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Nonlinear Acoustics in a Viscothermal Boundary Layer
over an Acoustic Lining

Owen D. Petrie * Edward J. Brambley |

Sound within aircraft engines can be 120dB-160dB, and may be amplified by 1000x
within a visco-thermal boundary layer over an acoustic lining. This may be expected to
trigger nonlinear effects within the fluid boundary layer (in addition to the well-known
nonlinear effects within the holes of the lining). This paper presents a mathematical inves-
tigation into the effects of weak nonlinearity on the acoustics within a thin boundary layer
in flow over an acoustic lining in a duct. The analysis combines the effects of sheared mean
flow, viscosity, and nonlinearity into an effective impedance boundary condition. In certain
cases, a surprisingly large acoustic streaming effect is also found that is not localized to the
boundary layer but propagates well out into the interior of the duct.

I. Introduction

Acoustic liners are an essential part of civilian aircraft engines, enabling them to meet ever stricter noise
requirements. Sound within aircraft engines is loud, potentially 120dB-160dB, pushing the validity of the
usual assumption of linearised sound over a steady background flow. However, a thin visco-thermal boundary
layer of thickness 6 over an acoustic lining was recently predicted! to give an amplification by a factor of order
1/§ to certain elements of the acoustic solution. Since typically § = 1072 for aeroengine intakes, even when
the sound within the engine ducting may validly be considered linear, nonlinear effects would be expected
within the boundary layers over acoustic linings. Experimental evidence also suggests nonlinearity becomes
important at lower amplitudes than might otherwise be expected for flow over an acoustic lining?. Here,
these effects are investigated by mathematically modelling weakly nonlinear acoustics in a visco-thermal
boundary layer over an acoustic lining.

Acoustic linings are typically modelled as an array of Helmholtz resonators; the effect of the acoustic
lining is reduced to an impedance boundary condition, which is a linear relation between the acoustic pressure
Re(pexp{iwt — ikz — imf}) and the acoustic normal velocity Re (0 exp{iwt — ikz —im#}) at the boundary,
p = Z9, where Z is typically a function of the frequency w. Singh & Rienstra® showed that nonlinearity is
generally unimportant for frequencies away from the resonant frequencies of the resonators, but that near
the resonant frequencies the impedance needs to be modified to include a nonlinear term due to the inertia
of the fluid in the resonator necks. i

Much of the work on acoustics in flow over acoustic linings uses the Myers* boundary condition, 2=
Lo = w‘j—]@k, where Z is the actual boundary impedance and Z.g is the effective boundary impedance
seen by the acoustics in the uniform base flow of Mach number M within the duct. This comes from
matching the normal fluid displacement at the boundary, and is correct for thin boundary layers, either
at high frequencies!:> or for inviscid fluid%”. However, the Myers boundary condition implies an infinitely
thin boundary layer at the lining, and not only do boundary layers need to be extremely thin for this
to be accurate®”, but it also causes the Myers boundary condition to be ill-posed®. More recent work®
gave a modified Myers boundary condition which accounted for the thin sheared boundary layer of the
background flow, but still ignored the effect of viscosity. However, Renou & Aurégan'® demonstrated that
to correlate mathematical and numerical results with the results of experiments, the effect of viscosity within
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Figure 1: Diagram of the duct

Density p* = pip Pressure p* = cipip
Velocity u* =cgu Viscosity w=col*pop
Distance ot =1z Thermal Conductivity K* = ¢l pyeyk
Time =1/t Temperature T =c?/c;T

Table 1: Dimensional and Non-dimensional variables where % denotes a dimensional variable, with lengthscale
I*, velocity cj, density pj and specific heat at constant pressure cj,.

the boundary layer must be included, while Khamis & Brambley !1:'? demonstrated that the effect of viscosity
on the acoustics are of a comparable magnitude with the effect of shear, and thus both should be taken into
account. Viscosity within the boundary layer was investigated by Aurégan et al.® for weak thin boundary
layers, and by Brambley ! for stronger thin boundary layers, while investigations of the boundary layer taking
into account both base flow shear and viscosity have recently been performed by Khamis & Brambley 1314,
This approach agrees most closely with results from solving the linearised Navier Stokes equations for the
entire duct. The aim of all this work has been to derive a new boundary condition in terms of an effective
impedance Z.g as a function of the actual wall impedance Z. This is the impedance that an inviscid uniform
flow would observe at the boundary given the effect of the viscous boundary layer. None of these studies
have considered nonlinearity of the acoustics within the fluid.

In this paper the effect of nonlinearity is also considered. We restrict ourselves to the weakly nonlinear
case £ < 0 < 1, where ¢ is the acoustic amplitude p/po and § is the boundary layer thickness.

II. Governing Equations

We consider the acoustics in a compressible viscous perfect gas inside a cylindrical duct, as depicted in
figure 1. We non-dimensionalise all quantities as shown in table 1, giving the governing equations'®

9 4V (pu) =0 (1a)
pRY = _Vp+V.o (1b)
U4 au]‘
Tij = M (gm; + am) + (NB - %ﬂ) 5ijv ‘u (1C)
P = B+ V- (kVT) 40,54 (1d)

where D/Dt = 9/0t +u -V and v = ¢, /c; is the ratio of specific heats. We assume that the viscosities
and thermal conductivity depend linearly on the temperature and are independent of pressure (Prangsma,
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Figure 2: Boundary Layer Profile (u left, T right) for M = 0.7, Pr =0.7, £ =1 and § = 1073
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1 (2)
where Re = cil"p; /15 is the Reynolds number based on the sound speed and Pr = pgc; /s is the Prandtl
number. In the duct we use cylindrical coordinates (r*, 6, z*) where [* is now taken to be the radius of the
duct, so that in non-dimensionalised variables the wall of the duct is at » = 1. We assume that the mean
flow is uniform and time-independent and has a boundary layer thickness §*. We then take the reference
values pg, Ty, pi, uf~ and x5 to be those of the uniform flow. This gives To = 1/(y — 1) and py = 1/v. The
non-dimensionalised uniform flow velocity Uy = M is the Mach number.

At the duct boundary r* = [* we consider a steady thin boundary layer of thickness 6* = [*§. The
boundary layer is characterised by balancing viscous shear with inertia, so that inside the boundary layer
we use the scalings

r=1-dy, €6 =1/Re (3)

where £ ~ O(1) is a parameter adjusting the relative strength of viscosity, and £ = 0 gives an inviscid
boundary layer. Any boundary layer profile could be used for what follows, provided it is independent of ¢
and 0 and is in thermal equilibrium with the boundary, 7'.(1) = 0. For the results given here, a compressible
Blasius boundary layer is used, as depicted in figure 2; for further details, see Ref. 1.

For a typical aircraft engine at sea level, pf =~ 1.225kgm 3, ¢y~ 340ms™t, puh ~ 2 x 107°Pa, cp =
10°m?s72K, v ~ 1.4 and [* ~ 1m. This then gives the order of magnitude estimates Re ~ 107, and hence
§ ~ 1073. For acoustic power between 120dB and 160dB, we find ¢ has an order of magnitude varying
between 5 x 107° and 5 x 1073, For the subsequent weakly nonlinear approximation, we will require & < 6.

III. Small perturbations

We now consider small perturbations to the uniform flow of magnitude ¢ < ¢ that are the real part of
terms with dependence exp{i(wt — kz — m#)}. We will write, for example, the total temperature as T + T,
where T'(r) is the mean flow value and T is the small harmonic perturbation.

Outside the boundary layer (i.e. within the duct away from the walls) we assume gradients are not large, so
that the viscous terms, which are O(1/Re) = O(6?) from (2), can be neglected at leading order. This means
that at leading order we can treat the flow outside the boundary layer as inviscid with u = (M + o, 0, w0),
p=1/y+poand T =1/(y— 1)+ To.

Inside the boundary layer, we rescale using (3), so that r = 1 — dy and u = (u + @, —00,w). From Ref.
1 we know that for the leading order system to be well-posed we require @, 0, p and T to be O(g/6) and p
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and @ to be O(e) at leading order. This suggests we use the expansion:

= %ﬂl + z—zaz + cils (4a)
b= %@1 + g—z@ + el (4b)
W = ewy + ?@2 + b3 (4c)
T= ST+ S o1, (4d)
5= b + S + <0 (40)

where the quantities labelled ‘1’ are the leading order (linear) perturbations, quantities labelled ‘2’ are the

first order nonlinear correction, and quantities labelled ‘3" are the first order in ¢ linear correction (i.e. the
first terms to involve mean flow shear). We next expand the governing equations (1) to order O(¢?) and
O(e0) to give linear system of ODEs for each of these quantities.

IV. Linear acoustics

In this section we describe the process for solving the governing equations (1) with the asymptotic
expansion (4) for the leading order linear terms (quantities labelled ‘1’), reproducing the results of Ref. 1.
A similar procedure can be used for the first order linear correction terms (quantities labelled ‘3’), as was
done in Ref. 13. These equations will be used in section V to calculate the new nonlinear terms (quantities
labelled 2’).

Since the equations we are working with here are linear, we do not have to take the real parts of the
complex exponentials when substituting for the perturbations, but may work instead directly with the
complex exponentials, as is usual in acoustics.

A. Outer

At leading order the solution for the pressure in the centre of the duct is the standard result involving Bessel
functions,

po = CJp(ar) where o = (w— Mk)? — k2, (5)

and C is an arbitrary constant. The other quantities are then given in terms of pp by
i(w — Mk)ﬂo — ikﬁo = 0,
i(w— ME)vo + por =0,

i(w— Mk)wo —impo/r = 0, (6¢

To = po- (6d

B. Inner

Inside the boundary layer, the expansion of the governing equations (1) at leading order gives

i(w — uk)Ty + Tty — Tory + kT
L, o1, Tisw, k) = i(w = uk)in + 1y — (v = 1)°T(Ttiny + Tiuy)y =0 (7)
i(w—uk)Ty + 01Ty — &(y = 1)°T [%(TlT)yy + T (uy)? + 27wyt

which is a system of linear homogeneous ODEs.
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Figure 3: Surface plot of |Z.g/Z(1 — MTk)| in the k-plane for w =31, M = 0.5, 6 = 1073, Pr = 0.7 and £ = 1.
The darker shades of green are where the Myers condition agrees fairly closely with the viscous asymptotics
whereas the lighter shades are where the two schemes disagree.

C. Matching

The system of equations £ is second order in u and T, and (due to the scaling used, 4) we have that
u; = T1 = 0 at the wall. To get the second boundary condition we look outside the boundary layer, where
the gradients of the mean flow quantities vanish and the mean flow quantities achieve their uniform flow
values, so at y =Y > 1, the system decouples and becomes:
n2 T — (V—il)ﬁly + (Vi—fl)dl
L1, 01, Th;w, k) = Mo lin — gy =0 (8)
03T — %ley

This can now be solved analytically, with only the decaying solutions kept so that we can match to our
Outer solution in the centre of the duct. This allows the equations at Y to be reformulated to give first order
equations such that only the decaying solutions are admitted:

ik _

oo -1 ' T [
oV D7k fy toneTi=0 aty=Y

Uy + Mooty = 0, 01 = V100 —
g Moo

where 72, = i(w— Mk)/¢ and 0% = Pr. This gives the results of Brambley!; where the O(¢/§) amplification
in the boundary layer does not propagate into the centre of the duct where the acoustics are O(g). This is
because both @; and Ty decay to zero outside the boundary layer, while —§914, which is O(e), is matched
to the outer. It should be noted that taking the decaying solution involves taking the square root of nZ
which has positive real part. This leads to a branch cut in the complex k-plane, with the branch point at
k = w/M and the branch cut extending vertically downwards.

Figure 3 shows a plot of |Zeg/Z(1 — 2£)[ in the k-plane for the leading order viscous asymptotics. This
compares the effective impedance found to the impedance from the Myers boundary condition. The branch
cut is clearly visible at Re(k) = 62 for Im(k) < 0.

For further details of this, including various asymptotic solutions of (7) in high- and low-frequency limits,
the reader is referred to Ref. 1. The same procedure as given here may be used to calculate the first order
linear correction terms (quantities labelled ‘3’ above), and such an analysis is given in Ref. 13. We now turn

our attention to the nonlinear correction terms.
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V. Nonlinear acoustics

Having solved for the leading order linear terms, We now solve for the nonlinear correction terms (quan-
tities labelled ‘2’ in 4). Substituting the asymptotic ansatz (4) into the governing equations (1) and taking
terms of order O(¢?) results in a set of linear ODEs to solve for the nonlinear correction terms, forced by
terms quadratic in the leading order linear solution. Since these forcing terms are nonlinear, we must take
the real parts of the perturbed leading order quantities before multiplying. For example, the multiple of i,
and dop /dz is

Re (@ exp{iwt — ikz — imf}) Re( — ikt exp{iwt — ikz — imf})
1
= §Re( — ikt 01 exp{2iwt — 2ikx — 2imO} + ik* 107 exp{i(w — w*)t —i(k — k*)x}), (9)
where a star denotes the complex conjugate. This therefore results in two different modes: a mode of double
the frequency and wavenumber of the leading order acoustics; and a ‘zero’ frequency mode that has the
purely imaginary frequency w — w* and wavenumber k — k*.
A. Inner

The system of equations to solve is now:
L@z, B, Tp; 2, K) = Qain, ¥y, T3 a7, 07, T w, ) (10)

where £ is as given in (7), = 2w, K = 2k and the x is ignored in the double frequency mode case, and
Q) =w-—w*, K =Fk—k* and the x means the complex conjugate in the ‘zero’ mode case. The forcing Q has
the following form:

L (Tver) — L(Tor), + BELi(Q — uK) + LiKa Ty

i(w—uk) 1~ Fix ik~ ~% Wy (1 ~ ~ —1)2 =S
o- Wb (0, T7) + Eaya; + m(Tyoy) — Loay,) + 952 L (Tag,), 1)

E@h) - (0 Ty,) + T + (Do) +

—1)2 ~ ~ _1)2 o ~
+£(V4Pl72 g (T7Ty)y + W(Tulyu{y + 2uyT1u{y)

Similarly to the linear case, when the extrapolation outside the boundary layer at y =Y > 1 is carried
out we get exponential terms o< exp(+N4y) where N2 = i(Q2—MK)/¢. The double frequency mode behaves
similarly to the leading order acoustics. The branch cut for N, is the same as for 7., and we can take the
decaying solution and rewrite the equations to ensure only this solution is admitted. However for the ‘zero’
mode N2 is always real, and the resulting behaviour depends on the sign of N2,. For downstream decaying
modes, N2, < 0, and both exponentials have purely imaginary argument and oscillate without decaying.
In effect, this is because in this case the whole lower-half k-plane is the branch cut. This means that the
0(e2/62) ‘zero’ frequency amplification will propagate into the centre of the duct. For upstream decaying
modes, N2, > 0, and the decaying solution may be taken similarly to the leading order case.

B. Interaction of multiple modes

We might also consider the nonlinear effect due to two different frequency leading order modes interacting.
We now take the leading order acoustics as a superposition of two waves,

al — Re (ﬂ/laei(watfkazfmae)) + Re (albei(wbtfkbxfmbe)) , (12)

We finally obtain two pairs of nonlinear self-interaction modes, as described above, as well as two cross-
interaction modes. These cross-interactions modes will have the forms

gy = Re(figeil@nten)t=(hath)o—(matmo)0]) g, _ Re(fpeila—wi)t=(ka=ki)o=(ma=mn)ol) (13
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The system of equations we now have to solve are:

Loy, o4, Toy; Q, K) = Qiina, U1, Thai @b, D16, Tib; Was ka) + Q(U1b, D16, T1vi Wias D1a, Trai o ko) (14)
with Q from (11), Q = w, + wp and K = k, + kp, and

L(tip—, 2—, To—;Q, K) = Qit1a, V10> Tia; Wy, U1y, Thys was ka) + Q(ly, 01y, Thys t1as D105 Thas —wi, —k7)
with Q = w, —w} and K =k, — kj.

The magnitude of the matching outer solution depends on N2 in the same way as the self-interaction
modes. For N2, real and negative the outer solution is O(¢?/62), and for all other values of N2 it is O(g?).

C. Outer

In the case N2, > 0 (when the original mode decays in the upstream direction) the behaviour of the ‘zero’
mode outside the boundary layer is similar to the leading order mode, the amplification in the boundary
layer decays and it matches to a O(¢?) Outer solution which is given by a forced Bessel’s equation:

~ 1. ~ M2~ _1 200 00~k —1 2N§o~*~
D2rr + ~Dar + A%py — Sz P2= % T - %plﬂ
iKENS 5 ENZ ENZ . ., IMENZ
Ty 11+T( +1r)p1+T 1P1T_T 1P7
7 e o . Mo,
+T[§W§OP1U1 — kUit + 07, — waul]
1 . im _, 1
4T[ En2 Py + kUi — 001, + wfvl + w1w1]
1 s ey im . 1
+Z[—§W<2>op{vl + ikuyv — 0701, + wavl + rwl T01]
iM - g~ - m o, . 1
—l—?[—p{ngo{wl +ikajwy — 0f Wy, + —w{wl — —vlwl] + c.c.

where A2 = —¢?NL — K? = [ — MK]? — K? and M = 0. This can be transformed to a forced Bessel’s
equation of order M. For the double mode the equation for the outer is the same but with M = 2m.

D. Outer for self-interaction mode with Ngo <0

In the case N2 < 0, the extrapolation of the inner gives an oscillatory solution. This propagates into the
rest of the duct and as the frequency of the oscillations is o« 1/0, the gradients outside the boundary layer
can no longer be assumed to be small and so the viscous terms cannot be ignored. However, an approximate
solution to the outer equations may be found using the method of multiple scales. To do this we begin by
defining variables y and Y such that » = Y +dy, so y is the rapidly varylng variable and Y the slowly varying
variable. We can then expand all quantities as us = 52 Uoo —i— £ lio1 + €2too and expand the equations in
powers of §. At leading order (O(g2/§2)) this gives:

N3 oo — Eliooyy = 0 = Gioo = A1 (Y)eV + Ay (V)e v (15)
where f2 = —NZ. To avoid a secular term at the next order (io1) we require:
Al A2 ~ 1 . .
Al +-==0 d A+ =2 =0 = (AeTY + Aje—ifY), 1
2y an 2y = oo = = (Aret 4 Aze™Y) (16)

Now this solution is singular at the origin, so to eliminate one of the two constants we need to solve for @ in
an inner-outer region about » = 0 where the 1/r terms become large. To do this we set » = dz and expand
our equations to leading order in §. This gives:

Nfofaoo - gﬂOOLIXE - gaOOm =0 = ﬂ/OO = AJQ(f.’II) (17)
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For large x this solution can be approximated by the standard result:

0 T
oo ~ Ay ffr—Y cos(fy — Z) (18)

This now has to match with our outer solution. This means that the Outer must be:

1o = UQT;O cos(fy — g) and A= J;—gﬁzoo (19)

We can use a similar method to find the leading order terms of T, v and p:

Too = BT;O cos(foy — g) (20a)
Si(k — k)ligoo . ) —D)Theo . T
o0 = % sin(fy = 5) - L= oy - 3 4 220(v) (20b)
B* _
on = NGy = 1) (24 2 2 ) Ton + 82D (0) (200

To find the slowly varying terms of 9o and po, we have to introduce a new slow-slow variable X such
that » = X/§+Y + dy. We can then repeat the above method to second order and find that Cy(r)and D1 (r)
are the same Outer solutions, U720 and p2o, as in the case Ngo > 0.

The constants figee and The are both O(e2/62). This corresponds to an amplified acoustic streaming,
stronger than the O(?) acoustic streaming that would be expected, that is caused by the viscous boundary
layer over the acoustic lining.

VI. Numerical Method

While asymptotic approximate solutions to equations (7,11,14) are possible (see, e.g. Refs. 1,14, here
these equations are solved numerically using 4th order finite differences. The resulting 3N x 3N banded
matrix system of equations is solved using the LAPACK ZGBSV routine. To solve for the first order
nonlinear inner, the same matrix is used, now forced by terms nonlinear in the leading order quantities. The
system of equations is solved from y = 0 to y = Y, where Y is large enough so that the mean flow terms
are approximately there uniform flow values, and the extrapolation condition (8) is used as the boundary
condition.

By way of comparison, we also produce weakly nonlinear solutions to the full Navier Stokes equations,
without any of the asymptotic assumptions in § and the matching needed above. The full Navier Stokes
equations are expanded in €, and a 4th order finite difference scheme is again used for the O(¢) and O(g?)
equations thus obtained. In this case we get a BN x 5N banded matrix equation that is homogeneous in the
leading order case and forced by leading order terms in the first order case. To accurately resolve the details
in the boundary layer while still solving across the whole duct, stretched coordinates n = tanh(Sr)/ tanh(S)
are used, where S is the stretching factor. This then concentrates the grid points about » = 1 so that the
rapid variations there due to the thin boundary layer are properly resolved. For the results below a stretching
factor of S = 2.0 is used. Before solving, the matrix is balanced so that the largest value in each row is 1;
this ensures that the solution remains stable near the origin, where terms involving 1/r can become large.

VII. Results

Figure 4 shows plots of the mode shapes for both types of cross-interaction modes. The asymptotic
solution can be seen to be in good agreement with the comparable result derived directly from the expansion
in € of the full Navier Stokes, calculated without assumptions about asymptotics and matching. Note that
these solutions are calculated with p; = 1 at the wall, and only the real parts of the solutions are plotted
here.
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Figure 4: Inner solutions of sy /e? (left) and ia— /e? (right) for w, = 5, ko = 10, m, = 10, wy, = 31 + 54,
ky = 12, mp = 12 for asymptotics (blue) compared to expanded full Navier Stokes (green), with § = 1073,
M =0.7,Pr=0.7and ¢ =1
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Figure 5: Inner (left) and outer (right) mode shapes of the double frequency mode iz /e?, comparing the
asymptotics (blue) to the first term from the expansion in € of the full Navier Stokes (green). Parameters
are M =0.7,6 =103 Pr=07,6=1,w=5k=5+iand m =2

A typical mode shape of the double-frequency nonlinear mode is given in figure 5. The nonlinear asymp-
totic solution is shown to be in good agreement with be first term from the expansion in ¢ of the full Navier
Stokes, giving confidence in the asymptotic method applied. Moreover, both solutions are localized within
the boundary layer (§ = 1073 in this case), confirming the prediction that the O(1/§) amplification within
the boundary layer® does indeed trigger significantly more nonlinearity than would otherwise have been
expected, but that, for the double frequency mode, it does not bleed out into the rest of the duct.

The comparable ‘zero’ frequency nonlinear mode, for the case upstream decaying case N2 > 0, is plotted
in figure 6. This shows a similar trend to 5, in that the predicted O(1/§) amplification within the boundary
layer is seen, but does not bleed out into the rest of the duct; the acoustic streaming in the centre of the
duct remains the classical magnitude of O(¢25°).
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(blue) compared to the first term from the expansion in € of the full Navier Stokes (green). Other parameters
are M =0.7,6 =103, Pr=0.7and £ =1

In contrast, however, figure 7 shows the mode-shapes in the case of a downstream decaying mode, for
which N2, < 0. The solution is seen to oscillate rapidly in 7 with a wavelength of order O(d). This amplified
rapid oscillation does not decay away from the boundary layer and is present throughout the duct, with
an amplitude of O(¢2/§2). This shows that, in this case, the amplification within the boundary layer by
a factor of 1/ previously predicted! does indeed lead to significant nonlinearity beyond what would have
been expected within the duct, and that this nonlinearity is not in this case confined to within the boundary
layer but bleeds out into the rest of the duct.

Figure 8 shows the total sum of these effects, by plotting the overall perturbation to the streamwise
velocity u at different acoustic amplitudes. The effect of the nonlinear streaming is easily seen by the hairy
appearance of the louder plot, although this nonlinear perturbation decays faster in the = direction than the
damped acoustics, since the axial wavenumber has twice the decay rate of the linear acoustics.
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Figure 8: Plot of snapshots of the total perturbation for k =5 —4, w = 31, m = 10 and 6 = 10~2 for different
initial amplitudes.

VIII. Conclusion

In this paper, we have investigated how the previously predicted! amplification of acoustics within a thin
visco-thermal boundary layer over an acoustic lining leads to nonlinear effects becoming apparent at lower
sound amplitudes than might have otherwise been predicted. It is emphasized that the nonlinearity presented
here is nonlinearity within the fluid in the boundary layer, and is separate to the nonlinear behaviour of the
actual boundary, such as the nonlinear behaviour of Helmholtz resonators near resonance®. The mechanism
is that sound of amplitude € enters the boundary layer of thickness § and is amplified to order €/J. Nonlinear
interactions then result in new acoustics with an amplitude of order £2/§2. These new acoustics have either
double the frequency of the incoming sound, or ‘zero’ times the frequency, the latter corresponding to acoustic
streaming. The double frequency amplified sound is localized to the boundary layer, but for downstream
decaying sound the ‘zero’ frequency nonlinear modes bleed into the rest of the duct and show an £2/62
amplitude throughout the duct. This is a factor of 1/§ times the magnitude that would be created by
ordinary nonlinear interactions within the duct itself.

Also derived here are equations governing the nonlinear interactions of two modes of differing frequencies.
As for the self-interacting case, nonlinearity becomes important at lower amplitudes than expected due to
the 1/ amplification within the boundary layer. Such interactions may well be important when two well-
damped high azimuthal order spinning modes (for example, corresponding to the number of rotor and stator
blades respectively) interact to produce a poorly-damped low azimuthal order nonlinear mode.

So far, this analysis has not been applied to investigate nonlinearity within surface modes Since
surface modes are localized close to the boundary, and since one of them might be an instability which might
lead to large amplitudes, investigating the impact of nonlinearity on such modes in combination with the
1/6 amplification would prove interesting. For example, it may be that the nonlinearity enhances certain
surface modes and restrains others.

The analysis presented here has assumed a thin boundary layer of width , and a small acoustic pertur-
bation of amplitude ¢, with ¢ < § < 1. In practice this is expected to be applicable to aircraft engines up to
about 160dB, where nonlinear effects are expected to become important everywhere and not just confined
to the boundaries. While the use of the asymptotics simplifies the governing equations, numerical solutions
are still needed. In the linear case, other additional methods are used to derive approximate solutions and
an effective impedance Z.g that accounts for the behaviour within the boundary layer without having to
numerically solve differential equations®'3#, and such techniques may well be applicable here.

Since these modes have only been identified mathematically, it would be interesting to look for their
signature in existing experimental results, such as those of Aurégan?, for example.
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