′(0), Tyy ∼ T ′′(0) + εzT ′′′(0) +

1

2
ε2z2T ′′′′(0),

where the derivatives and arguments of the base flow variables remain in terms of y, i.e.

U ′(0) ≡ d

dy
U(y)

∣∣∣∣
y=0

.

We will drop the argument 0 for all base flow variables in this section, as they will all be evaluated
at the boundary: U ′ ≡ U ′(0), and so on.

Expanding (1.1.13) in powers of ε using (5.3.1) and (5.3.2) leads to the sublayer governing
equations

ṽz = ε
[
− ikû− iω

T
T̂
]

+ ε2
[
ik
U ′

T
zT̂ +

T ′′

T
zṽ
]

+ ε3
[
(kU ′′ + ωT ′′)

i

2T
z2T̂

+
T ′′′

2T
z2ṽ − imωw̃ + iγω2p̃+ ωṽ

]
, (5.3.3a)

ûzz − η2û =
iU ′

ω
η2ṽ − ε

[kU ′
ω
η2zû+

U ′

T
T̂z −

iU ′′

ω
η2zṽ

]
− ε2

[
kη2(γ − 1)T p̃

− iU ′′′

2ω
η2z2ṽ +

kU ′′

2ω
η2z2û+

T ′′

T
(z2ûzz + zûz) +

U ′′

T
(zT̂ )z

]
, (5.3.3b)

p̃z = ε3
[ iω2

(γ − 1)T
ṽ − iω2(2 + β)

(γ − 1)η2T
ṽzz

]
, (5.3.3c)

w̃zz − η2w̃ = − m

ω
(γ − 1)Tη2p̃+O(ε), (5.3.3d)

1

Pr
T̂zz − η2T̂ = − ε

[
2U ′ûz +

kU ′

ω
η2zT̂ − iT ′′

ω
η2zṽ

]
− ε2

[
(γ − 1)Tωη2p̃+ 2U ′′zûz

− iT ′′′

2ω
η2z2ṽ +

kU ′′

2ω
η2z2T̂ +

U ′2

T
T̂ +

1

Pr

T ′′

T

(
(z2T̂z)z + T̂

)]
, (5.3.3e)

where we have defined
η2 =

i

ξ(γ − 1)2T (0)2
(5.3.4)

with Re(η) > 0. To find p̃ and ṽ to the desired order, we need to calculate û and T̂ to O(ε2) and
w̃ to O(1). The system (5.3.3) may be solved by expanding the acoustic quantities in powers of ε,
q = q0 + εq1 et cetera; details of this solution may be found in Appendix 5.B. The main results are
expressions for the pressure and radial velocity in the acoustic boundary layer to O(ε3),

p̃s(z) =P0 + εP1 + ε2P2 + ε3
(
P3 +

iω2

(γ − 1)T
A0z

)
, (5.3.5a)
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ṽs(z) =A0 + ε
[
A1 + a0e−ηz + a1z

]
+ ε2

[
A2 + a2z + a3z

2 + (a4 + a5z + a6z
2)e−ηz

+ a7e−σηz
]

+ ε3
[
A3 + a8z + a9z

2 + a10z
3 + (a16 + a17z + a18z

2)e−σηz

+ (a11 + a12z + a13z
2 + a14z

3 + a15z
4)e−ηz

]
, (5.3.5b)

where Aj and Pj are constants of integration, and aj are linear combinations of the Aj and Pj given
in Appendix 5.B. Here, σ =

√
Pr, and the subscript s denotes a solution in the viscous sublayer.

In the limit z →∞, p̃ and ṽ from (5.3.5) behave, to O(ε3), as

p̃s ∼P0 + εP1 + ε2P2 + ε3

(
P3 +

iω2

(γ − 1)T
A0z

)
, (5.3.6a)

ṽs ∼A0 + ε (A1 + a1z) + ε2
(
A2 + a2z + a3z

2
)

+ ε3
(
A3 + a8z + a9z

2 + a10z
3
)
, (5.3.6b)

where the exponentially small, necessarily viscous, terms in (5.3.5) vanish in this outer limit. We
now match to the main boundary layer solution.

5.3.1 Matching with the main boundary layer solution

An intermediate variable is introduced to facilitate matching: let

τ = y/ελ = zε1−λ (5.3.7)

where 0 < λ < 1. We then take the limit ε → 0, holding τ fixed. For the acoustic pressure, the
main boundary layer solution in the limit y → 0, (5.2.19b), and the sublayer solution in the limit
z →∞, (5.3.6a), may be rewritten in terms of the intermediate variable τ using (5.3.7). We find,
as ε→ 0,

p̃m ∼ P̄0 + ε2ωP̄1 + iε2+λτω3Ā0ρ(0) +O(ε4, ε2+2λ) (5.3.8a)

p̃s ∼P0 + εP1 + ε2P2 + ε2+λτ
iω2

(γ − 1)T (0)
A0 + ε3P3 +O(ε4, ε2+2λ). (5.3.8b)

Similarly, the ṽ expansion in the limit ε→ 0 with τ held fixed gives

ṽm ∼ωĀ0 − ελτkU ′(0)Ā0 − ε2λτ2 kU
′′(0)

2
Ā0 − ε3λτ3 kU

′′′(0)

6
Ā0 + ε2ω2Ā1

+ ε2+λτ

{
ω2Ā0 − kU ′(0)ωĀ1 + iω2P̄0 − i

k2 +m2

ρ(0)
P̄0

+ iξ(γ − 1)2T (0)2ωĀ0

(
kU ′′′(0)

ω
+
kT ′′(0)U ′(0)

ωT (0)
+

2U ′(0)U ′′(0)

T (0)

+
1

Pr

T ′′′(0)

T (0)

)}
+O(ε2+2λ, ε4λ), (5.3.9)

for the main boundary layer solution, and

ṽs ∼A0 − ελτ
kU ′(0)

ω
A0 + εA1 − ε2λτ2 kU

′′(0)

2ω
A0 − ε3λτ3 kU

′′′(0)

6ω
A0

− ε1+λτ
kU ′(0)

ω
A1 + ε2A2 − ε1+2λτ2 kU

′′(0)

2ω
A1 + ε2+λτ

{
ωA0 + iω2P0

− i(k2 +m2)(γ − 1)T (0)P0 −
kU ′(0)

ω
A2 −

1

η2
A0

(
T ′′′(0)

PrT (0)
+

2U ′(0)U ′′(0)

T (0)

+
kT ′′(0)U ′(0)

ωT (0)
+
kU ′′′(0)

ω

)}
+ ε3A3 +O(ε4, ε2+2λ) (5.3.10)
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for the sublayer solution. These equations must match independently of λ ∈ (0, 1).

We may identify from (5.3.8) that P0 = P̄0 and P2 = ωP̄1. The O(ε) matching gives P1 = 0.
Because we want the matching to work for any value of the exponent λ ∈ (0, 1), we set P3 = 0.
From the leading order of (5.3.9) and (5.3.10) we can readily identify A0 = ωĀ0. This is consistent
with higher order terms of (5.3.9) and (5.3.10), and also with the O(ε2+λ) terms in the p̃ expansions
(5.3.8) once we write ρ(0) = 1/(γ − 1)T (0). At O(ε2) we find A2 = ω2Ā1. Due to the absence
of ε and ε3 terms in (5.3.9), we set A1 = A3 = 0. The remaining terms at O(ε2+λ) match if the
definition of η is inserted from (5.3.4).

5.4 Results for the mode shapes

All results presented here use hyperbolic velocity and temperature profiles,

U(r) = M tanh

(
1− r
δ

)
+M

(
1− tanh

(
1

δ

))(
1 + tanh(1/δ)

δ
r + (1 + r)

)
(1− r) (5.4.1a)

T (r) = T0 + Tw

(
cosh

(
1− r
δ

))−1

, (5.4.1b)

where δ is a measure of boundary layer thickness, with U(1 − 3δ) ≈ 0.995M . For the results
presented here, Tw = 0.104.

First we show some examples of the acoustic mode shapes that result from the three different
duct regions considered in the asymptotic analysis. The patchwork of regions of validity for the
radial velocity can be seen in fig. 5.1: compared to the numerical solution of the full LNSE, the
uniform flow outer solution ṽu is valid for most of the duct, where the shear is negligible (fig. 5.1a);
the main boundary layer solution ṽm is accurate where the mean flow shear is important, but
loses accuracy very close to the wall (fig. 5.1b); the viscous sublayer solution ṽs is accurate in the
acoustic boundary layer very close to the wall (fig. 5.1c). Figure 5.2 shows the mode shape of the
acoustic pressure for the same parameters—we see that the sublayer solution is indeed the inner
expansion of the main boundary layer solution (see fig. 5.2c). For the axial velocity we see a similar
thing (fig. 5.3), except here the viscous sublayer solution is significantly different from the main
boundary layer solution due to the sublayer solution satisfying no slip at the wall.

5.4.1 Composite solutions

Here we derive solutions for the acoustic mode shapes that are uniformly valid in r. We have
defined three regions of the duct: the outer region, where the base flow is uniform and inviscid; the
main boundary layer, where the base flow is sheared and viscosity is a first order perturbation; and
the sublayer, where the base flow varies slowly, and viscous and inertial effects balance to enforce
no slip and isothermal boundary conditions at the wall. In the outer region, the Bessel function
solutions defined in (1.2.5) hold; in the main boundary layer the expansions (5.2.12) hold; while in
the sublayer the expansions (5.3.5) hold.

For the pressure, since the sublayer solution (5.3.5a) is inviscid to O(ε3), it transpires that
the sublayer solution is exactly the inner expansion of the main boundary layer solution (5.2.12b)
for small y; this is why fig. 5.2c shows the main boundary layer solution continuing to perform
well within the sublayer region. Thus, we need only form a composite of the outer solution
p̃u = EJm(αr) and the main boundary layer solution. This is equivalent to that found by Brambley
for the modified Myers boundary condition (Brambley, 2011b). Using the definition of p∞ from
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Figure 5.1. Acoustic mode shape for the radial velocity ṽ found by numerically solving the LNSE, with the three
asymptotic solutions overlaid, showing their patchwork of regions of validity. (a) shows the full duct r ∈ [0, 1], (b)
shows the main boundary layer, (c) shows the viscous sublayer. Parameters are ω = 5, k = −14 + 5i, m = 0,
M = 0.5, δ = 6× 10−3, Re = 5× 106.
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Figure 5.2. Acoustic mode shape for the acoustic pressure p̃ found by numerically solving the LNSE, with the three
asymptotic solutions overlaid, showing their patchwork of regions of validity. (a) shows the full duct r ∈ [0, 1], (b)
shows the main boundary layer, (c) shows the viscous sublayer. Parameters as in fig. 5.1.

95



5.4. RESULTS FOR THE MODE SHAPES

0.0 0.2 0.4 0.6 0.8 1.0
r

−1.0

−0.5

0.0

0.5

R
e(
ũ
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Figure 5.3. Acoustic mode shape for the axial velocity ũ found by numerically solving the LNSE, with the three
asymptotic solutions overlaid, showing their patchwork of regions of validity. (a) shows the full duct r ∈ [0, 1], (b)
shows the main boundary layer, (c) shows the viscous sublayer. Parameters are ω = 15, k = 5+2i, m = 6, M = 0.5,
δ = 7× 10−3, Re = 3× 106.

(5.2.14), the uniformly valid composite solution p̃c, valid across all regions, is given by

p̃c
p∞

=
Jm(αr)

Jm(α)
− αJ ′m(α)

Jm(α)

∫ r

0

1− ρ(ω − Uk)2

(ω −Mk)2
dr. (5.4.2)

Setting the amplitude of the wave, through the value of p∞, is the only degree of freedom remaining
in (5.4.2).

Turning to the radial velocity, we may write the sublayer solution (5.3.5b) as

ṽs = V1(z; ε) + V2(z; ε)e−ηz + V3(z; ε)e−σηz. (5.4.3)

Since the V2 and V3 terms decay exponentially as z →∞, and since theV1 term is exactly the inner
expansion of the main boundary layer solution ṽm (5.2.12a) for small y, a composite of the main
boundary layer and sublayer solutions is given by ṽcBL,

ṽcBL = ṽm + V2(z; ε)e−ηz + V3(z; ε)e−σηz. (5.4.4)

We form a full composite expansion by additive composing ṽcBL with the outer inviscid solution
ṽu = iαp∞J

′
m(αr)/Jm(α)(ω−Mk), giving the full composite solution ṽc = ṽu + ṽcBL− ṽ(O)

m , where
ṽ

(O)
m is the outer expansion as y →∞ of ṽm given in (5.2.13b). In full, this composite solution is

ṽc
p∞

=
iαJ ′m(αr)

(ω −Mk)Jm(α)
+
ik(M − U)

(ω −Mk)2

(
αJ ′m(α)

Jm(α)
+ (1− r)

[
αJ ′m(α)

Jm(α)
+ (α2 −m2)

])
+

(ω − Uk)

(ω −Mk)2

(
(γ − 1)2

ωRe

αJ ′m(α)

Jm(α)

∫ r

0

χµ(r)

δ3
dr − i(k2 +m2)

∫ r

0

χ1(r)dr

)
+
V̄2(z; ε)

Jm(α)
e−(1−r)/δac +

V̄3(z; ε)

Jm(α)
e−σ(1−r)/δac , (5.4.5)

where
δac =

(γ − 1)T (1)√
iωRe

; Re (δac) > 0, (5.4.6)
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Figure 5.4. Comparison of the numerical LNSE mode shapes and the composite asymptotic mode shapes (5.4.2)
and (5.4.5) for (a) the pressure p̃ and (b) the radial velocity ṽ. Parameters are ω = 15, k = 5 + 2i, m = 6, M = 0.5,
δ = 7× 10−3, Re = 3× 106.

and

V̄2(z; ε) =εa0 + ε2(a4 + a5z + a6z
2) + ε3(a11 + a12z + a13z

2 + a14z
3 + a15z

4), (5.4.7a)

V̄3(z; ε) =ε2a7 + ε3(a16 + a17z + a18z
2). (5.4.7b)

Note, in (5.4.5) the integrals are with respect to r rather than the boundary layer variable y. For
χ1 the transformation is trivial; for χµ the derivatives of the base flow variables produce powers of
δ such that

χµ(r) = −ωδ3χ̄µ(y), (5.4.8)

with
χ̄µ(y) =

1

ω − Uk

(
1

2 Pr
(T 2)yyy + (TU2

y )y +
kT

ω − Uk (UyT )yy

)
, (5.4.9)

as shown later in (5.5.8b) (we have also chosen to incorporate an ω in the definition of χµ(r)).
A comparison of (5.4.2) and (5.4.5) with the numerical LNSE for the same parameters as figs. 5.1–

5.3 is given in fig. 5.4. Excellent agreement can be seen between the LNSE and composite solutions,
suggesting that the composite solutions may be relied upon when mode shapes are required, rather
than having the complication of three separate solutions, each with their own region of validity.

5.5 The effective impedance

The matched asymptotic expansions solutions for the acoustics derived in the previous sections,
sections 5.2 and 5.3, and the uniform flow solution from section 1.2.1 are used here to construct
an effective impedance boundary condition. The effective impedance is defined as the impedance
seen by the inviscid, uniform flow acoustics (p̃u and ṽu here) if they were continued out of their
region of validity to the wall at r = 1, and is given by (5.1.3). This definition allows us to apply
the resulting boundary condition to an inviscid, slipping, uniform flow, meaning the thin boundary
layer does not need to be resolved numerically. The effective impedance differs from the boundary
impedance Z due to viscothermal effects and refraction through the sheared boundary layer. We
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want to find Zeff as a function of the boundary impedance Z.

5.5.1 Forming the effective impedance

We can use the information gleaned from matching the main boundary layer solution to the core
flow in section 5.2.1, and from matching the main boundary layer solution to the viscous sublayer
solution in section 5.3.1 to write the sublayer constants Aj , Pj in terms of the uniform flow constants
p∞ and v∞:

P0 = p∞, P2 = iω(ω −Mk)I0v∞, A0 =
ω

ω −Mk
v∞,

A2 = −iω2 k2 +m2

(ω −Mk)2
I1p∞ − iξω(γ − 1)2Īµ

ω

ω −Mk
v∞,

(5.5.1)

where I0, I1 and Īµ are defined in (5.2.17).

At the boundary, the wall-normal velocity is

ṽs(0) = A0 + εa0 + ε2(A2 + a4 + a7) + ε3(a11 + a16),

We may split a11, a16 and A2 up into terms proportional to v∞ and p∞. Then we may write

ṽs(0) = p∞
(
ε2R̄1 + ε3S̄1

)
+

ω

ω −Mk
v∞
(
1 + εR̄2 + ε2S̄2 + ε3S̄3

)
, (5.5.2)

where

R̄1 = − iω2 k2 +m2

(ω −Mk)2
I1, (5.5.3a)

R̄2 = − kU ′(0)

ωη
, (5.5.3b)

S̄1 = iω
k2 +m2

(ω −Mk)2

kU ′(0)

η
I1 − i(γ − 1)(k2 +m2)

T (0)

η
− i(γ − 1)ω2

ση
, (5.5.3c)

S̄2 = − iξω(γ − 1)2Īµ +
σ

1 + σ

2U ′(0)2

η2T (0)
− 5k2U ′(0)2

4ω2η2
, (5.5.3d)

S̄3 = iξ(γ − 1)2 kU
′(0)

η
Īµ −

13k2U ′(0)U ′′(0)

8ω2η3
− kU ′′′(0)

ωη3
− T ′′′(0)

σ3η3T (0)
− 151k3U ′(0)3

32ω3η3

+
(7σ + 3)

(1 + σ)2

kU ′(0)3

2ωη3T (0)
+

2(σ3 + σ2 − 2σ − 1)

σ(1 + σ)2

U ′(0)T ′′(0)

ωη3T (0)

− (2σ2 + 4σ + 1)

(1 + σ)2

kU ′(0)T ′′(0)

ωη3T (0)
. (5.5.3e)

Similarly, we may write p̃s at z = 0:

p̃s(0) = p∞ + ε2iω(ω −Mk)I0v∞. (5.5.4)

Then, we use the definition of the boundary impedance, Z = p̃s(0)/ṽs(0), with p̃s(0) and ṽs(0)

defined in (5.5.2) and (5.5.4), and divide top and bottom of the ratio by v∞ to introduce the
effective impedance Zeff = p∞/v∞:

Z =
Zeff + ε2iω(ω −Mk)I0

ω
ω−Mk

(
1 + εR̄2 + ε2S̄2 + ε3S̄3

)
+ Zeff

(
ε2R̄1 + ε3S̄1

) . (5.5.5)

Rearranging, and writing in terms of r and primitive variables, then gives us our effective impedance
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in terms of the boundary impedance Z,

Zeff =
ω

ω −Mk

Z + (γ−1)T (1)√
iωRe

kUr(1)
ω Z − i

ω (ω −Mk)2δI0 + (S2 + S3)Z

1 + i(k2 +m2) ωZ
(ω−Mk)2 δI1 + S1Z

+O(δ2), (5.5.6)

where

S1 =
(γ − 1)T (1)√

iωRe

(
k2 +m2

(ω −Mk)2
ikUr(1)δI1 +

iω

σ
(γ − 1) +

i

ωρ(1)
(k2 +m2)

)
, (5.5.7a)

S2 =
( (γ − 1)T (1)√

iωRe

)2
(

1

T (1)2

Iµ
δ2

+
σ

1 + σ

2Ur(1)2

T (1)
− 5k2

4ω2
Ur(1)2

)
, (5.5.7b)

S3 =

(
(γ − 1)T (1)√

iωRe

)3(
kUr(1)

ωT (1)

Iµ
δ2

+
13k2

8ω2
Ur(1)Urr(1) +

k

ω
Urrr(1) +

Trrr(1)

σ3T (1)

+
151k3

32ω3
Ur(1)3 − (7σ + 3)

(1 + σ)2

kUr(1)3

2ωT (1)
− (σ3 + σ2 − 2σ − 1)

σ(1 + σ)2

2Ur(1)Trr(1)

ωT (1)
(5.5.7c)

+
(2σ2 + 4σ + 1)

(1 + σ)2

kUr(1)Trr(1)

ωT (1)

)
,

and

δI0 =

∫ 1

0

1− ρ(r)(ω − U(r)k)2

(ω −Mk)2
dr, δI1 =

∫ 1

0

1− (ω −Mk)2

ρ(r)(ω − U(r)k)2
dr, (5.5.8a)

Iµ
δ2

=

∫ 1

0

χµ
δ3

dr,
χµ
δ3

=
−ω

ω − Uk

(
1

2 Pr
(T 2)rrr + (TU2

r )r +
kT

ω − Uk (UrT )rr

)
, (5.5.8b)

where as mentioned in section 5.4.1 we have incorporated a power of ω in the definition of χµ
compared to that of χ̄µ. Equation (5.5.6) is one of the main results of this chapter, and provides
an effective impedance Zeff to be applied to inviscid plug flow acoustics that accounts for the effect
of the viscous boundary layer over a lining. The plot of the relative error between the asymptotic
expression for Zeff in (5.5.6) and the exact expression (5.1.3), fig. 5.1, shows that (5.5.6) is correct
to the stated order of accuracy.
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Figure 5.1. Relative error of Zeff , defined as |Zeff(p̃n(1)/ṽn(1))/(p̃u(1)/ṽu(1)) − 1|, calculated using (5.5.6) as
compared to the analytical value found using (5.1.3). The ratio Z = p̃n(1)/ṽn(1) is the boundary impedance as
calculated from numerical solutions of the linearised Navier–Stokes equations (1.1.13), for k = ±1 ± i, ±1, ±i and
ω = 5, m = 0, M = 0.5, Re = 1/δ3. The hyperbolic base flow (5.4.1) is used.

5.6 Results

To find duct modes of our new effective impedance boundary condition (5.5.6), we must first choose
a model for the acoustic liner impedance. Here, we use a mass–spring–damper boundary with a
mass d, spring constant b and damping coefficient R, which gives the impedance

Z(ω) = iωd− ib/ω +R. (5.6.1)

The dispersion relation to be satisfied is then

Zeff(Z) =
p̃u(1)

ṽu(1)
= (ω −Mk)

Jm(α)

iαJ ′m(α)
, (5.6.2)

to find values of k (or ω) when ω (or k) is specified (given m). This relation comes from our
definition of the effective impedance as that impedance seen by the uniform flow inviscid solution
at the wall. The function Zeff(Z) is the asymptotic effective impedance found using (5.5.6) with the
boundary impedance Z from (5.6.1) as input. Examples of existing effective impedance boundary
conditions are the Myers boundary condition (Ingard, 1959; Myers, 1980), which may be written

Zeff =
ω

ω −Mk
Z, (5.6.3)

and its first order correction (Brambley, 2011b) (called the modified Myers condition here),

Zeff =
ω

ω −Mk

Z − i
ω (ω −Mk)2δI0

1 + i(k2 +m2) ωZ
(ω−Mk)2 δI1

, (5.6.4)

where δI0 and δI1 are as defined in (5.5.8). We will compare the new boundary condition (5.5.6)
against these existing conditions, as well as against numerical solutions of the LNSE. As a way
to test the importance of including the viscous sublayer in our asymptotic model, we will also
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Figure 5.1. Duct modes in the complex k-plane of the Myers boundary condition (5.6.3), the modified Myers
boundary condition (5.6.4), the new two-deck asymptotic condition (5.5.6), the one-deck (no sublayer) simplification
of the new condition (5.6.5) and numerical solution of the LNSE (1.1.13). (a) shows upstream cut-on modes for
ω = 28, m = 0, M = 0.5, δ = 2× 10−3, and Re = 5× 106; (b) shows cut-off modes and one surface wave mode for
each model, with ω = 5, m = 0, M = 0.5, δ = 2× 10−3, and Re = 2.5× 105. Mode tracks follow the surface wave
modes as Im(ω) is reduced from zero to Im(ω) ≈ −8 with Re(ω) = 5 held fixed. In both (a) and (b), the boundary
impedance is a mass–spring–damper (5.6.1) with mass d = 0.15, spring constant b = 1.15 and damping R = 3. The
base flow (5.4.1) is used.

compute results using the boundary condition

Zeff =
ω

ω −Mk

Z − i
ω (ω −Mk)2δI0 + (γ−1)2

iωRe
Iµ
δ2

1 + i(k2 +m2) ωZ
(ω−Mk)2 δI1

, (5.6.5)

which is the effective impedance that would be obtained if the main boundary layer solutions were
used to compute the boundary impedance, p̃m(0)/ṽm(0) = Z (arguments in terms of y), rather
than the viscous sublayer solutions. (That is, the Zeff of a one-deck weakly viscous boundary layer
above a lining.)

5.6.1 Wavenumber spectra

In fig. 5.1 a frequency is specified and (5.6.2) is solved to find allowed values of the axial wavenum-
ber k. Figure 5.1a shows the upstream propagating cut-on modes for the new asymptotic model
with, (5.5.6), and without, (5.6.5), the viscous sublayer, the Myers condition (5.6.3), the modi-
fied Myers boundary condition (5.6.4), and the viscous numerics (1.1.13). The damping of these
propagating modes is predicted poorly by the Myers condition, which can lead to large errors in
sound attenuation computations (up to 14dB (Gabard, 2013)) due to the effect of the nonzero
boundary layer thickness. The new boundary condition (5.5.6) is shown to predict the damping
of these modes well, and certainly better than the inviscid modified Myers condition, indicating
that viscosity can play an important role in attenuation predictions. Figure 5.1a also shows the
importance of calculating the contribution to the sound attenuation of the viscous sublayer: the
one-deck weakly viscous model (5.6.5) predicts cut-on modes that are only marginally different to
those of the inviscid modified Myers condition.

Figure 5.1b shows a surface wave mode for each model (those modes which exist only close to the
lining). The two existing inviscid boundary conditions have surface wave modes in the upper half
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k-plane, while the new boundary condition predicts a surface wave mode in the lower half k-plane,
close to the real LNSE mode. The change in sign of Im(k) between the inviscid and viscous surface
modes has important ramifications for the flow stability. By plotting Briggs–Bers trajectories of
the surface wave modes (shown in the same figure) where Re(ω) = 5 is held fixed and Im(ω) is
reduced from zero, the stability may be investigated. Figure 5.1b shows the modified Myers surface
mode crossing the real axis, indicating that the mode is convectively unstable. The surface modes
of the new asymptotic boundary condition and the full LNSE are seen to remain in the lower half
k-plane as Im(ω) is varied; thus the inviscid convective instability is stabilised by viscosity in the
boundary layer. The surface mode of the one-deck model (5.6.5) is closer to the real axis than
the modified Myers surface mode, but remains in the upper half plane; the plotted Briggs–Bers
trajectory of the one-deck boundary condition mode, which crosses the real axis, therefore indicates
that the convective instability is also present for this model. Thus, resolving the viscous sublayer
has important ramifications for the stability of the boundary layer. The Briggs–Bers stability
criteria cannot be applied for the Myers condition (Brambley, 2009).

5.6.2 Temporal stability

In contrast with the previous section, here we pick a real k and solve (5.6.2) for ω(k). The
temporal growth rate of such a mode is given by − Im(ω). In fig. 5.2 the temporal stability of
complex-frequency duct modes is investigated as k, real, is varied for the LNSE and the asymptotic
boundary condition (5.5.6). Several stable modes can be seen in the upper right of the plot—these
are representative of other stable modes outside of the plotted domain. The important modes for
stability are those below the horizontal axis, as these are unstable. The unstable LNSE mode has a
growth rate that increases to a maximum value (a characteristic growth rate of instability) before
decreasing and finally restabilising for large, finite k. The unstable root for the asymptotic solution
follows a qualitatively similar path until the point labelled ‘B’ on fig. 5.2. To the left of ‘B’, the
asymptotic mode has a bounded growth rate. This suggests that the boundary condition (5.5.6)
retains the regularisation – obtained in previous inviscid modified Myers boundary conditions by
including a finite-thickness layer of shear – of the Myers condition vortex sheet instability (inherent
in approximations ignoring O(δ) terms). To the right of ‘B’ the asymptotic solution supports no
unstable modes.

Figure 5.3 displays a diagnosis of the point ‘B’. As the asymptotic solution approaches the
point ‘B’ from the left, the value of |ω − U(r)k| tends to zero, see fig. 5.3a. This is precisely the
inviscid critical layer rc, for which ω/k = U(rc) and the perturbations are perfectly convected
with the flow (Brambley et al., 2012b). Close to the critical layer, the integrals Iµ and I1 blow up
(see fig. 5.3b), causing unphysical discontinuities in the acoustic solutions. Figure 5.4a shows the
results of increasing the resolution of the numerical integration used to find these solutions. With
higher numerical resolution of the integrals, the unstable asymptotic mode can be tracked closer
to the real axis and stability, and closer to the critical layer. This adds weight to our conclusion
that the unstable mode disappears into the critical layer at the point B.
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Figure 5.2. Modes in the ω plane as k, real, is increased, for LNSE numerics (solid) and the asymptotic solution
(5.5.6) (dashed). The point labelled ‘B’ is where the regular unstable solution branch breaks down. Parameters are
m = 0, M = 0.5, Re = 7 × 106, δ = 5 × 10−3, with a mass–spring–damper impedance (5.6.1) with mass d = 0.15,
spring constant b = 1.15 and damping R = 3. The base flow (5.4.1) is used.

0.9970 0.9975 0.9980 0.9985 0.9990 0.9995 1.0000
r

0

1

2

3

4

5

6

7

|ω
−
U
(r
)k
|

(a)

0.9970 0.9975 0.9980 0.9985 0.9990 0.9995 1.0000
r

0

20

40

60

80

100

120

|I µ
|

(b)

Figure 5.3. Evidence that the unstable solution in fig. 5.2 hits the critical layer at ‘B’. (a) |ω−U(r)k|, and (b) |Iµ|,
for (ω, k) = (7.51− 0.11i, 60.21), and for other parameters as in fig. 5.2
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Figure 5.4. The behaviour of the unstable root in the ω-plane as k, real, is increased. (a) Results for the new
asymptotic boundary condition (5.5.6) for three different discretisations, N = 8000, N = 40000, N = 160000. As
the number of computational grid points is increased, the model is able to get closer to the inviscid critical layer
ω − U(rc)k = 0, and the unstable mode is pushed closer to restabilisation, Im(ω) = 0, before the solution breaks
down. (b) Legend labels denote the viscous LNSE numerics (VN), the new asymptotic boundary condition (5.5.6)
at O(δ3

ac) (A3), at O(δ2
ac) (A2), and at O(δac) (A1), and the modified Myers condition (5.6.4) (MM). For both (a)

and (b) all parameters as in fig. 5.2.

5.7 Suggestion of a time-domain formulation

In order to write down a simple time-domain formulation of the new asymptotic frequency-domain
boundary condition (5.5.6), we choose to neglect high-order viscous terms that do not affect the
qualitative behaviour of the boundary condition too acutely. Using the definition of the acoustic
boundary layer thickness δac from (5.4.6), we see that the Sj terms of (5.5.6), defined in (5.5.7),
satisfy

Sj ∼ δjac. (5.7.1)

Thus, retaining all three Sj terms means working to O(δ3
ac); neglecting only S3 means working to

O(δ2
ac); and neglecting both S2 and S3 means working to O(δac). In all cases we retain the O(δ)

inviscid terms that account for the finite region of shear. Figure 5.4b shows the temporal stability
plots for the three choices outlined above. Qualitatively, the behaviour of the O(δac) form is the
same as that of the O(δ3

ac) form. We choose, then, to forego the O(δ3
ac) in (5.5.6) in order to find

the simplest time-domain formulation possible. (It transpires that the O(δ2
ac) terms to not add

much complexity to the final formulation, so they are kept here for completeness.)

We choose a constant-then-linear mean flow profile with boundary layer thickness δ,

U(r) =

 U0
(1− r)
δ

, 1− δ ≤ r ≤ 1,

U0, 0 ≤ r ≤ 1− δ,
(5.7.2)

and a constant mean temperature and density, T (r) = T0 and ρ(r) = ρ0, respectively. This allows
the boundary layer integrals Ij to be performed analytically:

δI0(ω − U0k)2 =
2

3
δU2

0 k
2 − δU0kω, δI1 =

δU0k

ω
,

Iµ
δ2

= 0. (5.7.3)

Rearranging the effective impedance boundary condition (5.5.6) using (5.7.2) and (5.7.3), and
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discarding the S3 term as per the discussion in the previous paragraph, leads to[
ωZ − U0k

δ
√

Re

Z√
iω

+ iδρ0(U0kω −
2

3
U2

0 k
2) + ωZS2

]
ṽu =[

(ω − U0k) + iδU0kZ
(k2 +m2)

ρ0(ω − U0k)
+ (ω − U0k)ZS1

]
p̃u,

(5.7.4)

where the Sj terms simplify to

S1 =
1√
Re

[
(k2 +m2)

ρ0(ω − U0k)2
U2

0 k
2 1

iω
√
iω

+
1

σT0

√
iω − (k2 +m2)

ρ0

1

iω
√
iω

]
, (5.7.5a)

S2 =
1

δ2Re

[
σ

1 + σ

2U2
0

T0

1

iω
− 5

4

U2
0 k

2

ω2

1

iω

]
. (5.7.5b)

To proceed, we follow Brambley & Gabard (2013) and Brambley & Gabard (2016) by introducing
a number of new variables, the interpretation of which we leave until later. First, we appeal to
the fact that p̃u satisfies the inviscid linearised Euler equations in a uniform flow to make the
substitution kp̃u/ρ0(ω − U0k) = ũu. Then, we define ṽw = p̃u/Z and ν̃ = ṽu/Z, which arise when
we divide (5.7.4) through by Z.

If in the frequency domain there exists a vector s̃ = ũu/iω, where ũu = (ũu, ṽu, w̃u) is a vector
of (the Fourier transform of) the acoustic velocity perturbations, then in the time domain

∂s′

∂t
= u′, (5.7.6)

where a prime denotes an acoustic perturbation in the time domain. By (5.7.6) we may identify
s′ = (s′1, s

′
2, s
′
3) as the acoustic displacement vector in the coordinate directions (x, r, θ); it follows

that s̃ is the frequency-domain Fourier transform of s′. To deal with the fractional powers of ω,
we introduce the fractional time-derivative operator ∂

1
2
t (see, e.g., Beyer & Kempfle, 1995)), which

has the Fourier transform property

F {s′} = s̃ =⇒ F
{
∂

1
2
t s
′
}

=
√
iωs̃. (5.7.7)

Using (5.7.6) and (5.7.7) and the definitions in the previous paragraph, (5.7.4) may be written in
the time-domain as

∂v′

∂t
=

(
∂

∂t
+ U0 ·∇

)
vw + δU0 ·

(
∇2
⊥u
′)+ δρ0U0 ·∇

(
∂

∂t
+

2

3
U0 ·∇

)
ν

− 1

δ
√

Re
U0 ·∇

(
∂

1
2
t s
′
2

)
+

1√
Re

{
(U0 ·∇)U0 ·∇2

⊥

(
∂

1
2
t e
′
)

+
1

σT0

(
∂

∂t
+ U0 ·∇

)(
∂

1
2
t p
′
)

+
1

ρ0

(
∂

∂t
+ U0 ·∇

)
∇2
⊥

(
∂

1
2
t φ
′
)}

− 1

δ2Re

{
σ

1 + σ

2

T0
|U0|2v′ +

5

4
(U0 ·∇)

2
e′2

}
, (5.7.8)

where ∇⊥ gives the gradient normal to the wall, and

∂f ′

∂t
= p′,

∂φ′

∂t
= f ′,

∂e′

∂t
= s′, (5.7.9)

and s′ is defined in (5.7.6). The subscript on the s′j and e′j scalars refer to the jth component of
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the s′ and e′ vectors, respectively. Thus,

∂e′2
∂t

= s′2, and
∂s′2
∂t

= v′, (5.7.10)

as v′ is the second component of the time-domain acoustic velocity vector u′. Note that these new
variables s, e, ν, vw and φ are only ever needed on the lining at r = 1.

The physical interpretation of vw and ν (of which ṽw and ν̃ are the Fourier transforms) is
contained within the time domain boundary model (Brambley & Gabard, 2016). If vw is the
wall-normal velocity response of the wall due to an acoustic pressure p′ through the impedance
model B(p′), then ν is the response through the same impedance model forced by the normal fluid
velocity, B(v′). For the mass–spring–damper model (5.6.1) that we have employed in previous
sections of this chapter, vw and ν satisfy

∂vw
∂t

=
1

d
[p′ − bψ −Rvw] ,

∂ψ

∂t
= vw, (5.7.11a)

∂ν

∂t
=

1

d
[v′ − bζ −Rν] ,

∂ζ

∂t
= ν. (5.7.11b)

The study of lossy waves in the time domain often leads to wave equations with fractional
time derivatives (Carcione et al., 2002; Holm & Näsholm, 2011). Therefore the appearance of
the operator ∂

1
2
t in (5.7.8) is expected, due to the inclusion of viscous and thermal dissipation.

An implementation of the proposed time-domain formulation is left for future work, although it
is hypothesised that a combination of the method used in Brambley & Gabard (2016) and the
Grünwal–Letnikov finite difference scheme for the non-integer order derivatives (see, e.g., Scherer
et al., 2011) might be profitable.

5.8 Summary

The sheared and viscous boundary layer in a cylindrical acoustically lined duct was modelled as
a two-deck system: a thick main layer with a weak viscosity; and a thin sublayer in which the
mean flow is expanded about its wall value and viscosity balances inertia to enforce no slip. The
scaled governing equations in each layer were analytically tractable, and allowed the asymptotic
matching of solutions through to an inviscid uniform flow outside the boundary layer. In this way,
a closed-form expression for the effective impedance was found, incorporating shear and viscosity
and applicable in the frequency domain to a plug flow.

The temporal stability of the new boundary condition was shown to be well behaved away from
the inviscid critical layer (which affects the weakly viscous main boundary layer), and with this as
justification a time domain formulation of the two-deck effective impedance boundary condition
was proposed.

In the final chapter, the attenuation properties of the asymptotic impedance boundary condi-
tions derived in the current chapter and in chapters 2 and 4 are investigated via the test case of
the reflection of an incident plane wave.
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Appendix

5.A Determining the sublayer scaling

We imagine a thin sublayer, of thickness δac, very close to the wall. We rescale into this sublayer
from r-space via r = 1−δacz, where z is the sublayer variable. We posit that y (the main boundary
layer variable) and z are related by y = εz, with ε� 1 to be determined.

Inside the sublayer, viscous and inertial terms must balance in order for viscous boundary
conditions to be satisfied at the wall. The relevant terms in the linearised Navier–Stokes axial
momentum equation are

iρ(ω − Uk)ũ and
γ − 1

Re
(T ũr)r. (5.A.1)

We want these two terms to balance the leading order of the sublayer governing axial momentum
equation. Close to the wall, the base flow variables may be expanded for small y as

U(y) ∼ yU ′(0) +O(y2), T (y) ∼ T (0) +O(y2), (5.A.2)

where we have used the no slip and isothermal boundary conditions U(0) = 0, T ′(0) = 0. Using
(5.A.2) in (5.A.1) and asserting that the leading order must balance we find

iωũ ∼ (γ − 1)2T (0)2

δ2
acRe

ũzz, (5.A.3)

where we have written the r derivatives in terms of the sublayer variable z. The combination (γ−
1)2T (0)2 is O(1): (γ−1) = 1/T0 is the reciprical of the dimensionless centreline base temperature;
the ratio T (0)/T0 ' 1.15 for a compressible Blasius boundary layer. Thus we are left with

ωũ ∼ 1

δ2
acRe

ũzz, (5.A.4)

from which we may identify δ2
ac ∼ 1/ωRe. This is the classical acoustic boundary layer scaling.

We know that εδ ∼ δac from the relationships between r, y and z. We also know δ ∼ 1/Re1/3 from
our choice of main boundary layer scaling. Thus, we may define

1

Re
= ξω3ε6 (5.A.5)

or equivalently ε =
√
δ/ω. The O(1) quantity ξ is the same as in (5.2.1). Relative to the main

boundary layer the sublayer scales as ε ∼ Re−1/6, while relative to the duct it scales as εδ ∼ Re−1/2

which is the Blasius boundary layer scaling.

5.B Solving inside the sublayer

Here we show the details of the solution of the sublayer governing equations (5.3.3). Solving at
leading order:

ṽ0z = 0 =⇒ ṽ0 = A0, (5.B.1a)

û0zz − η2û0 =
iU ′

ω
η2ṽ0 =⇒ û0 = B0e−ηz + C0eηz − iU ′

ω
A0, (5.B.1b)

1

Pr
T̂0zz − η2T̂0 = 0 =⇒ T̂0 = D0e−σηz + E0eσηz, (5.B.1c)
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p̃0z = 0 =⇒ p̃0 = P0, (5.B.1d)

w̃0zz − η2w̃0 = −m
ω

(γ − 1)Tη2p̃0 =⇒ w̃0 = G0e−ηz +H0eηz +
m

ω
(γ − 1)TP0, (5.B.1e)

where Aj , Pj , Bj , Cj , Dj , Ej , Gj , and Hj are constants of integration. In the sublayer we want to
satisfy no slip at the boundary z = 0 and match to the main boundary layer in the limit z →∞.
Solutions that grow exponentially in z are therefore not allowed; C0 = E0 = H0 = 0, and similarly
at all orders. No slip and isothermal wall conditions give

B0 =
iU ′

ω
A0, D0 = 0, G0 = −m

ω
(γ − 1)TP0. (5.B.2)

At first order we find
ṽ1 = A1 + a0e−ηz + a1z, (5.B.3)

where
a0 =

ik

η
B0 = −kU

′

ωη
A0, a1 = ikB0 = −kU

′

ω
A0. (5.B.4)

Then,

û1 = b0 + b1z + (B1 + b2z + b3z
2)e−ηz, (5.B.5)

T̂1 = D1e−σηz + d0z + d1e−ηz, (5.B.6)

where

b0 = − iU
′

ω
A1, b1 = − iU

′′

ω
A0, b2 =

3

4

ikU ′2

ω2
A0, b3 =

ikU ′2

4ω2
ηA0,

d0 = − iT
′′

ω
A0, d1 =

Pr

1− Pr

2iU ′2

ωη
A0, D1 = −d1.

No slip forces B1 = −b0. The first-order pressure contribution is p̃1 = P1. Higher orders of the
azimuthal velocity w̃ are not required to calculate p̃ and ṽ to the desired order.

At second order,

ṽ2 = A2 + a2z + a3z
2 + (a4 + a5z + a6z

2)e−ηz + a7e−σηz (5.B.7)

where

a2 = −ikb0, a3 = −kU
′′

2ω
A0, a4 =

(
− 5

4

k2U ′2

ω2η2
− Pr

1− Pr

2U ′2

η2T

)
A0 +

ik

η
B1),

a5 = −5

4

k2U ′2

ω2η
A0, a6 = −k

2U ′2

4ω2
A0, a7 =

Pr

1− Pr

2U ′2

ση2T
A0.

Then,

û2 = b4 + b5z + b6z
2 + (B2 + b7z + b8z

2 + b9z
3 + b10z

4)e−ηz + b11e−σηz, (5.B.8)

T̂2 = d2 + d3z + d4z
2 + (d5 + d6z + d7z

2)e−ηz + (D2 + d8z + d9z
2)e−σηz, (5.B.9)

where

b4 =
(
− iU ′T ′′

ωη2T
− iU ′′′

ωη2

)
A0 + k(γ − 1)TP0 −

iU ′

ω
A2, b5 = − iU

′′

ω
A1,

b6 = − iU
′′′

2ω
A0, b7 =

(41

32

ik2U ′3

ω3η
+

3

8

ikU ′U ′′

ω2η

)
A0 +

3kU ′

4ω
B1,
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b8 =
(21

32

ik2U ′3

ω3
+

3

8

ikU ′U ′′

ω2

)
A0 +

kU ′η

4ω
B1,

b9 =
(11

48

ik2U ′3

ω3
η +

ikU ′U ′′

12ω2
η +

iU ′T ′′

6ωT
η
)
A0, b10 =

ik2U ′3

32ω3
η2A0,

b11 = − Pr

1− Pr

2iU ′3

ωση2T
A0,

with no slip giving B2 = −(b4 + b11); and

d2 =
(
− 2iU ′U ′′

ωη2
− iT ′′′

Prωη2

)
A0 + (γ − 1)TωP0, d3 = − iT

′′

ω
A1, d4 = − iT

′′′

2ω
A0,

d5 =
Pr

(1− Pr)2

(5 + 3 Pr

2

ikU ′3

ω2η2
+

4iU ′U ′′

ωη2
− 2ikU ′T ′′

ω2η2

)
A0 +

Pr

1− Pr

2U ′

η
B1,

d6 =
Pr

1− Pr

(5

2

ikU ′3

ω2η
− ikU ′T ′′

ω2η
+

2iU ′U ′′

ωη

)
A0, d7 =

Pr

1− Pr

ikU ′3

2ω2
A0,

d8 = − Pr

1− Pr

ikU ′3

2ω2η
A0, d9 = − Prσ

1− Pr

ikU ′3

2ω2
A0,

with D2 = −(d2 + d5) from the boundary condition at z = 0. For the pressure we find p̃2 = P2.

At third order we find

ṽ3 =A3 + a8z + a9z
2 + a10z

3 + (a11 + a12z + a13z
2 + a14z

3 + a15z
4)e−ηz+

(a16 + a17z + a18z
2)e−σηz, (5.B.10)

p̃3 =P3 +
iω2

(γ − 1)T
A0z. (5.B.11)

The constants are defined by

a8 =
(
iω2 − i(k2 +m2)(γ − 1)T

)
P0 −

(
T ′′′

η2 PrT

+
2U ′U ′′

η2T
+
kT ′′U ′

η2ωT
+
kU ′′′

η2ω
− ω

)
A0 −

kU ′

ω
A2,

a9 = −kU
′′

2ω
A1, a10 = −kU

′′′

6ω
A0,

a11 =−A0U
′

(
151k3U ′2

32η3ω3
+

13k2U ′′

8η3ω2
+
kPr

(
(Pr−3)T ′′ + 4U ′2

)
η3(Pr−1)2Tω

−2(Pr−3) PrU ′′

η3(Pr−1)2T

)
+ 8iη(Pr−1)ω2

(
B1U

′
[
5k2(Pr−1)T

− Pr

4η3(Pr−1)2Tω

]
+
B2k − (γ − 1)m2P0T

8η2(Pr−1)ω2

)
,

a12 = U ′
(k (A0 Pr

(
6U ′2 − 4T ′′

)
+ 5iB1k

32ηω3

)
4η2(Pr−1)Tω

− 151A0k
3U ′2

32η2ω3

− 13A0k
2U ′′

8η2ω2
+

2A0 PrU ′′

η2(Pr−1)T

)
,

a13 = kU ′

(
8ω2

(
A0

(
−PrT ′′ + PrU ′2 + T ′′

)
16η(Pr−1)Tω3

+
iB1k

32ω3

)
− 55A0k

2U ′2

32ηω3
− 5A0kU

′′

8ηω2

)
,

a14 = −A0kU
′

48Tω3

(
17k2TU ′2 + 4kTU ′′ω + 8T ′′ω2

)
, a15 = −A0ηk

3U ′3

32ω3
,
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a16 = −3A0η
3kTU ′3ω

2(Pr−1)
+
iD2η

5Tω3

σ
, a17 = − σ

1− Pr

A0kU
′3

2η2Tω
,

a18 =
Pr

1− Pr

A0kU
′3

2ηTω
.

5.C Details of the viscous sublayer–main boundary layer match-

ing

One important thing to note, which becomes clear when studying (5.3.8), is that the error term
O(ε2+2λ) in (5.3.8a) has no analogue in (5.3.8b). In fact, if you were to solve for the pressure
to O(ε4) in the sublayer, there would exist a term ∝ ε4z2; written in terms of the intermediate
matching variable τ , (5.3.7), this would become ∝ ε2+2λτ2. We must, however, choose a point to
stop our expansions—we do not want to solve to O(ε4) in order to match an error term. Although
it is not true that ε2+2λ � ε3 in general, and hence keeping O(ε3) terms whilst neglecting O(ε2+2λ)

seems counter-intuitive, the O(ε2+2λ) error term is artificial, created by truncating the expansion
of the base flow at a certain point. When forming a composite solution, we would be able to
identify that the truncated sequence

ω − εU ′(0)kz − ε2

2
U ′′(0)kz2 +O(ε3) (5.C.1)

is actually the inner expansion of the convective term (ω − Uk) and is not, despite what (5.C.1)
forecasts, the source of an O(ε3) error. (In fact, for the acoustic pressure it must be the case that
the sublayer solution is exactly the near-wall expansion of the main boundary layer solution, as
both are inviscid at all retained orders.)

The subtlety of this issue is shown more clearly by dissecting the ṽ expansions in the limit
ε→ 0 with τ held fixed,

ṽ
(I)
m,0 =ωĀ0 − ελτkU ′(0)Ā0 − ε2λτ2 kU

′′(0)

2
Ā0 − ε3λτ3 kU

′′′(0)

6
Ā0 +O(ε4λ), (5.C.2a)

δṽ
(I)
m,1 = ε2ω2Ā1 + ε2+λτ

{
ω2Ā0 − kU ′(0)ωĀ1 + iω2P̄0 − i

k2 +m2

ρ(0)
P̄0

+ iξ(γ − 1)2T (0)2ωĀ0

(
kU ′′′(0)

ω
+
kT ′′(0)U ′(0)

ωT (0)
+

2U ′(0)U ′′(0)

T (0)

+
1

Pr

T ′′′(0)

T (0)

)}
+O(ε2+2λ), (5.C.2b)

for the main boundary layer solution, and

ṽ
(O)
s,0 =A0, (5.C.3a)

εṽ
(O)
s,1 = ελτa1 + εA1, (5.C.3b)

ε2ṽ
(O)
s,2 = ε2λτ2a3 + ε1+λτa2 + ε2A2, (5.C.3c)

ε3ṽ
(O)
s,3 = ε3λτ3a10 + ε1+2λτ2a9 + ε2+λτa8 + ε3A3, (5.C.3d)

for the sublayer solution. The O(ε4λ) error in (5.C.2a) that seems to be unaccounted for in (5.C.3)
is duly of the form described in (5.C.1); it is less clear from (5.C.2b), but the O(ε2+2λ) error
has the same origin. Thus, while ε4λ � ε2+2λ necessarily, and while it is not true in general
that ε4λ � ε3 and ε2+2λ � ε3, a composite solution or effective impedance boundary condition
utilising the two expansions (5.2.12) and (5.3.5) would not be liable to have errors of O(ε4λ) for
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an unknown λ ∈ (0, 1). This is supported by comparison with numerical solutions of the linearised
Navier–Stokes equations.
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Chapter 6

A study of the attenuation properties
of various boundary models via plane
wave reflection coefficients

It is important for acoustic engineers to know how well acoustic liners attenuate sound in a non-
quiescent fluid. It is therefore vital that a simplified acoustic boundary condition for use in plug
flow (that incorporates the effects of the thin boundary layer into an effective impedance of the
liner) has the correct attenuation properties. Gabard (2013) tested existing inviscid impedance
boundary conditions by the benchmark problem of a plane wave incident on a shear layer above
a lined wall. Numerical solutions of the Pridmore-Brown (1958) equation were compared with
analytical expressions for the reflection coefficients obtained using the Myers boundary condition
(Ingard, 1959; Myers, 1980) and its various first order corrections Brambley (2011b); Rienstra &
Darau (2011). It was found that the finite thickness of the boundary layer can be significant, and
that use of the Myers condition can lead to large errors in sound attenuation predictions (Gabard,
2013). Chapter 3 of this thesis has shown that viscosity and thermal conduction can play a large
role in the damping rate of cut-on modes and the physical onset of instability; investigating their
effects on the attenuation of sound via the calculation of reflection coefficients is a worthwhile
supplement to the data presented there.

In this chapter, the work of Gabard (2013) is extended to include viscothermal effects in the
sheared boundary layer above a lined wall. Numerical solutions of linearised compressible Navier–
Stokes equations are presented and the reflection coefficients calculated and compared to the corre-
sponding inviscid results. In addition to this, the analytical expressions for the reflection coefficients
of the asymptotic closed-form effective impedance boundary conditions derived in chapters 2, 4
and 5 are derived and compared to the numerics.

6.1 Mathematical formulation

We consider a Cartesian coordinate system x = (x, y, z) with a mean flow U = (U(y), 0, 0) above a
lined wall situated at y = 0 for all x and z. Above some point y ∼ δ > 0, the mean flow is uniform,
such that U(y) = M for y & δ. Below this point, the mean flow follows some sheared profile down
to the wall upon which no slip is satisfied.

In the uniform flow region, the acoustic velocity potential, φ′, satisfies the convected wave
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(a) (b)

Figure 6.1. The arrangement of the angles defining the incident and reflected wave directions with respect to the
coordinate directions. Adapted from Gabard (2013).

equation
D2φ′

Dt2
−∇2φ′ = 0, (6.1.1)

where D/Dt = ∂/∂t + M∂/∂x is the material derivative. In the frequency domain we may write
a plane wave solution of (6.1.1) as

φ̃ = ei(ωt−Kθi·x) +Rei(ωt−Kθr·x), (6.1.2)

where K = ω/D is the acoustic wavenumber, for Doppler factor D = 1 + Mθi · ex, and the two
terms correspond to: an incident wave of unit amplitude travelling in the direction θi · x; and a
reflected wave of amplitude R travelling in the direction θr ·x. The vectors θi and θr are therefore
the angles of incidence and reflection, respectively, and are defined as

θi = sinα cosβex − cosαey + sinα sinβez, (6.1.3a)

θr = sinα cosβex + cosαey + sinα sinβez, (6.1.3b)

in three dimensions, and

θi = cos θex − sin θey, θr = cos θex + sin θey, (6.1.4)

in two dimensions (see fig. 6.1). In 3D the Doppler factor is D = 1 + M sinα cosβ; in 2D the
Doppler factor is D = 1 + M cos θ. In both cases (6.1.3) and (6.1.4), the reflected wave has a
positive sign in the ey direction where the incident wave has a negative; for convenience, and
to avoid the confusion of hidden negative signs, we shall define ky = Kθr · ey as the acoustic
wavenumber in the y direction, in both 2D and 3D.

6.1.1 Asymptotic reflection coefficients

The effective impedance boundary conditions derived in this thesis (in chapters 2, 4 and 5), and
those proposed elsewhere (by Ingard (1959) and Myers (1980), and by Brambley (2011b)), may be
expressed in the general form

Zeff =
ω

ω −Mkx

Z + F

1 +G
, (6.1.5)

where the functions F and G may depend on, in general: the mean velocity and temperature
profiles and centreline Mach number, the modal wavenumbers and frequency, the boundary layer
thickness, and the Reynolds and Prandtl numbers. The parameter kx = Kθi ·ex is the wavenumber
in the x direction, and correspondingly kz = Kθi ·ez is the wavenumber in the z direction (in 3D).
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These replace the notation used in all previous chapters of this thesis to denote the wavenumbers
in the coordinate directions that are not normal to the lined wall (k and m, previously).

Using the definitions of kx and D, we may derive the convenient formulae

ω −Mkx = K,
ω

ω −Mkx
= D, (6.1.6)

and use them to rewrite (6.1.5) as

p̃(0)(1 +G) = −ṽ(0)D(Z + F ), (6.1.7)

where the arguments of p̃ and ṽ are in terms of y, and the definition Zeff = p̃(0)/[−ṽ(0)] is used.
Now, the pressure and radial velocity may be deduced from the velocity potential in uniform flow
via p̃ = −Dφ̃/Dt and ṽ = ∂φ̃/∂y, leading to

p̃(y = 0) = −iK(1 +R), ṽ(y = 0) = −iky(R− 1), (6.1.8)

where the common exponential terms have been ignored. Inserting the expressions (6.1.8) into
(6.1.7), we may rearrange the resulting equation to find R:

R =
Dθr · ey(Z + F )− (1 +G)

Dθr · ey(Z + F ) + (1 +G)
. (6.1.9)

Gabard (2013) gives the general form for the reflection coefficient as

R =
Z(Dθr · ey + iT1)− 1 + iT0

Z(Dθr · ey − iT1) + 1 + iT0
, (6.1.10)

where the Tj are real-valued. The form (6.1.10) may be consolidated with (6.1.9) by observing
that

iT0 = Dθr · eyF, iT1 = − 1

Z
G, (6.1.11)

although for the effective impedance boundary conditions derived in this thesis (6.1.11) results
in complex-valued Tj , meaning the form (6.1.10) is less instructive. For the sake of continuity,
however, we will define the reflection coefficients of the second-order inviscid model of chapter 2,
the high-frequency viscous model of chapter 4, and the two-deck viscous model of chapter 5 in
relation to the form (6.1.10) by giving the forms of the parameters T0 and T1.

Rederiving the second-order inviscid boundary condition from chapter 2 for the flat Cartesian
geometry considered here leads to (6.1.5) with

F =
iK2

ω
δI0 + (δI0δI1 + δ2I3 − δ2I10)K2

⊥Z −
(
K2 −K2

⊥
)
δ2I00Z, (6.1.12a)

G = − iK2
⊥
DZ

K
δI1 +K2

⊥(δI0δI1 + δ2I11 − δ2I01)−
(
K2 −K2

⊥
)
δ2I2, (6.1.12b)

where K2
⊥ = k2

x + k2
z . Comparing (6.1.5) and (6.1.12) with the cylindrical form (2.2.8) illustrates

the extra complexity due to curvature appearing at O(δ2). The reflection coefficient predicted by
the effective impedance boundary condition (6.1.5) with (6.1.12) is then given by (6.1.10) with

T0 =Dθr · ey
[
− K

D
δI0 − i(δI0δI1 + δ2I3 − δ2I10)K2

⊥Z + i
(
K2 −K2

⊥
)
δ2I00Z

]
, (6.1.13a)
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T1 = − K2
⊥D

K
δI1 + i(δI0δI1 + δ2I11 − δ2I01)

K2
⊥
Z
− i
(
K2 −K2

⊥
)
δ2I2

1

Z
. (6.1.13b)

The reflection coefficient for the high-frequency Zeff model given in (4.1.13) may be defined by
the parameters

T0 =θr · ey
[ i(γ − 1)T (0)√

iωRe

kxUy(0)

K
Z −KδI0 − iDBZ

]
, (6.1.14a)

T1 = − K2
⊥D

K
δI0 +

iA
Z

+ iC, (6.1.14b)

and (6.1.10), where

A =K2
⊥(δI0δI1 + δ2I11 − δ2I01)− (K2 −K2

⊥)δ2I2, (6.1.15a)

B =K2
⊥(δI0δI1 + δ2I3 − δ2I10)− (K2 −K2

⊥)δ2I00 +
(γ − 1)2

iωRe

(Iµ
δ2

− 2σ

1 + σ
T (0)Uy(0)2 − 5k2

x

4ω2
T (0)2Uy(0)2

)
, (6.1.15b)

C =
(γ − 1)T (0)√

iωRe

(
− ikxUy(0)

K2
K2
⊥δI1 +

i

ω
K2
⊥(γ − 1)T (0) +

iω

σ(γ − 1)

)
, (6.1.15c)

where σ2 = Pr.

For the two-deck viscothermal boundary condition derived in the preceding chapter, (5.5.6),
the Tj parameters are

T0 =θr · ey
[ i(γ − 1)T (0)√

iωRe

kxUy(0)

K
Z −KδI0 − iD(S2 + S3)Z], (6.1.16a)

T1 = − K2
⊥D

K
δI1 + iS1, (6.1.16b)

where

S1 =
(γ − 1)√
iωRe

(
− ikxUy(0)

K2
T (0)δI1K

2
⊥ +

i

ρ(0)

[T (0)

ω
K2
⊥ +

ω

σ

])
, (6.1.17a)

S2 =
(γ − 1)2

iωRe

(
Iµ
δ2

+
[ 2σ

1 + σ
− 5k2

x

4ω2
T (0)

]
T (0)Uy(0)2

)
, (6.1.17b)

S3 =

(
(γ − 1)√
iωRe

)3{
− kxIµ

δ2ω
Uy(0)T (0)2 − 13k2

x

8ω2
Uyy(0)Uy(0)T (0)3 − kx

ω
Uyyy(0)T (0)3

− 1

σ
Tyyy(0)T (0)2 − 151k3

x

31ω3
Uy(0)3T (0)3 +

7σ + 3

(1 + σ)2

kx
2ω
Uy(0)3T (0)2

+
1

σ

σPr + Pr−2σ − 1

(1 + σ)2

2Tyy(0)

ω
Uy(0)T (0)2

− 2 Pr +4σ + 1

(1 + σ)2

kxTyy(0)

ω
Uy(0)T (0)2

}
. (6.1.17c)

Using (6.1.16) in (6.1.10) gives the reflection coefficient.

6.1.2 Computational method

A computational domain is created in y ∈ [0, yN ] where yN is chosen such that nλ wall-normal
uniform flow wavelengths fit inside the domain. The wall-normal uniform flow wavelength is given
by λy = 2π/ky for k2

y = (ω −Mkx)2 − k2
x − k2

z ; then, yN = nλλy gives the upper bound of the
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domain. The lined wall is situated at y = 0, and a non-uniform grid yi, i = 1, 2, ..., N (with
more points clustered near the wall to fully resolve the boundary layer) is mapped to a uniform
computational grid ξi via the mapping

ξi =
yN
A

arcsinh

(
yi
yN

sinhA

)
, (6.1.18)

for a real-valued parameter A that governs the severity of the grid stretching. In general the
parameters N = 10000, A = 8.5 and nλ = 3 gave satisfactory results.

The linearised compressible Navier–Stokes equations (LNSE), given in (1.1.13), are solved in the
domain, with a 6th order unoptimized (Brambley, 2016) finite difference scheme used to approxi-
mate derivatives with respect to y (reducing to a 4th order scheme near the domain boundaries).
The viscothermal effects are modelled as having linear dependence on the temperature, as in (3.1.4).
A sheared mean flow profile is applied, with the mean velocity U and temperature T having the
forms

U(y) = M tanh
4y

δ
, T (y) = T0 + τ sech

4y

δ
, (6.1.19)

where τ ≈ 0.104 approximates the compressible Blasius profile wall temperature, and T0 = 1/(γ−1)

defines the free stream temperature, for γ the ratio of specific heats.

An incident plane wave of unit amplitude is used as a boundary condition at the top of the
domain via the expression

φ̃y + ikyφ̃ = 2ikye−iKyNθi·ey , (6.1.20)

where R has been eliminated and common exponential factors have been cancelled. This creates
a problem, as the inviscid plane wave (6.1.2) is not a solution of the viscous governing equations
(1.1.13). A plane wave applied at the top of a viscous uniform flow will not propagate at a constant
amplitude, as shown in fig. 6.2, destroying our ability to calculate the reflection coefficient reliably.
To get around this, viscous effects are smoothly, but rapidly, “turned off” at the top of the shear
layer, when the velocity and temperature reach their free stream values. This is achieved by
multiplying the viscous terms by the sigmoid-type function

hµ(y) =

 1, y < ys,

2− 2

1 + exp (−ν(y − ys))
, y > ys,

(6.1.21)

where y = ys marks the edge of the shear layer and ν ≈ 60 governs the speed at which the function
hµ approaches zero above ys. The use of (6.1.21) is not the ideal way to treat this problem, but
ensures that the calculated reflection coefficient does not depend on domain size or number of grid
points.

To calculate the reflection coefficient, we use the complementary expression to (6.1.20) in which
the unit amplitude incident wave is eliminated,

φ̃y − ikyφ̃ = −2iRkye−ikyyN , (6.1.22)

and use the uniform flow relationships ũ = ∇φ̃, p̃ = −Dφ̃/Dt and T̃ = p̃/ρ0 to transform (6.1.22)
into an expression for each acoustic variable (noting that ρ0 ≡ 1 in the scheme of nondimen-
sionalisation used here). Then, we may rearrange the resulting expressions to find the reflection
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Figure 6.2. Mode shapes of the acoustic pressure, p̃, for the solutions of the linearised Navier–Stokes equations
(LNSE) without using the viscosity damping function (6.1.21) to turn off viscosity at the top of the shear layer, for a
domain containing 20 and 40 wavelengths. Also plotted are the mode shapes for the solution of the linearised Euler
equations (LEE) for a domain containing 40 wavelengths. (a) shows the full solutions, while (b) shows a close-up of
the wave peaks. The LNSE solutions grow to the right at different rates depending on the domain size. The LEE
solution retains a constant amplitude throughout the region of uniform flow.

118



CHAPTER 6. ATTENUATION INVESTIGATION VIA REFLECTION COEFFICIENTS

coefficient:

Ru = − (2kxky)−1eikyyN
(
ũy(yN )− ikyũ(yN )

)
, (6.1.23a)

Rv = − (2k2
y)−1eikyyN

(
ṽy(yN )− iky ṽ(yN )

)
, (6.1.23b)

Rw = − (2kzky)−1eikyyN
(
w̃y(yN )− ikyw̃(yN )

)
, (6.1.23c)

Rp = − (2Kky)−1eikyyN
(
p̃y(yN )− ikyp̃(yN )

)
, (6.1.23d)

Rt = − (2Kky)−1eikyyN
(
T̃y(yN )− ikyT̃ (yN )

)
, (6.1.23e)

where the five expressions for the Rj should all result in the same value (a useful test of the
numerical method). The standard deviation1 of the Rj values in the test cases presented here
was generally of the order of 10−8, so error bars, considered unnecessary, have not been plotted.
Taking the mean of the Rj from (6.1.23) then gives us the value of R which we compare with the
asymptotic approximations, derived above, and the inviscid numerical result that may be attained
using the same code in the inviscid limit.

6.2 Results

Here we plot results for the reflection coefficient of a plane wave incident on a boundary layer above
a lined wall at any angle in two and three dimensions. The two viscous asymptotic expressions
(6.1.14) and (6.1.16) are compared to the viscous numerics; the inviscid second order expression
(6.1.13) is compared to the inviscid numerics; and the viscous numerics are compared to the inviscid
numerics. Also plotted are the reflection coefficients found using the Ingard–Myers (Ingard, 1959;
Myers, 1980) condition and its first order correction (the modified Myers condition, Brambley,
2011b) (given below) so as to evaluate existing inviscid boundary conditions by comparing with
the new inviscid condition derived in this thesis, (6.1.13), and by judging how important their
neglect of viscosity is for attenuation predictions. The reflection coefficient of the Myers condition,
(1.2.17), is defined by (6.1.10) with T0 = T1 = 0. The modified Myers boundary condition, (1.2.18),
is defined by (6.1.10) with

T0 = −kyδI0, T1 = −K
2
⊥D

K
δI1. (6.2.1)

Gabard (2013) uses five test cases to compare impedance boundary conditions, and we adhere
to those cases here. The parameter values of these five cases are typical of a turbofan engine duct,
and are outlined in table 6.1. Gabard (2013) reports that case A corresponds to the near-fan flow
conditions at the inlet of a turbofan engine at blade passing frequency; case B represents the flow
upstream of the fan where the boundary layer would be thinner; case C tests the double frequency

1Standard deviation defined here as σ2
SD = 1

NR
Σ(|Rj | − |Rµ|)2, where NR is the number of R values (four in

2D, five in 3D) and Rµ is the mean of the NR R values.

Case Frequency ω Shear thickness δ (%) Mach number M Impedance Z

A 28 1.4 0.55 5− i
B 28 0.7 0.55 5− i
C 56 1.4 0.55 5− i
D 28 1.4 0.3 5− i
E 28 3 0.55 3− 0.5i

Table 6.1. Test cases for reflection coefficient calculations, as used in Gabard (2013).
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harmonic of the blade passing frequency; case D tests a lower Mach number flow; and case E
corresponds to the thicker boundary layer and altered impedance of the bypass duct.

6.2.1 Two dimensions

In this section we constrain the incident wave to lie in the same plane as the direction of the mean
flow, as in fig. 6.1b. The angle θ is varied between 0 and π, so that the wave is incident anywhere
between directly downstream and directly upstream. Figure 6.3 shows results in decibels for a high
Reynolds number, where the subfigure labels correspond to the “Case” column in table 6.1. All
the models collapse approximately onto a single line when the incident wave is perpendicular to
the mean flow. If the mean temperature was constant, this would be exactly true for the inviscid
case (Gabard, 2013) as the standard wave equation is recovered. For the viscous case the standard
wave equation is never recovered, but the reflection coefficient still collapses approximately to the
single line followed by the inviscid models. In particular, in all cases the greatest discrepancy
between inviscid and viscous reflection comes when the wave is incident in an upstream direction,
as was seen in fig. 3.6 previously. This could be due to the refraction of upstream propagating
waves away from the lining by the mean flow shear, and the resulting increase in the importance of
viscosity to the attenuation rate. This feature is well captured by the high frequency asymptotic
solution, and partially captured by the two-deck weakly viscous model. We also recover the result
of Gabard (2013) that the Myers boundary condition is ill-suited for attenuation calculations, with
the reflection coefficient of waves incident at shallow angles being predicted with errors of up to
10dB with respect to inviscid numerics.

Figure 6.4 shows results for relatively lower values of Re. As intuition suggests, this separates
the viscous and inviscid models by a greater amount, particularly for upstream propagating waves.
In figs. 6.4A, 6.4C and 6.4E the benefits of using the second-order accurate inviscid boundary
condition over the modified Myers condition may be seen, with the modified Myers condition
having errors of more than 1dB for upstream propagating incident waves. The second order
inviscid condition consistently predicts the reflection coefficient in line with the inviscid numerics
across all angles of incidence. The two-deck weakly viscous model is seen to either over-predict
or under-predict R for upstream propagating waves (e.g. figs. 6.4B and 6.4C) compared with the
viscous numerics, although the model out-performs the inviscid models in capturing the features
of the viscous numerics. The high-frequency asymptotic boundary condition is extremely accurate
with respect to the viscous numerics in all cases. The poor accuracy of the Myers condition is
again evident in all cases at shallow angles of incidence.

6.2.2 Three dimensions

In this section we use the angle definitions indicated in fig. 6.1a, allowing the incident wave to enter
the boundary layer at a cross-flow angle (nonzero β). In fig. 6.5 results for Case A at Re = 4× 105

are plotted, where the colour bar scale is in decibels. Figures 6.5a–6.5c show the viscous models,
while figs. 6.5e–6.5h show the inviscid models. At steep angles of incidence (α . π/8) the viscous
and inviscid results vary only slightly, as in the 2D case. At shallower angles, the features of
the viscous and inviscid density plots start to change, with greater attenuation occurring in the
viscous case in the upstream direction (as β approaches π or −π). This is seen more easily in
fig. 6.5d, which shows the error, in decibels, of the inviscid LEE numerics (fig. 6.5e) with respect
to the viscous LNSE numerics (fig. 6.5a). Large regions in (α, β) space show discrepancies of more
than 3dB between the inviscid and viscous attenuation predictions, with a maximum error being
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Figure 6.3. Reflection coefficient in decibels for the five cases in table 6.1. Legend acronyms are linearised Navier–
Stokes equations (LNSE), weakly viscous two-deck (WV), high frequency viscous (HF), linearised Euler equations
(LEE), second order inviscid (SO), modified Myers (MM) and Myers (MY). Reynolds numbers are (A,C,D) Re =
5× 106, (B) Re = 2× 107, (E) Re = 1× 106.
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Figure 6.4. Reflection coefficient in decibels for the five cases in table 6.1. Legend acronyms are linearised Navier–
Stokes equations (LNSE), weakly viscous two-deck (WV), high frequency viscous (HF), linearised Euler equations
(LEE), second order inviscid (SO), modified Myers (MM) and Myers (MY). Reynolds numbers are (A,C,D) Re =
4× 105, (B) Re = 3× 106, (E) Re = 1× 105.
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an under-prediction of ∼ 17dB by the inviscid numerics for upstream propagating incident waves
entering the boundary layer at shallow angles.

The features of the viscous LNSE numerics, shown in fig. 6.5a, are captured well by the two
viscous asymptotic models, figs. 6.5b and 6.5c. The second-order inviscid boundary condition,
fig. 6.5f, performs well in 3D, accurately reproducing the features of the inviscid LEE numerics,
fig. 6.5e. The Myers condition, fig. 6.5h, fails to capture the complicated changes in reflection
coefficient that occur as β is varied for shallow entry angles (α & 3π/8).

More substantial differences between the viscous and inviscid attenuation predictions can be
seen in fig. 6.6, which shows results for Case E at Re = 1× 105. The inclusion of viscosity creates
patches of very intense attenuation (compare the LNSE results fig. 6.6a with the LEE results
fig. 6.6e), leading to a maximum under-prediction by the inviscid numerics of 32dB. The median
absolute error is ±0.3dB between the LNSE and LEE numerics, but this belies the significant effect
of viscosity at shallow angles of incidence and directions of propagation away from downstream. It
is also worth noting the change in polarity of the discrepancy between the LNSE and LEE numerics
as the direction of propagation varies between upstream propagating and cross-flow propagating
(see fig. 6.6d). Neglecting viscosity leads to an under-prediction of attenuation near β = ±π
where the wave is propagating almost directly upstream, but this switches to an over-prediction
for −5π/8 . β . 5π/8 where the wave is propagating either across the mean flow or downstream.
Again, the asymptotic boundary conditions derived in chapters 2, 4 and 5 perform well, capturing
the complexities of the attenuation patterns of the numerics in (α, β) space.
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6.3. SUMMARY

6.3 Summary

This chapter has studied the attenuation of a sound wave incident on a sheared boundary layer
above an impedance wall. By numerically computing the reflection coefficient (the amplitude of
the reflected wave) for an inviscid and viscous system, the importance of viscosity for accurate
prediction of the attenuation of upstream and cross-flow propagating sound was shown quantified.
Understanding the damping of upstream propagating sound is vitally important for targeting fan
and compressor noise in the forward arc, see figs. 1.1 and 1.2. The analysis presented here is a
useful extension to both the numerical investigation in chapter 3, and the inviscid study of Gabard
(2013).

This chapter also used the problem of an incident plane wave as a testing ground for the asymp-
totic impedance boundary conditions derived in this thesis. In support of the conclusions drawn by
Gabard (2013), the results presented here show that the Myers boundary condition fails to capture
the influence of mean flow shear on sound attenuation, leading to significant errors. The damping
of upstream and downstream propagating sound, in two and three dimensions, is poorly predicted
by the Myers boundary condition. The second-order inviscid boundary condition of chapter 2 was
shown to accurately reproduce the attenuation properties of the linearised Euler equations (LEE)
numerics, consistently outperforming the first-order modified Myers condition (Brambley, 2011b)
in two and three dimensions.

The viscous impedance boundary conditions derived in chapters 4 and 5 were shown to accu-
rately predict the attenuation properties of the linearised Navier–Stokes equations (LNSE). The
two-deck boundary condition with the weakly viscous main boundary layer, of chapter 5 did not
fully capture the large effect of viscosity on the attenuation of upstream propagating sound; the
multiple scales high frequency boundary condition, of chapter 4, performed well across all test
cases.
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Chapter 7

Conclusion

This thesis has sought to extend the current theory of sound propagation over impedance surfaces.
Although much focus has been given to the derivation of acoustic boundary conditions that aim
to further the capabilities of numerical codes and mathematical studies, the analysis performed
in the preceding chapters also allows a greater insight into and understanding of boundary layer
stability, the role of viscosity in sound attenuation and the behaviour and number of surface wave
modes.

In chapter 2 the problem of sound in an inviscid, sheared boundary layer is studied. The work of
Brambley (2011b) is extended by deriving, via an expansion in terms of the boundary layer thickness
0 < δ � 1, a second-order accurate impedance boundary condition applicable to plug flows. A
non-asymptotic boundary condition capable of treating short-wavelength, high-frequency sound
in thick boundary layers is proposed, which utilises numerical integration techniques to derive an
approximate solution for the effective impedance of an inviscid shear layer over an acoustic lining.

In chapter 3 a numerical investigation is performed to quantify the importance of viscous and
thermal conductive effects, with regard to mean flow shear effects, for acoustic calculations in
sheared boundary layers of impedance linings. The chapter compares numerical solutions of the
linearised compressible Navier–Stokes equations (LNSE) with numerical solutions of the linearised
compressible Euler equations (LEE), and compares the LEE numerics with analytical acoustic
solutions attainable in inviscid uniform duct flow. The study compares the following: the ratio
p̃/ṽ at the lined wall, where ṽ is not constrained; the position of both cut-on and cut-off modes
in the k-plane; the number and position of surface wave modes; and the stability properties via
Briggs–Bers (Bers, 1983; Briggs, 1964) analysis.

In chapter 4 two asymptotic analyses are presented of a viscous, sheared boundary layer over
an acoustic lining. A relatively simple boundary layer rescaling, assuming the laminar Blasius
scaling relationship between boundary layer thickness and Reynolds number, δ ∼ 1/Re1/2, leads
to a reduced system of governing equations for the acoustics in a viscous boundary layer which
must be be solved numerically. The assumption of a high sound frequency leads to the second
asymptotic regime analysed in chapter 4. This analysis leads to an analytically tractable set
of high-frequency governing equations by utilising the multiple scales method with a WKB-type
ansatz for the acoustic quantities, allowing the effective impedance of a viscous, sheared boundary
layer above an impedance lining to be expressed in closed form.

In chapter 5 asymptotic analysis of a novel two-deck boundary layer is presented and compared
to numerical solutions of the LNSE. An assumption of weak viscosity in the outer deck of the
boundary layer leads to analytically tractable governing equations; the inner deck equations are
made tractable by assuming that the mean flow deviates from its wall state only slightly across
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the thin sublayer. Acoustic solutions are asymptotically matched between the two decks of the
boundary layer and the outer region of inviscid uniform flow to form uniformly valid solutions for
the acoustics and an expression for the effective impedance.

In chapter 6, the problem of a plane wave incident on a sheared boundary layer above an
impedance surface is treated numerically and asymptotically, in two and three dimensions, for
both an inviscid and a viscous fluid. The effects of viscosity on the reflection coefficient are inves-
tigated by comparisons of the viscous and inviscid numerics. The suitability for use in attenuation
predictions of the asymptotic effective impedance boundary conditions derived throughout this
thesis, and existing boundary conditions derived elsewhere, is tested by comparing asymptotic
calculations of the reflection coefficient with numerical solutions.

The effective impedance boundary conditions derived in this thesis are summarised in table 7.1.
The table contains concise descriptions of when each boundary condition should be used, and when
each model is prone to fail.

Modelling in the frequency domain

Analytical modelling of sound propagation in lined ducts with uniform flow, where the acoustic
pressure modes may be written in terms of Bessel functions, requires an impedance boundary con-
dition to be applied at the duct wall in order to form a dispersion relation. By applying one of the
closed-form effective impedance boundary conditions, the capabilities of such analytical modelling
may be improved. The second-order inviscid model, (2.2.8), has been shown to predict with greater
accuracy both cut-on and cut-off modes, as well as surface wave modes. When the boundary layer
thickness δ is small and the wavenumber and frequency satisfy k, ω � 1/δ, the second-order bound-
ary condition consistently and accurately reproduces the results found via numerical solution of
the Pridmore-Brown equation, improving on the modified Myers condition (Brambley, 2011b) and
retaining its well-posedness. By applying the high-frequency boundary condition (4.1.13) or the
two-deck model (5.5.6), it would be possible to form analytical mode shapes for acoustics that
account for a viscothermal shear layer of finite thickness 0 < δ � 1 above the lining. Alternatively,
the uniformly valid composite expansions (5.4.2) and (5.4.5) may be used. These composite ex-
pansions give the correct asymptotic behaviour when evaluated in each of the three duct regions
defined in chapter 5, and are shown to agree well with the full LNSE numerics.

For inviscid numerics in the frequency domain, the boundary conditions derived in chapter 2
may be easily applied in their general forms, (2.2.8) and (2.3.11), or simplified by assuming a specific
shear profile; for example, a linear profile leads to expressions (2.5.2) and (2.5.4). For sufficiently
thin boundary layers, the second-order asymptotic condition (2.2.8) allows the accurate prediction
of growth rates and characteristic wavelengths of inviscid instability. The effect of the shear is
modelled more precisely than in previous inviscid modifications of the Myers condition (Brambley,
2011b; Joubert, 2010; Myers & Chuang, 1984; Rienstra & Darau, 2011), improving predictions of
the position of cut-on modes in the k-plane. This should increase the accuracy of attenuation
calculations, with the results of chapter 6 supporting this claim. For thick boundary layers, or
high wavenumbers or frequencies outside the region of asymptotic validity, the single-step implicit
Runge–Kutta boundary condition (2.3.11) could be carefully used, with the associated caveats
kept in mind. It has been evidenced here that the implicit Runge–Kutta condition can produce
very accurate predictions of the effective impedance. The scheme performs poorly, however, when
predicting the wavenumber and behaviour of surface modes and modes with sharp changes in the
boundary layer forced by the shear, owing to its poor resolution of waves in the boundary layer. A
higher order implicit method could solve this problem, but for such a method a closed form of the
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CHAPTER 7. CONCLUSION

BC When does it work well When does it work poorly

SO Accurate reproduction of LEE solutions
across wide range of frequencies;

Should not be used outside region of
asymptotic validity, k,ω � 1/δ, due to ac-
curacy loss and spurious solutions;

Well-behaved temporal stability away from
inviscid critical layer;

Undefined at inviscid critical layer ω −
U(rc)k = 0;

Easily applicable as a boundary condition
in the frequency domain.

Spurious singularity at (ω −Mk)2 = k2 +
m2.

IR Accurate Zeff prediction at extremities of
wavenumber plane, due to non-asymptotic
nature;

Cannot resolve surface modes due to low
number of sample points in boundary layer;

Useful when asymptotic models fail, out-
side of their region of validity.

Small-δ analysis not always sufficient when
choosing the correct square root sign, see
Appendix 2.D.

VF Accurate reproduction of LNSE results
across wide range of frequencies;

No closed-form expression for the boundary
condition;

Well-behaved temporal stability, captures
viscous phenomena of mode restabilisation
for finite k;

Region of asymptotic validity confined to
k,ω � 1/δ

Model could be incorporated into an invis-
cid numerical code as a boundary solver;

HF Very accurate prediction of LNSE cut-on
modes at high frequencies with respect to
scaling regime ω � 1, ω ∼ δ−2/3, k/ω .
O(1);

Scaling regime means the model is ill-
suited to investigate temporal stability, for
which important regimes are ω = O(1) and
k/ω � 1;

Captures the full effects of viscosity
throughout both the acoustic and mean
flow boundary layers;

Fails to predict surface modes that lie out-
side the region of asymptotic validity.

Accuracy of cut-on mode prediction re-
mains fair for moderate to low frequencies.

TD Unrestricted frequency allows time-domain
formulation;

Main boundary layer sensitive to δ ∼
Re−1/3 scaling, meaning viscous informa-
tion may be lost;

Accurate reproduction of LNSE solutions
across parameter space;

Main boundary layer suffers from interac-
tion with inviscid critical layer, so model
cannot capture restabilisation of modes at
small wavelengths.

Well-behaved temporal stability away from
inviscid critical layer.

Table 7.1. Summary of the effective impedance boundary conditions derived in this thesis, with a description of
where they perform well and where they perform badly. Acronyms in Boundary Condition (BC) column are SO:
O(δ2) Inviscid, (2.2.8); IR: Implicit Runge–Kutta Model, (2.3.11); VF: O(δ) Viscous, (4.1.2); HF: High-frequency
Model, (4.1.13); TD: Two-deck Model, (5.5.6).
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boundary condition would be overly complicated. Alternatively, a careful application of an explicit
scheme might be profitable, if the blow up of solutions could be avoided.

When full viscous numerics are not practical, it should be possible to make use of the asymp-
totic models presented in chapters 4 and 5 in frequency domain computations. The boundary layer
model in §4.1.1 may be seen as an extension of the viscous Myers model of Brambley (2011a) in
order to account for a nonzero-thickness viscous shear layer by including O(δ) terms, or indeed as
an extension of the inviscid modified Myers model of Brambley (2011b) to include viscothermal
terms—in effect, §4.1.1 gives a viscous modified Myers condition. Although no closed-form solution
for the effective impedance can be found for such a model, the reduced governing equations could
be incorporated into an inviscid aeroacoustic numerical code as a boundary solver. The relatively
few assumptions that are made in the derivation of the model (4.1.2) mean the resulting boundary
condition performs well for a wide range of parameters, and also yields the correct stability prop-
erties, see figs. 4.4 and 4.5. If one is concerned with high frequency sound (such as is common in
aeroacoustics), the analytical effective impedance boundary condition (4.1.13) may be easily ap-
plied in the frequency domain at the wall of an inviscid uniform flow. It is shown in §4.2.3 that the
high frequency asymptotics predict the cut-on modes of the linearised compressible Navier–Stokes
equations well even at relatively low frequencies down to ω ∼ O(1).

In deriving the effective impedance boundary condition (5.5.6), no assumptions about the sound
being low or high frequency, nor about the velocity or temperature profiles of the mean flow bound-
ary layer, have been made—unlike previous works which have found such assumptions necessary
in order to give analytic solutions. This effective impedance boundary condition can be applied
to acoustics in slipping inviscid flow, and accounts for the effects of shear and viscosity within the
boundary layer. It is anticipated that this boundary condition could be used in frequency-domain
numerics to avoid having to mesh finely and solve for the acoustics within the thin boundary layers
at the walls.

The asymptotic models derived in chapters 2, 4 and 5 are shown to be suitable for attenuation
calculations through favourable comparisons with numerical solutions in chapter 6. This is in
contrast with the performance of the classical Ingard–Myers boundary condition, which does not
accurately predict the effects of mean flow shear on sound absorption for either upstream or
downstream propagating sound in 2D, figs. 6.3 and 6.4 and cannot capture the complicated effects
of cross-flow sound propagation at shallow angles of incidence in 3D, figs. 6.5 and 6.6.

Surface wave modes

The new second-order asymptotic condition predicts surface modes with a higher degree of ac-
curacy than the modified Myers condition, but also predicts additional spurious surface modes.
Asymptotic analysis of the k/ω � 1 regime has shown that the new condition predicts a possible
14 surface modes, compared to the six of the modified Myers condition (Brambley, 2013) and four
of the Myers condition (Rienstra, 2003). By comparison with computations, it is suggested that
the extra modes predicted by the second-order condition are spurious, and are easily recognised
by being far out of the range of asymptotic validity. Analysis of the single-step implicit scheme
boundary condition leads to a prediction of six surface modes, matching the prediction of the
modified Myers model. Also introduced at the second-order of the asymptotic expansion is the
spurious singularity when (ω −Mk)2 = k2 + m2, near which the first-order condition or implicit
Runge–Kutta condition could be used instead.

It is shown in chapter 3 that a viscous boundary layer over an acoustic lining can support
a greater number of surface wave modes than a corresponding inviscid boundary layer, fig. 3.7.
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CHAPTER 7. CONCLUSION

This indicates that inviscid models may be inadequate for comprehensive analyses, as these surface
modes have important ramifications for stability. The viscous reduced boundary layer governing
equations (4.1.2) may be used as part of an inviscid numerical solver in order to capture the notable
effects of viscosity close to the boundary. The closed-form viscous boundary conditions (4.1.13)
and (5.5.6) adequately predict viscous surface modes within their regions of asymptotic validity,
figs. 4.3b and 5.1b; however, surface modes inhabit the regime k/ω � 1 (Brambley, 2013) meaning
it is possible for them to lie outside of the regions of asymptotic validity of the models, fig. 4.4.

Implications for impedance eduction

The success of commonly-used impedance eduction techniques, which connect the “far-field” acous-
tic response of a liner to its on-surface impedance, depends upon the quality of the liner model
employed. The accuracy with which the second-order inviscid model, (2.2.8), and the viscous
closed-form boundary conditions from chapters 4 and 5, (4.1.13) and (5.5.6), predict cut-on modes
(see figs. 2.5, 4.3a and 5.1a) suggests that these models would be a useful tool in such impedance
eduction methods, in either inviscid or viscous studies, if the asymptotic regimes are respected.
Moreover, these three closed-form boundary conditions have more degrees of freedom (the δIj inte-
grals) than previous inviscid (such as that of Brambley, 2011b) or viscous (such as that of Aurégan
et al., 2001) models with which to achieve a better fit to the data (or, indeed, with which to “back
out” some information about the base flow).

Effects of viscosity on attenuation

Although it is not always feasible to include viscous and thermal conductive effects in all aeroacous-
tic computations, it is shown here that there should be more careful thought about the situations
in which they should be included, and an understanding of the size of the errors introduced by
omitting them. Certainly, at low frequencies and for thin boundary layers the acoustics can be
significantly affected by viscosity, with errors being introduced by its neglect that are of the same
order of magnitude as the errors introduced by neglecting shear (e.g. fig. 3.3a). The existence of
the anomalous region (Brambley, 2011a), in Re(k) > ω/M , Im(k) < 0, can also lead to significant
errors in inviscid computations.

In general, the damping of upstream propagating well cut-on modes – an important parameter
for the understanding of fan forward noise – is found to be poorly predicted by inviscid numerics (see
fig. 3.6), showing that small errors can lead to significant variations in important small quantities.
This point is corroborated and extended by the numerical study in chapter 6. Viscosity is shown to
greatly affect the attenuation of upstream propagating plane waves that enter the boundary layer
at shallow angles, figs. 6.4, 6.5d and 6.6d; it is also shown that for cross-flow propagating sound,
inviscid calculations can in fact over-predict the damping rate, figs. 6.5d and 6.6d (rather than
under-predict, as is the case for upstream propagating sound). This finding is intrinsically linked to
the importance of incorporate a swirling mean flow into an impedance boundary condition—cross-
flow swirl alters the effective angle between the mean flow and the direction of sound propagation,
hence altering how viscosity affects the attenuation.

The importance of viscosity in the boundary layer is demonstrated in figs. 5.1–5.3 by the major
effect of the viscous sublayer on the acoustic mode shapes. Figure 5.4b suggests that shear effects
dominate viscous effects within the mean flow boundary layer, while viscosity dominates within
the viscous sublayer.
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Stability

Viscosity is also indispensable when investigating the physical onset of instability, and in particular
the growth rate of the instability is strongly dependent on viscosity (see fig. 3.9). The flow appears
to be totally stabilized if viscosity is strong enough, which for the parameters considered here (see
fig. 3.9) occurred at Reynolds numbers around Re = 4× 105.

The temporal stability properties of the full LNSE are well approximated by the O(δ) boundary
layer model (4.1.2): the model is well-posed and has a well-defined maximum growth rate of insta-
bility, and captures the damping of small wavelengths by viscosity. The high frequency asymptotic
model derived in §4.1.2 is not well suited to temporal stability analysis due to the scaling assump-
tions ω � 1 and k/ω . O(1) made in its derivation; this suggests that it may not perform well
if adapted to time domain applications, but should be suitable for use in the frequency domain
where temporal instability is excluded.

For the parameters used in chapter 5, flow over an acoustic liner is unstable, as shown in
figs. 5.1b and 5.2 for the full LNSE. The asymptotics of chapter 5 correctly reproduce this stability
behaviour away from the critical layer. Near the critical layer the integrals become singular and
the asymptotic solution breaks down (fig. 5.3). Inviscid solutions similarly break down at or near
the critical layer (Brambley et al., 2012b), and this is often not limiting when used in practice,
although if accurate details are required around the critical layer a full LNSE solutions is probably
advisable with high resolution around the critical layer to avoid numerical inaccuracies (see, e.g.,
fig. 10 of Brambley et al., 2012b).

Modelling in the time domain

The application of impedance conditions in grazing flow in the time domain is an open question.
The Myers condition has been applied in the time domain in many different ways, and is still a
topic of current research (e.g. Gabard & Brambley, 2014). The use of the modified Myers condition
in the time domain has been only recently studied (Brambley & Gabard, 2013, 2016), and appli-
cation of the new inviscid impedance boundary conditions derived here in the time domain would
be interesting future work. Previous investigations of viscous impedance boundary conditions
have avoided the time domain. Due to the good temporal stability behaviour of the asymptotic
boundary condition presented in chapter 5, a time-domain formulation of (5.5.6) is proposed in
section 5.7. Equation (5.7.8) is the first time-domain impedance boundary condition to incorporate
viscothermal effects. Implementation of this boundary condition as part of a time-domain LEE
solver is beyond the scope of this thesis, and would constitute interesting future work. The recent
success of an inviscid time-domain implementation (Brambley & Gabard, 2016) gives hope that
the formulation proposed here will prove useful.

Implications for aeroengine design

The parameters used to produce most of the figures throughout this thesis (for example figs. 4.3a,
5.1a, 6.3 and 6.4) have been chosen to represent realistic aeroengine conditions. The large difference
between viscous results and results found using the Myers boundary condition, particularly for
upstream propagating cut-on modes, suggests that inlet liners may be incorrectly optimized at
present. By incorporating the effects of viscosity and thermal conduction in optimization codes,
engineers could make savings of several decibels—which could be vitally important in achieving
the targeted 50% noise reduction by 2020 (ACARE, 2001).

Boundary layer instabilities could have detrimental effects on engine performance, so the ability
to correctly predict when these instabilities occur is of practical importance. Triggering instabili-
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ties in the flow over acoustic linings could lead to inefficiencies of the fan; the association of surface
modes with convective instabilities (see fig. 3.8) means that instabilities would likely interact with
the fan blade tips, heightening the adverse effect on performance. This thesis has shown that to
correctly model boundary layer instabilities viscous effects need to be accounted for, with the char-
acteristic growth rate and wavelength of instability strongly linked to the Reynolds number, and
the phenomena of restabilisation at small wavelengths missing from inviscid models (see fig. 3.9).
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7.1 Further work

Here, a discussion is presented of possible extensions to the current work and interesting future
directions.

• In chapter 5, a mean flow with a high Reynolds number Re, a subsonic Mach number 0 ≤
M < 1, and a thin mean-flow boundary layer of thickness δ ∼ Re−1/3 is assumed. This
boundary layer is thicker than the laminar Blasius boundary layer thickness of O(Re−1/2),
and is motivated by realistic aircraft engine flows and laboratory experiments investigating
flows over acoustic linings. A mean flow boundary layer wider than predicted by laminar
Blasius theory might be due to a turbulent boundary layer and the effects of an eddy viscosity;
modelling such phenomena is one aspect lacking from the work in this thesis. Since in most
cases high Reynolds number boundary layers are turbulent, this would be an interesting
avenue of future research. One way to address this would be by altering the choice of viscous
function H in (1.1.16) to contain some radially dependent eddy viscosity that is strong at
the edge of the boundary layer and weak very close to the wall (Marx & Aurégan, 2013). A
reformulation of the analyses in chapters 4 and 5 with such a modified H would be a pertinent
extension, as would inclusion of the effects of the eddies themselves on the acoustics.

• Results are presented throughout this thesis assuming a homogeneous impedance boundary,
which may not be achieved in practice. Ongoing numerical investigations (Tam et al., 2014;
Zhang & Bodony, 2016) may illumine the important effects of inhomogeneities that could
be included in theoretical studies. Comparison of these results to direct numerical simula-
tions (DNS) and experiments (such as Alomar & Aurégan, 2016) would help validate these
assumptions. Measurements of parameter values from aeroengines in flight (in particular
boundary layer thicknesses) would be useful both to inform the relevant asymptotic regimes
of interest in future theoretical work, and to predict the impact of the current theoretical
work on aeroengine noise.

• The effects of swirl on the acoustics in a duct, neglected here, are known to be apprecia-
ble (Mathews et al., 2016). Incorporating a swirling mean flow would lead to a frequency-
domain boundary condition applicable in such situations as that studied in Mathews et al.
(2016), where the current standard is the classical and ill-posed inviscid Ingard–Myers bound-
ary condition. The importance of swirl for attenuation, stability, and the number of surface
modes could be investigated.

• Find the response of the new boundary conditions derived here to a point source forcing via
a Green’s functions treatment. This should allow the response to turbulent gusts to be built
up by using a turbulent spectra and superposition of point source-type inputs.

• Implement the time-domain formulation of the two-deck boundary layer model (5.7.8), and
incorporate it into a time-domain LEE code to account for a viscous, sheared boundary layer
through the new boundary condition.

• Investigate scattering at a hard–soft junction in a viscous, sheared boundary layer. It may be
possible to make use of the asymptotic boundary conditions derived here to form approximate
solutions, which may be compared to a full solution found through a combination of triple-
deck theory and the Wiener–Hopf method. A comparison with the inviscid treatment of
Rienstra (2007), which used the Myers condition, would be interesting.
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• Study the effects of slowly varying liner impedance or more realistic geometry, with ap-
plication to liner splices or non-cylindrical engines. A related problem is the treatment of
slowly varying effects of a non-parallel mean flow: in this work, no axial variation of the thin
boundary layer is assumed.

• Investigate the absolute stability of viscous flow over a liner. An absolute instability would
dominate a convective instability for large times; gaining an understanding of the effect
of viscosity on the absolute stability properties may therefore be valuable, although our
expectation is that absolute instabilities will be confined to extremely thin boundary layers
at extremely high Reynolds numbers (Brambley, 2013).

• Investigate the effects of boundary layer profile on acoustics in a viscous fluid. It has been
shown that in an inviscid fluid, the details of the mean flow profile are not as important to
attenuation calculations as parameters such as the displacement or momentum thickness of
the boundary layer (Gabard, 2013; Nayfeh et al., 1974). However, the shape of the boundary
layer profile can effect the behaviour and number of surface modes in an inviscid fluid (Bram-
bley, 2013).

• Application of impedance boundary conditions to acoustics in free jets, where the interface
between fluids moving with different velocities can be thought of as an impedance surface.

• Investigate nonlinear effects on the acoustics in the boundary layer and on the interaction
between the acoustics and the impedance lining.
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