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The acoustics of a straight annular lined duct containing a swirling mean flow is con-
sidered. The classical Ingard–Myers impedance boundary condition is shown not to be
correct for swirling flow. By considering behaviour within the thin boundary layers at
the duct walls, the correct impedance boundary condition for an infinitely thin boundary
layer with swirl is derived, which reduces to the Ingard–Myers condition when the swirl is
set to zero. The correct boundary condition contains a spring-like term due to centrifugal
acceleration at the walls, and consequently has a different sign at the inner (hub) and
outer (tip) walls. Examples are given for mean flows relevant to the interstage region of
aeroengines.
Surface waves in swirling flows are also considered, and are shown to obey a more

complicated dispersion relation than for non-swirling flows. The stability of the surface
waves is also investigated, and as in the non-swirling case, one unstable surface wave per
wall is found.
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1. Introduction

Future aircraft turboengines will involve increased bypass ratios (BPR) to continue the
trend of reducing fuel consumption, NOx and CO2 emissions. Further noise reduction is
also targeted with the new designs to ensure sustainable traffic growth with regards to
increasing noise exposure. Ultra high BPR (or UHBR) turboengines will have shorter
nacelles to reduce both mass and drag. The acoustically treated area available in the
inlet and exhaust portions of the UHBR nacelles will therefore be reduced, and the
interstage region between the fan and the outlet guide vanes would then become more
important for noise reduction. Yet, in the interstage region the swirl induced by the fan is
significant. Swirl can significantly modify the rotor wakes as they evolve toward the stator
leading-edges as predicted by Golubev & Atassi (2000a) and observed experimentally by
Podboy et al. (2002) for instance.
Furthermore, the types of disturbances that exist in the presence of swirl differ
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from those without swirl. They have been classified as upstream-going or downstream-
going sonic modes, nearly-convected modes and the non-modal continuous spectrum,
also called the critical layer, and have been described in details by Heaton & Peake
(2006). As a result, swirl will significantly modify the noise propagation as emphasized
by Atassi et al. (2004) and Cooper & Peake (2005). Posson & Peake (2013a) defined a
new acoustic analogy and associated Green’s function in an annular duct with swirl
which is a significant modification of the Green’s function without swirl, as illustrated by
Posson & Peake (2013a) and Mathews & Peake (2017) both in hardwall and lined ducts.
As a result, noise generated on rotor or stator blades and radiated in the interstage
region is altered by the presence of swirl as highlighted by Golubev & Atassi (2000b),
Posson & Peake (2012), Posson & Peake (2013a), or Masson et al. (2016) for instance.
Another consequence of swirl is the modification of the liner response itself. When

classical locally-reacting liners are considered, a local impedance is usually defined
to relate the acoustic pressure to the normal acoustic velocity at the liner surface.
The impact of the flow on the liner impedance was first considered over fifty years
ago. For instance Meyer et al. (1958) experimentally verified that the absorption of a
liner was modified by a grazing flow. Ingard (1959) proposed a boundary condition
accounting for the continuity of the acoustic normal displacement at the liner sur-
face, which considered the effect of mean flow parallel to the surface. Myers (1980)
extended this result to any arbitrary mean flow along a curved wall. This Ingard-Myers
impedance boundary condition has been extensively used for several decades. Yet, more
recently, both experimentally and analytically, this Ingard-Myers boundary condition
has been shown to have shortcomings. For instance, Renou & Aurégan (2010) could
not retrieve consistent impedance values using the Ingard-Myers boundary condition
from upstream- and downstream-propagating sound in experimental impedance eduction.
Brambley (2009) also suggested that the Ingard-Myers model was ill-posed and had
some inherent stability issues. Several extensions have been proposed since then that
accounts for the presence of a boundary layer on top of the liner (Rienstra & Darau
(2011); Brambley (2011); Gabard (2013); Khamis & Brambley (2016, 2017)). The effect
of swirl was however not dealt with.
Particular emphasis in this study is put on the effect of swirl on the eigenmodes in an

annular ducted flow with lined walls, accounting for the wall boundary layer at leading
order. This could also be seen as an extension of the study by Posson & Peake (2013b)
to correct the use of the boundary condition to include swirl. Posson & Peake (2013a)
showed that nearly-convected modes and the critical layer have a negligible contribution
to the pressure field in the hard wall case, although they will have to be considered in
some specific cases where unstable hydrodynamic modes are predicted (Heaton & Peake
(2006)). As a result, they are not discussed here.
Finally, additional modes have been highlighted by Rienstra (2003) in a uniform flow

besides the above three-dimensional acoustic duct modes. Indeed at high frequencies
and azimuthal order m much smaller than the dimensionless frequency ω, he showed
that up to four modes correspond to two-dimensional surface waves near the outer
wall surface and that they are independent of the duct geometry. Their field decays
exponentially away from the wall. Similarly, four modes correspond to surface waves at
the inner wall. Brambley & Peake (2006) generalized these results to arbitrary azimuthal
mode order m. The behaviour of the surface waves was also found to be dictated by a
dimensionless parameter λ, termed the acoustic spinning parameter, that depends on m,
ω, the duct radius, the mean uniform axial velocity and the speed of sound. Brambley
(2013) then studied these surface waves in sheared boundary layers over liners. For a
given frequency, up to six surface wave modes were found at each wall, rather than
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the maximum of four per wall for uniform slipping flow. Their behaviour was not only
dependent on the acoustic spinning parameter λ (using the centerline Mach number)
but also on a dimensionless boundary-layer thickness and a boundary-layer shape factor.
The importance of the boundary-layer thickness and profile was therefore demonstrated.
Finally, different convective and absolute stability was also obtained in the sheared flow
case. The present study will extend these results to the presence of swirl.
The governing equations are first presented in section 2. The correction to Myers’

boundary condition in the presence of a swirling flow is then derived to leading order in
the boundary-layer thickness δ in section 3. Both the inner and outer solutions to the
asymptotic problem are derived in sections 3.3.1 and 3.3.2 respectively. They are then
matched in section 3.3.3, which yields the boundary condition at both the inner duct
wall and outer duct wall. In section 4 the new eigenvalue problem is formulated, and the
effect of the new boundary condition is investigated on the eigenmodes. In section 5, the
new set of eigenmodes are obtained and the influence of the new boundary condition on
the acoustic propagation is studied. First, simpler cases are considered to validate the
proper behaviour of the new boundary conditions. Then the actual turbofan model of
the NASA Source Diagnostic Test (SDT) is considered to emphasize the impact of swirl
in a realistic case. Finally, the surface waves in an annular duct with swirl are derived
in section 6 and compared with the previous results of Brambley (2013) in a simpler
sheared flow.

2. Governing equations

The evolution of acoustic perturbations inside an inviscid compressible perfect gas
is considered in an infinite annular duct with acoustic treatments both on the inner
and the outer surfaces. The surface impedances of the inner and outer wall liners are
Z∗
h and Z∗

1 respectively. They are located at the radii R∗
h and R∗

t respectively, where
the star ∗ represents dimensioned coordinates. The mid-span radius is defined by r∗m =
(R∗

h+R
∗
t )/2 and h = R∗

h/R
∗
t is the hub-to-tip ratio. The duct section does not vary in the

axial direction. Lengths, speeds and density are made dimensionless by R∗
t , c

∗
0(r

∗
m) and

ρ∗0(r
∗
m) respectively, and other variables by the relevant combination of these values. The

radial component of the mean flow is assumed to be zero and the axial and azimuthal
components Ux and Uθ may vary along the radius, leading to the following definition of
the mean velocity field:

U(r) = (0, Uθ(r), Ux(r)). (2.1)

The mean pressure P0 satisfies the radial equilibrium

dP0

dr
= ρ0

U2
θ

r
. (2.2)

The mean speed of sound c0 and the mean density ρ0 may vary radially. Here a
homentropic flow is considered, so that the sound speed and density are given by

c20(r) = 1 + (γ − 1)

∫ r

rm

U2
θ (r

′)

r′
dr′, (2.3)

where rm = r∗m/R
∗
t , and

ρ0(r) =
[
c20(r)

]1/(γ−1)
, (2.4)

where γ is the ratio of specific heat capacities. Each flow variable (referred to with the
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subscript to) is decomposed into a sum of a mean and a fluctuating part so that:

Uto = U+ u, ρto = ρ0 + ρ, Pto = P0 + p. (2.5)

Here, u = (u, v, w), where u, v and w are the radial, tangential and axial components
of the fluctuating velocity respectively. The fluctuating pressure and density are given
by p and ρ respectively. The Euler equations linearised with respect to the mean flow
defined in equations (2.1),(2.2),(2.3),(2.4) reduce to:

1

c20

D0p

Dt
+ u

dρ0
dr

+ ρ0div(u) = 0, (2.6a)

ρ0

[
D0u

Dt
− 2

Uθv

r

]
−
U2
θ

rc20
p+

∂p

∂r
= 0, (2.6b)

ρ0

[
D0v

Dt
+
u

r

d(rUθ)

dr

]
+

1

r

∂p

∂θ
= 0, (2.6c)

ρ0

[
D0w

Dt
+ u

dUx

dr

]
+
∂p

∂x
= 0, (2.6d)

where D0/Dt is the convective operator with respect to the mean flow defined by

D0

Dt
=

∂

∂t
+ Ux

∂

∂x
+
Uθ

r

∂

∂θ
. (2.7)

The pressure and velocity disturbances are Fourier-transformed with respect to the time
t and the axial coordinate x. Additionally, the azimuthal periodicity allows decomposing
the perturbation field as a Fourier series in the circumferential coordinate, allowing every
acoustic variable to be written as:

ϕ(r, θ, x, t) =

∫

ω

∑

m∈Z

∫

k

ϕ̂(r)ei(kx+mθ−ωt)dkdω, (2.8)

where ϕ̂ is the Fourier transform of ϕ (ϕ standing for p, ρ, u, v or w), ω is the frequency, k
is the axial wavenumber andm is the azimuthal mode order. Given Λ = kUx+mUθ/r−ω,
the linear governing equations in the spectral domain reads:

i
Λ

c20
p̂ = −

dρ0
dr

û−
ρ0
r

d(rû)

dr
− i

ρ0m

r
v̂ − ikρ0ŵ, (2.9a)

iρ0Λû = 2
ρ0Uθ

r
v̂ +

U2
θ

rc20
p̂−

dp̂

dr
, (2.9b)

iρ0Λv̂ = −
ρ0
r

d(rUθ)

dr
û−

im

r
p̂, (2.9c)

iρ0Λŵ = −ρ0
dUx

dr
û− ikp̂. (2.9d)

Using the radial equilibrium of the mean flow, these equations can be combined to
yield a system of two coupled first-order differential equations on the pressure p̂ and the
radial fluctuating normal velocity û only. The first of these is given by

dû

dr
+

[
1

r
+
U2
θ (r)

rc20(r)
−

k

Λ(r)

dUx(r)

dr
−

m

Λ(r)r2
d

dr
(rUθ(r))

]
û

+ i
1

ρ0(r)Λ(r)

(
Λ2(r)

c20(r)
−
m2

r2
− k2

)
p̂ = 0, (2.10)
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which may be written equivalently:

d

dr

(
rû

Λ(r)

)
−

1

Λ(r)

(
2mUθ(r)

rΛ(r)
−
U2
θ (r)

c20(r)

)
û = −i

r

ρ0(r)Λ2(r)

(
Λ2(r)

c20(r)
−
m2

r2
− k2

)
p̂.

(2.11)

For the other equation, the radial-momentum linear equation (2.9b) is rewritten:

dp̂

dr
+

(
2mUθ(r)

Λ(r)r2
−
U2
θ (r)

rc20(r)

)
p̂ = −i

ρ0(r)

Λ(r)

(
Λ2(r) −

2Uθ(r)

r2
d

dr
(rUθ(r))

)
û. (2.12)

Equations (2.10) and (2.12) are the equivalent of equations (A4) and (A7) in the
appendices of Posson & Peake (2013a) in the frequency domain. They are also the
extension of Khamis & Brambley (2016, Equation 2.10) to a swirling flow. They will
be used to establish the corrected Myers boundary condition.

3. Correction of Myers’ boundary condition in presence of a swirling

flow

Using the impedance definition as a boundary condition at the duct walls:

p̂(h) = −Zhû(h) and p̂(1) = Z1û(1), (3.1)

would require properly accounting for the flow field near the wall to ensure a zero mean
velocity on the wall. To avoid this complexity, it is convenient to consider a mean flow
without boundary layers and to introduce instead an equivalent boundary condition that
would mimic the real physical behaviour.

3.1. Classical Myers’ boundary condition

Assuming the continuity of the acoustic normal displacement through an infinitely
thin boundary layer leads to the classical Ingard–Myers boundary condition (Ingard
1959; Myers 1980). It reads with the present conventions:

û(h) =
kUx(h) +mUθ(h)/h− ω

ωZh
p̂(h), and û(1) = −

kUx(1) +mUθ(1)− ω

ωZ1
p̂(1),

(3.2)
at hub and at tip respectively. In the following, it will be shown that equation (3.2) is
not the correct limit when the boundary layer thickness tends to zero in the presence of
swirl.

3.2. Assumptions

The aim of this section is to substitute the effect of a flow including a boundary layer
with the boundary condition in equation (3.1) by an equivalent boundary condition in
a flow where the boundary layer is not taken into account. In order to address such a
problem, Eversman & Beckemeyer (1972) proposed an approach based on an asymptotic
matching between an inner solution in the boundary layer, and an outer solution outside
the boundary layer which would exist if there was no boundary layer. This method has
been reused by several authors such as Myers & Chuang (1984), Brambley (2011) and
Khamis & Brambley (2016) for uniform axial flow. It is extended here to the case of a
swirling flow. Considering a thin boundary layer about the wall (r = 1 or r = h) of typical
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width† δ, δ ≪ 1, the distance to the wall δy is introduced to develop the asymptotic
expansion. As in Brambley (2011), it is scaled by the boundary layer thickness δ such
that r = 1 − δy at the outer wall and r = h + δy at the inner wall. Let Unbl

x (r) and
Unbl
θ (r) be the outer mean flow velocity profiles without the boundary layer.
In the vicinity of walls, a Taylor expansion to first order applied on the outer mean

flow velocity profiles reads:

Unbl
x (1− δy) = Unbl

x (1) +O(δ), Unbl
θ (1− δy) = Unbl

θ (1) +O(δ), (3.3)

Unbl
x (h+ δy) = Unbl

x (h) +O(δ), Unbl
θ (h+ δy) = Unbl

θ (h) +O(δ). (3.4)

Next, the outer mean flow is assumed constant up to leading order in the vicinity of
the walls. For the sake of conciseness, the constants Mx,i = Unbl

x (i) and Mθ,i = Unbl
θ (i)

are introduced for i = h, 1. This assumption will be relaxed in section 3.5.

3.3. Derivation of the corrected boundary condition at the outer wall

The boundary condition is developed at the outer wall first.

3.3.1. Outer solution

The outer solution corresponds to the fluctuations propagating in the outer flow. The
inner expansions of the outer solutions are obtained by writing a Taylor expansion of û
and p̂ in the vicinity of the outer wall. At leading order, it reads:

ûo(1− δy) = ûo(1) +O (δ) , (3.5)

p̂o(1− δy) = p̂o(1) +O (δ) , (3.6)

where the subscript o stands for the outer solution. The eigenfunctions p̂o and ûo represent
the pressure and the radial velocity respectively if the boundary layer did not exist. Even
if there is no analytic expression for them, they can be determined by a pseudo-spectral
method for example, as done in section 4. They are assumed to be known, in particular
p̂1∞ and û1∞ are introduced with

p̂o(1) = p̂1∞, ûo(1) = û1∞. (3.7)

In the following, the inner solution for û and p̂ will be matched to equations (3.5) and
(3.6).

3.3.2. Inner solution

To compute the inner solution, equations (2.11) and (2.12) are expanded by replacing
r by 1 − δy. It is also possible to start the matching method from equation (2.9). To
leading order, equation (2.12) becomes

p̂y(y) =
2iρ0UθUθ,y

kUx +mUθ − ω
û(y) +O (δ) . (3.8)

where the y-dependence has been kept implicitly. The subscript y represents the deriva-
tive with respect to y and for every variable Φ; Φ(y) improperly stands for Φ(r = 1− δy).
Similarly, equation (2.11) is rewritten in terms of the inner variable y

(
û(y)

kUx +mUθ − ω

)

y

= O (δ) . (3.9)

The solution to these equations must be determined to be matched with the outer

† In dimensional terms, δ∗ should be smaller than any other lengthscale, including not only
the mid-span radius r∗m but also axial and radial wavelengths. This will be noted where pertinent.
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solution. The acoustic pressure and normal velocity are now considered as perturbation
series, although only the leading order term is required for our analysis:

p̂(y) = p̂0(y) +O (δ) , (3.10)

û(y) = û0(y) +O (δ) . (3.11)

The form of equation (3.9) allows determining û0. At zeroth order, it reduces to:
(

û0(y)

kUx(y) +mUθ(y)− ω

)

y

= 0.

Then, by posing Λ0(y) = kUx(y) +mUθ(y)− ω,

û0(y) = B0Λ0(y). (3.12)

Similarly, only leading order terms in δ are kept in equation (3.8). This reads:

p̂0,y(y) =
2iρ0Uθ(y)Uθ,y(y)

Λ0(y)
û0(y),

and hence

p̂0(y) = A0 + iB0

∫ y

0

ρ0(y
′)
(
U2
θ (y

′)
)
y′
dy′. (3.13)

The integral term is bounded as y → ∞ since Uθ(y) = Mθ is assumed constant outside
the boundary layer, and hence its derivative is zero. The constants B0 and A0 can be
determined by matching the leading order inner solutions with the outer ones.

3.3.3. Matching

Matching equation (3.12) with the outer solution (equation (3.5)) for large y gives the
value of the constant B0:

B0 =
û1∞
Λ1
∞

, (3.14)

where Λ1
∞ = kMx,1 +mMθ,1 − ω has been defined for conciseness. Matching p̂0 defined

in equation (3.13) with p̂o in equation (3.6) for large y gives:

A0 = p̂1∞ −
iû1∞I0
Λ1
∞

, (3.15)

where

I0 =

∫ ∞

0

ρ0(y)
(
U2
θ (y)

)
y
dy = −

∫ 1

rm

ρ0(r)
d

dr

(
U2
θ (r)

)
dr. (3.16)

3.3.4. Boundary condition

At r = 1 (or y = 0), the surface impedance of the liner at the outer wall is defined
by Z1 = p̂(1)/û(1). Furthermore, we note that Λ0(1) = −ω since Ux(1) = Uθ(1) = 0.
As in Khamis & Brambley (2016), the boundary condition is expressed as an equivalent
impedance relating û1∞ and p̂1∞. At leading order, it reads:

Z†
eff(1) =

p̂1∞
û1∞

= −
ω

Λ1
∞

Z†
1 , (3.17a)

with Z†
1 = Z1 +

i

ω

∫ 1

rm

ρ0
d

dr

(
U2
θ

)
dr, (3.17b)
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which shows an additional term in comparison with the classical Myers boundary con-
dition, equation (3.2). Equation (3.17) is the correct boundary condition for a vanishing
boundary layer in presence of a swirling flow.

3.4. Extension to the inner wall

At the inner wall, the surface impedance is defined by Zh = −p̂(h)/û(h). Applying the
same method leads to the corrected Myers boundary condition at the inner wall:

Z†
eff(h) = −

p̂h∞
ûh∞

= −
ω

Λh
∞

Z†
h, (3.18a)

with Z†
h = Zh +

i

hω

∫ rm

h

ρ0
d

dr

(
U2
θ

)
dr, (3.18b)

where p̂h∞ = p̂o(h), û
h
∞ = ûo(h), and Λ

h
∞ = kMx,h +mMθ,h/h− ω.

3.5. Extension to a varying outer mean flow away from the walls

The corrected Myers boundary condition has been developed so far assuming constant
axial and azimuthal velocities. This assumption allows applying the matching between
the inner and the outer solutions for large y (see section 3.3.3), since the outer solution
has a well-defined limit when y → ∞. The method is extended here to velocity profiles
which may vary through the duct section. In that case, Ux and Uθ no longer have a limit
when y → ∞ and the matching must be handled differently. To do so, the parameters
Ûx and Ûθ are introduced such that

Ûx(y) =
Mx,iUx(y)

Unbl
x (y)

= Ux(y) +O(δ), i = h, 1, (3.19)

and

Ûθ(y) =
Mθ,iUθ(y)

Unbl
θ (y)

= Uθ(y) +O(δ), i = h, 1, (3.20)

where Mx,i and Mθ,i are defined in section 3.2, and where Unbl
x and Unbl

θ now depend on

y. Then, Uθ can be simply replaced by Ûθ in equations (3.8) and (3.9) since the equations

are unchanged at leading order. Unlike Ux and Uθ, Ûx and Ûθ have a well-defined limit
as y → ∞. In particular,

Ûθ(y) =Mθ,i, Ûx(y) =Mx,i (3.21)

outside the boundary layer and the integral I0 remains bounded. Since Ûx(0) = Ux(0)

and Ûθ(0) = Uθ(0), the boundary condition becomes:

Zeff(h) = −
p̂h∞
ûh∞

= −
ω

Λh
∞

(
Zh +

i

hω

∫ rm

h

ρ0
d

dr

(
Ûθ

2
)
dr

)
, (3.22)

and

Zeff(1) =
p̂1∞
û1∞

= −
ω

Λ1
∞

(
Z1 +

i

ω

∫ 1

rm

ρ0
d

dr

(
Ûθ

2
)
dr

)
. (3.23)

This extension has been implemented in Mathews et al. (2018), and results can be
found in Figure 4 therein. In the next section we discuss an approximation to this
boundary condition, which will be used in this paper instead.
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3.6. Approximating the boundary condition

For thin boundary layers, the density hardly varies and the corrected boundary
conditions could be approximated by:

Z‡
eff(h) = −

ω

Λh
∞

Z‡
h, (3.24a)

with Z‡
h = Zh +

i

hω
ρnbl0 (h)M2

θ,h, (3.24b)

for the inner wall, and

Z‡
eff(1) = −

ω

Λ1
∞

Z‡
1 , (3.25a)

with Z‡
1 = Z1 −

i

ω
ρnbl0 (1)M2

θ,1, (3.25b)

for the outer wall. This holds for both a constant flow and a varying flow presented in
section 3.5. The relevance of this approximation will be discussed in section 5.1.

3.7. Physical interpretation of the corrected boundary condition

In equations (3.17) and (3.18), there is an extra integral term that does not appear
in the classical Myers boundary condition, equation (3.2). This integral term scales with
the square of the mean swirl, and scales inversely with the frequency ω. In a common
mass–spring–damper impedance model, Z(ω) = RZ + i(KZ/ω−MZω), where KZ is the
spring constant of the impedance boundary, and therefore, owing to the 1/ω frequency
dependence, the extra integral term may be seen as providing an extra spring-like term.
The extra integral term is seen from (3.24b) and (3.25b) to change sign between the inner
wall and the outer wall. Physically, therefore, it is suggested that this extra integral term
is due to the mismatch in centrifugal force acting on the perturbation between one side
and the other of the infinitely thin boundary layer over the wall, increasing the perceived
springiness of the inner wall and decreasing the perceived springiness of the outer wall.
Even at the high frequencies typical in aeroacoustics, it is common to retain the KZ

term in the wall impedance, especially near the tuned resonance when KZ/ω = MZω,
and hence the extra integral term may prove to be important even at high frequencies,
and especially near resonances of the impedance walls. When the mean swirl is zero,
the additional term reduces to zero and equations (3.17) and (3.18) reduce to Myers’
boundary condition for an axial mean flow. In the case of hard walls (Z = ∞), it can be
observed that the Myers, the corrected Myers and the simple approximation all reduce
to the same boundary condition:

û(h) = û(1) = 0. (3.26)

4. Eigenmode formulation

In the wavenumber-frequency domain, it is possible to combine the governing equations
(2.9) to set up an eigenmode problem such that k is an eigenvalue and where the
eigensolutions of the problem give the radial profile of the disturbance variables. It reads:

kBX = AX, (4.1)

where X = (û, iv̂, iŵ, p̂)T is the eigenvector of the disturbances, with the superscript T re-
ferring to the transpose. The matrices A and B are defined in Appendix A and depend on
the linearised governing equations and the boundary conditions. This eigenmode problem
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is discretized by means of a pseudo-spectral method applied on a Chebyshev collocation
grid as suggested by Khorrami et al. (1989) and performed by Posson & Peake (2013a)
and Mathews & Peake (2017). The eigenmode problem is then solved numerically using
an iterative solver, starting with an initial guess for the eigenvalues, although in most
cases the eigenvalues found are robust to changes in these initial guesses.
Two sorting criteria are used to discard spurious eigenvalues: the first filter (continuity)

detects the eigenvalues the position of which moves strongly in the complex k-plane
when the number of collocation points is modified while the second filter (resolvedness)
discards the modes which are not properly resolved radially. These operations are done
whether there is a boundary layer or not, which ensures the retained eigenvalues are
correct up to the specified threshold. More details on the filtering process are available
in Brambley & Peake (2008).
At the lined walls, a boundary condition must be considered to close the problem.

To the authors’ knowledge, all the in-duct transmission studies which consider both
swirling flow and lined walls rely on Myers’ boundary condition at the interface (see
Guan et al. (2008); Posson & Peake (2013b); Maldonado et al. (2015)). In this paper,
Myers’ boundary condition (Myers 1980) is compared with the leading-order corrected
Myers boundary condition derived in section 3 and with the application of the surface
impedance definition for flows including a boundary layer. In the following, the boundary
conditions are rewritten to fit with the eigenmode formulation.

4.1. Classical Myers’ boundary condition

Since Myers’ boundary condition is k-linear, it can be easily included in the eigenmode
formulation (see equation (3.2)). This is what has been done so far in the literature (see
Guan et al. (2008); Posson & Peake (2013b); Maldonado et al. (2015); Gabard (2016)).

4.2. Corrected Myers’ boundary condition

The corrected Myers boundary condition is also k-linear. Using the impedances Z†
h

and Z†
1 introduced in (3.24b) and (3.25b) respectively, the corrected Myers boundary

condition to leading order reads:

û(h) =
kUx(h) +mUθ(h)/h− ω

ωZ†
h

p̂(h) and û(1) = −
kUx(1) +mUθ(1)− ω

ωZ†
1

p̂(1), (4.2)

which is the same formulation as the classical Myers boundary condition, where only the
impedances Z have been replaced by Z†.

4.3. Boundary-layer treatment

In order to challenge the original Myers and the corrected Myers boundary conditions,
a boundary-layer profile can be included in the mean flow, such that the flow is zero at
the interface. Given the outer flow (varying or not), the exponential envelope Lα,

Lα(r) = 1− e−α(r−h) − e−α(1−r), (4.3)

is introduced. A realistic profile with a boundary layer is defined by multiplying the
outer flow by Lα. The boundary-layer thickness is controlled by the parameter α, with
δ ∝ 1/α. The displacement thickness is defined by:

εh = 2

∫ rm

h

(
1−

Ux(r)

Unbl
x (r)

)
dr, ε1 = 2

∫ 1

rm

(
1−

Ux(r)

Unbl
x (r)

)
, (4.4)
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(a) (b)

Figure 1: (a) Magnitude of the additional term in equation (3.17b), log10

(∣∣∣Z†
1 − Z1

∣∣∣
)
.

(b) Difference between the corrected boundary condition (equation (3.17b)) and its thin

boundary layer approximation (equation (3.25b)), log10

(∣∣∣Z†
1 − Z‡

1

∣∣∣
)
. Both are calculated

at the outer wall for Unbl
θ = 0.5.

at the inner and outer wall respectively. Gabard (2013) applied several boundary-layer
profiles in the case of a non-swirling flow and showed that the shape of the boundary
layer had a weak importance on the result. The same conclusion is expected for a swirling
mean flow. However, the influence of the boundary-layer shape will not be addressed in
the framework of the present study. For a mean flow which includes a boundary layer,
the boundary condition reduces to equation (3.1).

5. Influence of the boundary condition on the acoustic propagation

In this section, the effect of using the corrected Myers boundary condition instead of
the original Myers boundary condition on the eigenmodes is considered in both ideal
and realistic cases. Both of these conditions are also compared to a resolved flow with
a boundary layer that gets infinitely thin. The relevance of the approximated boundary
condition introduced in section 3.6 is also assessed.

5.1. Validation of the approximation for thin boundary layers

The magnitude of the new term in equation (3.17b) is presented in Figure 1a in the
(α, ω)-plane, where α from equation (4.3) sets the boundary layer thickness and ω is the
frequency, for a typical case of Unbl

θ = 0.5. As expected, this term decreases with the
frequency because of the 1/ω term. However, it appears to be largely independent of the
α parameter. The additional term due to the correction is very weak almost everywhere
in the (α, ω)-plane and may become significant only below ω = 3 (with log10(3) ≈ 0.48),
which is lower than the typical frequency range of turbofan applications. For this angular
frequency |Z†

1 −Z1| ≈ 0.1, which must be compared with the amplitude of a typical liner
impedance (|Z1| ≈ 1). Close to the liner resonance defined by Im(Z1) = 0, this additional
term could become significant however.
In order to validate the thin boundary layer approximated form of the corrected Myers

boundary condition introduced in section 3.6, Z†
1 and Z‡

1 defined in equations (3.17b) and
(3.25b) respectively are also compared in the (α, ω)-plane. The results are presented in
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(a) m = −1
α 300 1000 5000 Original Myers’ Corrected Myers’
ε 7× 10−3 2× 10−3 4× 10−4 0 0

D1 2.3552 + 0.7498i 2.3543 + 0.7498i 2.3540 + 0.7498i 2.3488 + 0.7436i 2.3538 + 0.7499i
D2 1.0537 + 5.3072i 1.1232 + 5.3315i 1.1481 + 5.3405i 1.1067 + 5.3353i 1.1548 + 5.3430i
U1 −6.1198 − 1.4531i −6.1690 − 1.4476i −6.1856 − 1.4457i −6.2015 − 1.4159i −6.1890 − 1.4453i
U2 −1.8940 − 8.9215i −1.9078 − 9.0347i −1.9169 − 9.0719i −1.9046 − 9.0579i −1.9192 − 9.0814i

(b) m = 1
α 300 1000 5000 Original Myers’ Corrected Myers’
ε 7× 10−3 2× 10−3 4× 10−4 0 0

D1 1.5306 + 0.7108i 1.5264 + 0.7104i 1.5249 + 0.7103i 1.5294 + 0.7383i 1.5245 + 0.7104i
D2 0.0289 + 5.3231i 0.0917 + 5.3177i 0.1139 + 5.3155i 0.1081 + 5.3179i 0.1197 + 5.3150i
U1 −3.7368 − 1.7902i −3.7565 − 1.7941i −3.7632 − 1.7954i −3.7472 − 1.8002i −3.7645 − 1.7960i
U2 −0.5421 − 8.5783i −0.4179 − 8.6727i −0.3756 − 8.7080i −0.3786 − 8.7027i −0.3647 − 8.7173i

Table 1: Effect of the boundary condition on the position of the most cut-on eigenmodes
for the canonical case Mx = Mθ = 0.5, h = 0.5, ω = 4, Zh = Z1 = 1 − i, with |m| = 1.
U1: 1st upstream mode, U2: 2nd upstream mode, D1: 1st downstream mode, D2: 2nd

downstream mode.

Figure 1b, again for Unbl
θ = 0.5. As expected, the approximate solution Z‡

1 gets closer

to the reference Z†
1 when the boundary-layer thickness tends to zero (e.g. α → ∞) and

when the frequency increases. The difference between the two terms is at least 3 orders of
magnitudes lower than the magnitude of the additional term for all the considered values
of (α, ω). Because of this, the simpler approximated form of the boundary condition
(equations (3.24b) and (3.17b)) will be used for the numerical results that follow. This
notably allows applying the boundary condition without knowing the details of the flow
parameters inside the boundary layer. In both Figures 1a and 1b, Z1 need not be specified
even though it appears in the legend. Indeed, a glance at equations (3.17b) and (3.25b)

will show that
∣∣∣Z†

1 − Z1

∣∣∣ and
∣∣∣Z†

1 − Z‡
1

∣∣∣ do not depend on Z1. Besides, it is worth noting

that these terms scale with M2
θ,1.

5.2. Validation of the corrected Myers boundary condition

First, it is proposed to assess the corrected boundary condition for a simple case.
The canonical case chosen for the study is the constant swirl and constant axial flow
such that Mx = Mθ = 0.5. The duct section is characterized by the dimensionless inner
radius h = 0.5. The dimensionless frequency is ω = 4 and the azimuthal mode order
m = −1 is considered. The surface impedance at the inner and outer walls are defined by
Z1 = Zh = 1−i. For this case, the approximated boundary condition gives Z‡

h = 1−0.887i

and Z‡
1 = 1− 1.067i.

Eigenmodes obtained with the original Myers and the corrected Myers boundary
conditions are compared with the ones obtained with a realistic boundary layer, for
several boundary-layer thicknesses. As the boundary-layer thickness tends to zero, the
eigenmodes become harder to calculate numerically when simulating the boundary layer.
In Table 1, the two most “cut-on” upstream and downstream eigenmodes are considered.

The additional centrifugal term in the corrected Myers boundary condition has an
effect on the eigenmodes, since they differ from the eigenmodes of the classical Myers
boundary condition at the second decimal in this case. Furthermore, when the boundary-
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(a) m = −1

α 300 1000 5000 Original Myers’ Corrected Myers’
ε 7× 10−3 2× 10−3 4× 10−4 0 0

D1 6.51 6.51 6.51 6.46 6.51
D2 46.10 46.31 46.39 46.34 46.40
U1 12.62 12.57 12.56 12.30 12.55
U2 77.49 78.47 78.80 78.68 78.88

(b) m = 1

α 300 1000 5000 Original Myers’ Corrected Myers’
ε 7× 10−3 2× 10−3 4× 10−4 0 0

D1 6.17 6.17 6.17 6.41 6.17
D2 46.24 46.19 46.17 46.19 46.17
U1 15.55 15.58 15.59 15.64 15.60
U2 74.51 75.33 75.64 75.59 75.72

Table 2: Attenuation rates in dB per radius for the different boundary conditions with
the parameters as in Table 1.

layer thickness tends to zero, the eigenmodes indeed converge towards the eigenmodes
from the corrected Myers boundary condition.
For a given eigenmode, the corresponding attenuation rate in dB is given by

±20 Im(k)/log(10), the sign depending on the direction of propagation. The attenuation
rates related to the eigenmodes of Table 1 are presented in Table 2. As for the eigenmodes,
the attenuation rates converge towards the corrected Myers boundary condition when
the boundary layer thickness tends to zero.
These observations suggest that equations (3.24) and (3.25) are the correct limits for

a vanishing boundary layer.

5.3. Centrifugal effect on the eigenmodes at lower frequency

Because of the ω−1 factor contained in the centrifugal term in equations (3.24) and
(3.25), larger differences are expected between the original Myers boundary condition and
the corrected Myers boundary condition in the low-frequency range. To illustrate this,
the above test case is considered again, but with a frequency ten times lower (ω = 0.4), all
the other parameters being unchanged. The eigenmodes obtained with both boundary
conditions are plotted in Figure 2. They are compared to the reference eigenmodes,
which are also obtained by solving numerically the set of equations (2.9) according to
the method described at the beginning of section 4. These reference eigenmodes are
computed for a realistic flow profile defined by Ux(r) = Uθ(r) = 0.5L2500(r), where L2500

represents a thin boundary layer (displacement thickness ε = 4×10−4), together with the
boundary conditions Zeff(h) = Zh and Zeff(1) = Z1 since the mean flow cancels at both
walls. The values of some of the eigenmodes are given in Table 3 for the three boundary
conditions.
As expected, the centrifugal effects in the boundary condition are much stronger than

for the previous frequency of observation. Indeed, for this specific case, Z‡
h = 1 + 0.13i

and Z‡
1 = 1 − 1.67i. The original Myers boundary condition inaccurately predicts the

eigenmodes while the new corrected boundary condition gives eigenmodes much closer
to the reference.
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Figure 2: Eigenmodes position in the complex k-plane at low frequency (ω = 0.4). The
case is defined by Mx = Mθ = 0.5, h = 0.5, m = −1, Zh = Z1 = 1 − i. 300 points were
used for the radial discretization.

Reference Original Myers’ Corrected Myers’
−0.013− 7.135i 0.241 − 7.161i (3.57%) −0.023− 7.110i (0.38%)
−0.302 − 14.568i −0.227− 14.625i (0.65%) −0.308 − 14.522i (0.32%)
−1.105 + 7.959i −0.928 + 8.042i (2.43%) −1.101 + 7.948i (0.15%)
−1.068 + 14.865i −0.993 + 14.938i (0.70%) −1.066 + 14.839i (0.17%)

Table 3: Effect of the boundary condition on the position of some eigenmodes for the
low-frequency case (ω = 0.4). Mx = Mθ = 0.5, h = 0.5, m = −1, Zh = Z1 = 1 − i. The
relative errors to the reference eigenvalues are shown in brackets.

5.4. Illustration of the correct behaviour for vanishing boundary layers

In this section, the exact value of Z1
eff = p̂1∞/û

1
∞, which would be obtained if there was

no boundary layer, is compared with the effective impedance arising from the different
boundary conditions. To isolate the boundary condition being investigated at r = 1,
a slipping mean flow with no boundary layer is assumed at r = h and two artificial
boundary conditions are introduced there, given by p̂(h) = 1− i and û(h) = −1. For any
given values of ω, m and k, the governing equations (2.11) and (2.12) may be integrated
to give p̂(r) and û(r). Hence, the exact value of p̂1∞ and v̂1∞ (and hence Z1

eff = p̂1∞/û
1
∞)

can be computed by taking no boundary layer near r = 1. By introducing an exponential
boundary layer similar to Lα at r = 1, the exact value of Z1

BL = p̂α(1)/ûα(1) can be
computed in the same way.

Thus, the accuracy of the boundary conditions can be assessed by comparing the
exact value Z1

eff = p̂1∞/û
1
∞ with the ones which would be obtained by inserting Z1

BL

in the boundary conditions. The new boundary condition, the approximated boundary
condition and the classical Myers boundary condition are written in terms of an effective
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Figure 3: Plot of the relative error |Z†,1
eff /Z

1
eff − 1| (plusses), |Z‡,1

eff /Z
1
eff − 1| (circles) and

|ZM,1
eff /Z1

eff − 1| (crosses) at the outer wall. The other parameters are h = 0.5, ω = 5,
m = 1 and Mx =Mθ = 0.5.

impedance. They read

Z†,1
eff = −

ω

Λ1
∞

(
Z1
BL +

i

ω

∫ 1

rm

ρ0
d

dr

(
U2
θ

)
dr

)
, (5.1)

Z‡,1
eff = −

ω

Λ1
∞

(
Z1
BL −

i

ω
ρnbl0 (1)M2

θ,1

)
, (5.2)

ZM,1
eff = −

ωZ1
BL

Λ1
∞

, (5.3)

respectively. For these three boundary conditions, the equivalent impedance is compared
with Z1

eff. In Figure 3, the evolution of the errors |Z†,1
eff /Z

1
eff − 1|, |Z‡,1

eff /Z
1
eff − 1| and

|ZM,1
eff /Z1

eff− 1| as a function of the boundary-layer thickness are shown for four values of
k: 1, −1, 1 + i and −1− i. The parameters used for the study are h = 0.5, ω = 5, m = 1
and Mx =Mθ = 0.5.
Since the corrected Myers boundary condition has been developed to leading order

with error O(δ), it is expected that the error decreases linearly with the boundary-layer
thickness. The linear relationship between the error and the boundary-layer thickness is
drawn in yellow. The corrected Myers boundary condition as well as its simple approx-
imation match very well the expected behaviour while the classical Myers condition is
clearly wrong.
Applying the same procedure at the inner wall leads to the same conclusions. Com-

parisons have not been shown here for the sake of conciseness.

5.5. A realistic turbofan engine configuration: the SDT test case

Finally, the corrected Myers boundary condition is tested on a realistic fan config-
uration. The mean flow has been extracted from the core flow of a RANS simulation
performed on the NASA SDT test case (see Hughes et al. (2002); Woodward et al.

(2002)) so that the flow is representative of a bypass interstage with no boundary layer.
After interpolating the mean flow on a set of rational functions, a boundary layer can
be added by multiplying the mean flow by the exponential envelope defined in equation
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(b) Azimuthal flow profile Uθ(r)
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Figure 4: Interpolated profiles from the SDT test case, with or without a boundary layer.

(4.3). The value of α = 200 was chosen since it corresponds to a displacement thickness
of ε = 0.01, which is representative of a boundary-layer thickness in the interstage. The
mean flow profiles with and without the boundary layer are shown in Figures 4a and 4b.

The hub-to-tip ratio of the SDT test case is h = 0.5. The frequency of the study
is chosen so that it fits with the maximum of the rotor-stator interaction broadband
noise spectra at approach condition. The value f⋆

max = 3000Hz has been taken from
Masson et al. (2016), which corresponds to ω = 15. Even though there is no acoustic
treatment in the NASA SDT, the walls are assumed to be lined with typical acoustic
treatments. The impedance is set to Zh = Z1 = 2.55+ 1.5i. The imaginary part is above
zero which corresponds to a resonance at a higher frequency. The effect of the boundary
condition on the eigenmodes and the eigenfunctions will be assessed for m = 1 and
m = 15. Since the azimuthal flow is negative, these values correspond to contra-rotating
modes according to the conventions of the paper.

5.5.1. Position of the eigenmodes

The azimuthal mode m = 1 is considered first. The eigenmodes of equation (4.1) are
plotted in Figure 5 for the three boundary conditions. The original Myers boundary
condition (equation (3.2), violet triangles) and the corrected Myers boundary condition
(equation (3.25), red crosses) are compared with the reference (equation (3.1), blue
circles) which is obtained by considering the flow with a boundary layer. For these three
cases, the same boundary condition is applied both at the inner and outer walls. Since the
frequency is quite high, results obtained from the original Myers boundary condition and
from the corrected Myers boundary condition are really similar, the eigenmodes being
almost indistinguishable. The “most” cut-on modes, which are the most relevant when
studying in-duct transmission, are pretty well predicted, especially in the downstream
direction, while the accuracy decreases as the modes move away from the real axis.

The same methodology is then applied to the azimuthal mode order m = 15. The
results are presented in Figure 6. Once again, the original Myers boundary condition
gives very similar results as the corrected one. However, significant error is observed with
respect to the reference case, even for the eigenmodes located close to the real axis. This is
expected to alter the prediction when acoustic transmission is considered. To improve the
accuracy of the corrected Myers boundary condition with swirl, it is possible to extend
the method presented in section 3 to the first order in δ, as done by Brambley (2011) in
the case of no swirl.
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Figure 5: Eigenmodes position in the complex k-plane for a realistic test case based on
the SDT mean flow. The case is defined by ω = 15, h = 0.5,m = 1, Zh = Z1 = 2.55+1.5i.
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Figure 6: Eigenmodes position in the complex k-plane for a realistic test case based on the
SDT mean flow. The case is defined by ω = 15, h = 0.5, m = 15, Zh = Z1 = 2.55 + 1.5i.

6. Surface waves in an annular duct with swirl

The modes corresponding to surface waves in swirling flows are now considered. These
are a different class of modes from the acoustic modes that have so far been considered.
Surface waves only occur in a lined duct and their mode shape is localised about the
duct boundary. These surface wave modes still satisfy equation (4.1), but they are often
difficult to resolve numerically, meaning that a good initial guess is often needed, which
comes from an analytical dispersion relation for the surface wave modes.
Surface waves were first considered in detail by Rienstra (2003) for uniform axial

flow in a lined duct with Myers’ boundary condition in the high frequency range, and
small azimuthal number limit. This was then extended by Brambley & Peake (2006) to
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arbitrary azimuthal wavenumber, but still for a uniform axial flow in a hollow duct. Our
aim in this section is to extend the dispersion relation and results from Brambley & Peake
(2006) to swirling flow in an annular duct.

6.1. The surface-wave dispersion relation with swirl

The surface-wave dispersion relation is considered first at the outer wall. The surface
waves located near the outer wall are characterized by an exponential decay away from
the outer wall, so that the acoustic pressure and normal velocity p̂ and û are of the form

p̂(r) = ψp̂(r)e
−µ1(1−r), û(r) = ψû(r)e

−µ1(1−r) (6.1)

respectively, where µ1 is the radial wave number near the outer wall and dψϕ/dr = O(1)
for ϕ = p̂, û. For surface waves to decay exponentially from the wall, it is required
that Re(µ1) > 0 and |Re(µ1)| ≫ 1. Note that, for the infinitely thin boundary-layer
assumption δ ≪ 1 to still hold for such surface waves, δ ≪ 1/|µ1| ≪ 1 is required. From
these assumptions, the derivative of p̂ and û can be evaluated near the outer wall

dp̂

dr
(1) = µ1p̂(1) +O (1) ,

dû

dr
(1) = µ1û(1) +O (1) .

The boundary conditions at the inner wall impose conditions on ψp̂(h) and ψû(h), but
since both p̂ and û are exponentially small away from r = 1 this inner boundary condition
does not affect the dominant behaviour near r = 1. This decoupling of the boundary
conditions for the surface waves was also shown by Rienstra (2003, section 9) in the
case of uniform flow in an annular duct, and can be verified explicitly from the high
frequency approximation as in Heaton & Peake (2005), Mathews & Peake (2017) for
arbitrary swirling flows.

Equations (2.10) and (2.12) can be rewritten at the outer wall for the specific case of
surface waves propagating in an homentropic mean flow. To leading order the pressure
and normal velocity satisfy
(
Λ2(1)

c20(1)
−m2 − k2

)
p̂+

[
−µ1Λ(1)− Λ(1)−

U2
θ (1)

c20(1)
Λ(1) (6.2)

+k
dUx

dr
(1) +m

(
dUθ

dr
(1) + Uθ(1)

)]
iρ0(1)û = 0,

(
µ1Λ(1) + 2mUθ(1)−

U2
θ (1)Λ(1)

c20(1)

)
p̂+

(
Λ2(1)− 2Uθ(1)

dUθ

dr
(1)− 2U2

θ (1)

)
iρ0(1)û = 0.

(6.3)

At the outer wall, the approximate corrected Myers boundary condition reads:

iωρ0(1)Z
‡
1 û(1) = −iρ0(1)Λ(1)p̂(1), (6.4)

where Z‡
1 is defined in equation (3.25b). This is substituted in equations (6.2) and (6.3),

and after eliminating p̂ the coupled velocity and pressure equations read

Λ2(1)

c20(1)
−m2 − k2+

[
−µ1Λ(1)− Λ(1)−

U2
θ (1)

c20(1)
Λ(1) (6.5)

+k
dUx

dr
(1) +m

(
dUθ

dr
(1) + Uθ(1)

)](
−i
ρ0(1)Λ(1)

ωZ‡
1

)
= 0,
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and

µ1Λ(1) + 2mUθ(1)−
U2
θ (1)Λ(1)

c20(1)
(6.6)

+

(
Λ2(1)− 2Uθ(1)

dUθ

dr
(1)− 2U2

θ (1)

)(
−i
ρ0(1)Λ(1)

ωZ‡
1

)
= 0.

Finally, the dispersion relation for the surface waves at the outer wall is obtained by
eliminating µ1 in equations (6.5) and (6.6). It reads:

i
ωZ‡

1

ρ0

[
i
ωZ‡

1

ρ0

(
Λ2

c20
−m2 − k2

)
− Λ2

(
1 +

2U2
θ

c20

)
(6.7)

+Λ

(
k
dUx

dr
+ 3mUθ +m

dUθ

dr

)]
+ Λ2

(
Λ2 − 2Uθ

dUθ

dr
− 2U2

θ

)
= 0,

where all the quantities are evaluated at r = 1.

Similarly, the dispersion relation for surface waves located near the inner wall can
be derived. The acoustic variables are now proportional to exp{−µh(r − h)}, where
Re(µh) > 0 and |Re(µh)| ≫ 1. Following the same approach as for the outer wall yields:

−i
ωZ‡

h

ρ0

[
−i
ωZ‡

h

ρ0

(
Λ2

c20
−
m2

h2
− k2

)
− Λ2

(
1

h
+

2U2
θ

hc20

)
(6.8)

+Λ

(
k
dUx

dr
+

3mUθ

h2
+
m

h

dUθ

dr

)]
+ Λ2

(
Λ2 −

2Uθ

h

dUθ

dr
−

2U2
θ

h2

)
= 0,

where all the quantities are evaluated at r = h. Equations (6.7) and (6.8) are polynomials
in k of degree four. Therefore there are at most four surface-wave modes at each wall,
although some of the solutions may not satisfy Re(µr0) > 0, r0 = {h, 1} where µ1 is given
by equation (6.6) for instance.

6.2. No-swirl case

If the swirl is set to zero, equations (6.7) and (6.8) reduce to

± i
ωZr0

ρ0

[
±i
ωZr0

ρ0

(
Λ2

c20
−
m2

r20
− k2

)
−
Λ2

r0
+ Λk

dUx

dr

]
+ Λ4 = 0, (6.9)

(where ± = + at the outer wall and ± = − at the inner wall), which can also be written
in the form

µr0 = i
ρ0Λ

2

ωZ1
, µ2

r0 =
m2

r20
+ k2 −

Λ2

c20
± µr0

(
k

Λ

dUx

dr
−

1

r0

)
. (6.10)

Equation (6.10) is equivalent to leading order in 1/µr0 to the surface-wave dispersion
relation of Brambley & Peake (2006), as used by Brambley (2013). Since both equa-
tion (6.10) and the surface-wave dispersion relation of Brambley & Peake (2006) were
derived only to leading order in 1/µr0 by different methods, it is unsurprising that they
differ at high orders of 1/µr0, and such differences are not significant. The difference
between the two is due to the presence of the 1/r0 and kU ′

x/Λ terms. These terms
physically correspond to geometric effects of the curved cylindrical surface and mean
flow shear effects at the wall respectively.
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(b) Comparison of surface wave
modes

Mode S1 Mode Sh

Numerical 30.828 −
59.410i

32.960 −
68.515i

Dispersion
Relation ×

30.756 −
59.354i

33.140 −
68.624i

% error 0.135 0.277
Re(µ) 31.079 34.572

Figure 7: Plot of the numerical acoustic modes (blue circles), numerical surface-wave
modes (black squares: corrected Myers’, orange triangles: original Myers’), the dispersion-
relation surface-wave modes (green crosses: corrected Myers’) and critical layer (red).
The parameters are Mx = 0.5, Mθ = 0.5, h = 0.5, ω = 10, m = 1 and Z(ω) =
1.6− 0.08iω + 6i/ω.

6.3. Results

Some results for the surface waves are now considered. The surface-wave modes
predicted from the analytical dispersion relation are first compared with the exact
numerical eigenmodes. The differences in surface-wave modes for the original Myers
boundary condition and the corrected Myers boundary condition are then examined.
Finally, the number of surface-wave modes predicted by the dispersion relations are
studied for different impedances.

6.3.1. Comparison between asymptotic and numerical surface waves

The asymptotic surface-wave modes predicted from the dispersion relations in equa-
tions (6.7) and (6.8) are first compared with the exact numerical modes for an infinitely
thin boundary layer. The following parameters are used: Mx = 0.5, Mθ = 0.5, h = 0.5,
m = 1 and ω = 10. An impedance specified by a mass-spring-damper, Z(ω) = RZ −
iMZω + iKZ/ω is also taken, where RZ is the impedance damping, MZ the impedance
mass and KZ the impedance spring. The parameters RZ = 1.6, KZ = 6 and MZ = 0.08
are chosen from Table 1 in Brambley & Gabard (2016), giving Z(10) = 1.6− 0.2i. Note
that because of the different time convection used Brambley & Gabard (2016), we need
to change the sign of the reactance.
The numerical modes (blue circles for acoustic modes, black squares for surface-

wave modes) for the corrected Myers boundary condition are plotted in Figure 7a,
together with the surface-wave modes predicted by the analytical dispersion relation
(green crosses) using equations (6.7) and (6.8). Two solutions to the dispersion relation
with Re(µ) ≫ 1 are found, one at each duct wall. Two further solutions are found
with Re(µ) ≈ 0.15 for both, and the nearest numerical modes to these lie in the line of
acoustic modes. Thus these solutions are not localized waves close to the surface, and
should not be considered as surface-wave modes in nature. A comparison between the
numerical modes and the dispersion-relation solutions is shown in Table 7b: the relative
error of the modes from the dispersion relation compared with the numerical modes is
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Figure 8: Plot of real part of eigenfunctions (normalised so that p̂(r) = 1 at one duct wall)
for the modes from Figure 7. (a) Surface-wave modes: k = 30.828− 59.410i (red), k =
32.960− 68.515i (blue, dashed); (b) Seven most cut-on acoustic modes: k = 3.62 + 1.80i
(blue), k = 5.97+0.54i (orange), k = −1.34+6.85i (yellow), k = −12.06−4.73i (purple),
k = −7.77− 12.89i (green), k = −4.50 + 14.85i (sky-blue), k = −16.76− 0.85i (brown).

very small stressing the accuracy of the asymptotic model. Moreover for the two surface-
wave modes very large values of Re(µ) are obtained, showing rapid exponential decay.
This is confirmed in Figure 8a showing the eigenfunctions from the two surface waves in
Figure 7. The rapid exponential decay along with a small amount of oscillation can be
clearly seen, as predicted by the asymptotic method due to the large values of Re(µ). The
surface wave eigenfunctions at the inner and outer wall also appear relatively symmetric,
although they are not exactly. Comparing with the eigenfunctions for the seven most
cut-on acoustic eigenmodes shown in Figure 8b demonstrates that the eigenfunctions
from the surface waves are very distinctive and localised around the duct walls.
In Figure 7a a comparison between the surface-wave modes using the corrected Myers

boundary condition (black squares) and the original Myers boundary condition (orange
triangles) is also seen. Much more difference in the surface-wave modes is obtained for
the two boundary conditions than was found for the acoustic modes. Indeed in Figure 7a
the acoustic modes from the two boundary conditions can hardly be distinguished, as
already observed in Figures 5 and 6. In fact the distance between the surface-wave modes
for the different boundary conditions is ∆k = 0.83 for the upper left surface-wave mode
(S1), and ∆k = 1.64 for the lower right surface-wave mode (Sh) which corresponds to
relative difference of 1.24% and 2.16% respectively. The distances between the acoustic
modes for the two boundary conditions is in the order of ∆k = 0.01.
If the surface waves were to be considered at much lower frequency, like in Figure 2, then

even more of a difference in the surface-wave modes would be seen for the two boundary
conditions. For the corrected Myers boundary condition and the same parameters as
Figure 2, a surface-wave mode is numerically given by k = 5.7379− 2.4009i, which is to
the right of the critical layer (which has end points k = 1.8 and k = 2.8). Note that this
mode has Re(µ) ≈ 6.3, so while it decays exponentially, its variation is relatively slow. If
the original Myers boundary condition is used, then the surface wave would be given by
k = 3.9108− 3.2616i, which is a significant distance away, with a relative error of around
32% compared with using the correct boundary condition.
The numerical surface modes in Figure 7 have been calculated for an infinitely thin

boundary layer, and are now compared to the true surface modes for a fully resolved
exponential boundary layer as the boundary-layer thickness tends to zero, as in Sec-
tion 5.1 for the acoustic modes. The difficulty here is that the dispersion relation given
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α 1600 2500 5000 8000 Original
Myers’

Corrected
Myers’

ε 1.25× 10−3 8× 10−4 4× 10−4 2.5× 10−4 0 0

Re(S1) 34.699 33.079 31.865 31.449 31.651 30.828
Im(S1) −76.786 −68.629 −63.480 −61.836 -59.318 -59.410

Re(Sh) 35.793 35.253 34.061 33.641 31.328 32.960
Im(Sh) −101.038 −83.827 −74.897 −72.252 -68.670 -68.515

Table 4: Table of surface modes Sh and S1 calculated numerically for different exponential
boundary layers of Ux(r) = Uθ(r) = 0.5Lα where Lα is given in (4.3). The other
parameters are as in Figure 7.

by equation (6.8) assumes the mean flow to vary more slowly than the surface wave
eigenfunction, which is no longer valid when resolving a thin boundary layer, and so we
have no approximation for the surface modes with the boundary layer resolved. Therefore,
we have started with a very thin boundary layer where the surfaces modes are known
to be close to the numerical solutions in Figure 7, and have gradually increased the
boundary-layer thickness.
In Table 4 two surface modes (one for each wall) are considered for different boundary

layers thicknesses, as well as for an infinitely thin boundary layer with the corrected Myers
and the original Myers boundary condition. For α > 8000 (where Lα is the exponential
envelope) resolving the very thin boundary layer becomes difficult, while for α < 1600
the surface modes start moving very fast and become hard to track. Even though such
restrictions prevent any definite conclusions, the corrected Myers boundary condition
appears to be more likely the limit case as the boundary-layer thickness tends to zero
than the original Myers boundary condition.

6.3.2. Number of surface-wave modes

Next, how the number of surface-wave modes varies with the impedance is considered.
In Brambley & Peake (2006, Figure 2), this was dealt with for a range of parameters
for uniform axial flow and no swirl. A more realistic flow is taken here instead, and
the SDT flow (without a boundary layer) from Figure 4 is used. For reference the flow
parameters at the duct walls are Ux(h) = 0.3188, Uθ(h) = −0.2869, Ux(1) = 0.2803 and
Uθ(1) = −0.2658. For this turbofan case, the variation of the number of surface-wave
modes from the dispersion relation which satisfy Re(µ) ≫ 1 with the impedance Z is
studied. This will serve as a proxy for the exact number of numerical surface-wave modes,
which would be much more computationally expensive.
Because of the more complicated flow, several parameters are expected to control the

behaviour of the number of surface-wave modes. A variety of different flows, frequencies
and azimuthal numbers could be considered, but for simplicity just a single case (m = 1,
ω = 15 and SDT flow) is considered to illustrate some of the possible behaviours. To
be able to determine the number of surface-wave modes, the range over which Re(µ)
satisfies Re(µ) ≫ 1 needs to be specified. In Brambley & Peake (2006) the number of
surface-wave modes with Re(µ) > 0 was considered. Re(µ) > 5 is used instead here for
the classification of surface waves, as it is a more realistic guide as to whether a mode is
acoustic or a surface wave.
In Figure 9 the lines Re(µ) = 5 mapped into the Z plane are plotted. These lines

correspond to where a surface wave has exactly Re(µ) = 5, and thus crossing one
of these lines changes the number of surface-wave modes. These lines were generated
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(a) Surface waves at outer wall r = 1 (b) Surface waves at inner wall r = h

Figure 9: Plot of the lines Re(µ) = 5 mapped into the Z plane. In each region there are a
different number of surface-wave modes with Re(µ) > 5. The regions have been labelled
with the number of surface-wave modes and coloured differently. The parameters are
SDT flow, m = 1 and ω = 15.

numerically, since unlike the case of uniform flow in Brambley & Peake (2006), an
analytical expression for these lines cannot be obtained.
It is clear from Figure 9 that there are no surface waves at either wall for an impedance

with Im(Z) < −1, which corresponds to region zero in both images (in green). A total
of exactly eight surface-wave modes can also be found, with four at each wall (region IV,
shown in blue), by choosing an impedance of say Z = 1.5i. Any combination between zero
and eight surface-wave modes in total at both walls can also be produced by carefully
choosing the impedance and consequently moving to the other zones of the map (1
surface-wave mode per wall in the grey zone, 2 in the yellow zone and 3 in the red zone).
The impedance chosen in section 5, Z = 2.55+1.5i, is marked with a red cross, and lies in
region II (yellow) at both duct walls, corresponding to two surface waves at each wall. The
surface waves at the outer wall can be numerically calculated as k = 380.08−417.45i and
k = −154.12+474.89i, while the inner wall surface waves are given by k = 317.05−375.60i
and k = −112.25 + 378.88i. Thus, it is clear why they do not appear in Figure 5.
Finally, it should be noted that if the original Myers boundary condition were to

be used instead of the corrected Myers boundary condition, this would have the effect
of shifting Figure 9 up or down. Figure 9a would be shifted down by ρnbl0 (1)M2

θ,1/ω
to get the result for the original Myers boundary condition, and Figure 9b would be
shifted up by ρnbl0 (h)M2

θ,h/(hω). Thus, it is clear that depending on the amount of shift
(especially at low frequencies) the number of surface-wave modes would be different for
the two boundary conditions. However, this is because an exact criterion for surface
waves, Re(µ) > 5, has been introduced. In reality the same number of surface-wave
modes exists, but some have changed their exponential decay and are closer to becoming
acoustic modes.
The procedure for finding surface waves by tracking modes as Z is varied, as described

in Rienstra (2003, section 6) is still valid in swirling flow (at least for this case). For this
procedure, an initial impedance is selected in the zero region (in green) in Figure 9 where
no surface waves at either wall are to be found, and where all the modes are consequently
acoustic modes. It is relatively easy to calculate these modes numerically. The impedance
can then be slowly varied to the true value being considered, which will probably involve
crossing contours in Figure 9. As these contours are approached, surface-wave modes
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Figure 10: Briggs-Bers contours as the frequency is increased from ω = 10 to ω = 10+8i.
The blue/red circles indicate the position at ω = 10, green/orange crosses at ω = 10+8i,
and the black contour are the paths between. The other parameters are Mx = 0.5,
Mθ = 0.5, h = 0.5, m = 1 and Z(ω) = 1.6− 0.08iω + 6i/ω.

will emerge from the line of acoustic modes, which can then be traced as the impedance
further varies. Using this method, the need for initial guesses at the wavenumbers of
possible surface waves could be avoided completely.

6.4. Stability of surface waves

The stability of the surface waves is now considered. To begin with, the Briggs-Bers
(Briggs 1964; Bers 1983; Brambley 2009) contours are plotted for Figure 7a, which show
the stability of the modes. These are traces of the eigenmodes as the imaginary part of
frequency is increased from zero (in Brambley (2009) it is decreased from zero due to the
different sign of e−iωt). In Figure 10 these traces are shown in black as the frequency is
increased from ω = 10 to ω = 10+8i, with the blue circles (acoustic modes) and red circles
(surface-wave modes) showing the initial positions at ω = 10, and green crosses (acoustic
modes) and orange crosses (surface-wave modes) showing the position at ω = 10 + 8i.
The other parameters are the same as in Figure 7a.
The acoustic modes are seen not to move that much as the imaginary part of ω is varied.

For each frequency exactly one surface wave per wall is found. These were obtained by
using the dispersion relations given by equations (6.7) and (6.8) as starting guesses for
calculating these surface-wave modes numerically. As the imaginary part of the frequency
is increased, the surface-wave modes move to the right and down, and do not cross the
real axis. Therefore these surface-wave modes are stable.
For a more interesting case concerning unstable surface-wave modes, a flow with

Ux(r) = 0.8 is considered instead, with the other parameters unchanged. The Briggs-
Bers contours are plotted in Figure 11 for ω = 10 to ω = 10 + 20i. The downstream
acoustic modes are again seen not to move that much as the imaginary part of ω is
varied, although the upstream acoustic modes move more than in the previous case. We
also note that the two downstream acoustic modes with the largest imaginary part in
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Figure 11: Briggs-Bers contours as the frequency is increased from ω = 10 to ω = 10+20i.
The blue/red circles indicate the position at ω = 10, green/orange crosses at ω = 10+20i,
and the black contour are the paths between. The other parameters are Mx = 0.8,
Mθ = 0.5, h = 0.5, m = 1 and Z(ω) = 1.6− 0.08iω + 6i/ω.

Figure 11 have more interesting behaviour than their counterparts, with the trajectory
of one of them forming a loop.

Initially, there is one surface wave per wall, labelled S1 and Sh, and both have negative
imaginary axial wavenumbers k. They move considerably as the imaginary part of
frequency is varied, with both crossing the real axis and moving into the upper-half
plane. The surface mode S1 crosses the real axis for 16 < Im(ω) < 17, while the surface
mode Sh crosses shortly afterwards when 18 < Im(ω) < 19. If the imaginary part of
frequency was further increased then these surface-wave modes would continue to move
upwards, with both crossing the line Im(k) = 100 at around Im(ω) ≈ 58. Owing to their
presence in the upper half plane for sufficiently large Im(ω), these surface waves are found
to be convectively unstable.

Thus, each wall is found to support up to one convectively unstable surface wave for
swirling flow. Furthermore, at each wall this unstable mode travels downstream. This is
the same situation as in the non-swirling case. It is entirely possible and reasonable that
we get a stable surface mode at one wall, and an unstable surface mode at the other wall.
Whilst we cannot rule out the possibility that more than one surface mode per wall is
unstable for some set of parameters, for all the realistic parameters we have calculated
at most one instability per wall was present.

The stability of the SDT flow from Figure 4 is finally considered but now with ω = 10,
m = −5, h = 0.5 and the mass-spring-damper impedance. Two surface modes are found
that have negative axial wavenumber for ω = 10, and as the imaginary part of frequency
is increased they move further from the real line, with the negative imaginary part of
the axial wavenumber increasing. The Briggs-Bers contours would look very similar to
Figure 10, and the SDT flow would be stable. If a frequency of ω = 3 was considered
instead for the SDT flow with the other parameters unchanged then two surface modes
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Figure 12: Trajectory of the two surface-wave modes Sh and S1 from Figure 11 as k is
varied along the real line. Plot of (a) growth rate Im(ω) versus k and (b) Re(ω) versus
Im(ω).

would be found to cross the real axis as the imaginary part of frequency is increased and
hence the flow is unstable.

6.4.1. Temporal stability of the surface waves

Finally, the temporal stability of the surface waves is considered. Khamis & Brambley
(2016) considered the temporal stability of the unstable surface wave for uniform axial
non-swirling flow using three different boundary conditions: the Myers, modified Myers
and second order boundary condition. It was shown that using the Myers boundary
condition gives an unbounded temporal growth rate and makes the problem ill-posed,
while using the modified Myers or second order boundary condition gives a bounded
growth rate, with the second order boundary condition more closely replicating the
numerics.

The growth rate of the corrected Myers boundary condition in the presence of swirl is
of interest here. The simple swirling flow from Figure 11 is considered, and the frequency
ω of the unstable surface wave is solved for as k is varied with k real. The unstable
surface wave Sh lies on the real line at k = 109.89, ω = 10 + 18.42i, and the surface
wave S1 lies on the real line at k = 89.48, ω = 10 + 16.75i. Instead of solving the
system in equation (4.1) for the axial wavenumber k with ω given, the inverse problem
is considered with wavenumber k given and the eigenmode ω to be found. The resulting
k versus growth rate, Im(ω), is plotted in Figure 12a, along with a plot of Im(ω) against
Re(ω) in Figure 12b. These lines correspond to surface wave transitioning from spatially
stable to spatially unstable, as their related axial wavenumber crosses the real axis in the
complex k-plane. As an example, the points where the surface-wave modes cross the real
axis in Figure 11 are marked with circles in Figure 12, and correspond to surface waves
becoming unstable for this specific set of parameters. Note also that as k or Re(ω) are
decreased, the surface-wave modes get closer together as seen in Figure 12b.

It appears that, for both surface waves, the growth rate Im(ω) is unbounded as both k
and Re(ω) increase, suggesting that the corrected Myers boundary condition is ill-posed
in swirling flow, as in the axial flow case. Therefore, the present stability analysis is not
strictly correct and a well-posed boundary condition should be considered instead. Such
a model is developed in Mathews et al. (2018).
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7. Conclusion and Future work

In the present study, a generalization of the Myers boundary condition has been
developed in an annular duct with swirl, both for the inner wall and for the outer wall.
It has been shown that the classical Myers boundary condition is not the correct limit
when an infinitely thin boundary layer is considered at the walls in the presence of swirl.
Indeed, centrifugal effects modify the boundary condition by introducing an extra spring-
like term to the effective impedance. The new boundary condition has the correct linear
error behaviour when the boundary-layer thickness tends to zero. While the spring-like
correction term is inversely proportional to frequency, it nevertheless remains the same
magnitude as any spring-like terms within the wall impedance which are typically not
neglected even at high frequencies, and it is shown that neglecting this extra term can
lead to significant error in the low-frequency range. The corrected boundary condition has
been tested with a flow profile representative of a realistic turbofan bypass. If a typical
boundary-layer thickness is considered, results are still far from the reference numerical
solution. To improve the prediction, the boundary condition should be further expanded
to first order with respect to the boundary-layer thickness. This method is presented in
Mathews et al. (2018).

A dispersion relation for the surface waves in swirling flow has been established which
differs significantly from the dispersion relation in non-swirling flow. This new surface
wave dispersion relation may be used with the impedance given by the corrected Myers
boundary condition to accurately predict surface waves in swirling flow. The dispersion
relation is a polynomial of order four with respect to the axial wavenumber k, meaning
there are at most four surface waves per wall, as in the non-swirling case. If the swirl is
set to zero, the surface-wave dispersion relation reduces to one asymptotically equivalent
to that of Brambley & Peake (2006).

The surface-wave dispersion relation has then been shown to accurately predict the
location of the numerical surface waves for arbitrary swirling flow profiles. The choice
of boundary condition has been found to have a quite significant effect on the surface
waves. Depending on the impedance of the duct walls, there can be between zero and
eight surface waves in total over the inner and outer walls, and it is possible to use
the dispersion relation to identify regions where a certain number of surface waves are
present. Finally, the stability of the surface waves has been considered, and we found up
to one unstable surface wave modes per wall, as in the non-swirling case. Additionally,
at least one of these unstable surface waves is found to be temporally unstable with an
unbounded growth rate, rendering the corrected Myers boundary condition ill-posed, as
is the Myers boundary condition in the non-swirling case.

Although this paper only considered a homentropic base flow, the inclusion of entropy
gradients in the base flow is certainly possible and is an area to be investigated in the
future. This would lead to a different dispersion relation for the surface waves, although
a similar method could still be used. Another aspect to be considered in the future would
be the corrected Myers boundary condition in a curved duct, which would be more
challenging. Another area of future work would be to consider perturbations in the time
domain or with arbitrary axial and circumferential variance (rather than Fourier), for
which the method in this paper can be readily applied.
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Appendix A.

In (4.1) the matrix A is given by

A =




ω̄
Ux

− 2Uθ

rUx
0 −

iU2

θ

rc2
0
ρ0Ux

+ i
Uxρ0

d
dr

−
(

Uθ

rUx
+

U ′

θ

Ux

)
ω̄
Ux

0 − im
rρ0Ux

− 1
β2

(
1
r +

ρ′

0

ρ0

−
UxU

′

x

c2
0

)
− 1

β2

d
dr − m

β2r − ω̄Ux

β2c2
0

iω̄
β2ρ0c20

i
β2

(
ρ0U

′
x − Uxρ0

r − Uxρ
′
0

)
− iρ0Ux

β2

d
dr − imρ0Ux

rβ2 − iρ0ω̄
β2 − ω̄Ux

β2c2
0




where ω̄ is the shifted frequency defined by ω̄ = ω−mUθ/r, β is the local compressibility
factor defined by

β(r) =

√
1−

U2
x(r)

c20(r)
,

and where the superscript ′ denotes the derivative with respect to r for conciseness. The
matrix B is the identity matrix everywhere but on the first and the last lines where the
boundary conditions are applied.
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