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Sound within air
raft engines 
an be 120dB�160dB, and may be ampli�ed by 1000×

within a vis
o-thermal boundary layer over an a
ousti
 lining. This may be expe
ted to

trigger nonlinear e�e
ts within the �uid boundary layer (in addition to the well-known

nonlinear e�e
ts within the holes of the lining). This paper presents a mathemati
al inves-

tigation into the e�e
ts of weak nonlinearity on the a
ousti
s within a thin boundary layer

in �ow over an a
ousti
 lining in a du
t. The analysis 
ombines the e�e
ts of sheared mean

�ow, vis
osity, and nonlinearity into an e�e
tive impedan
e boundary 
ondition. In 
ertain


ases, a surprisingly large a
ousti
 streaming e�e
t is also found that is not lo
alized to the

boundary layer but propagates well out into the interior of the du
t.

I. Introdu
tion

A
ousti
 liners are an essential part of 
ivilian air
raft engines, enabling them to meet ever stri
ter noise

requirements. Sound within air
raft engines is loud, potentially 120dB�160dB, pushing the validity of the

usual assumption of linearised sound over a steady ba
kground �ow. However, a thin vis
o-thermal boundary

layer of thi
kness δ over an a
ousti
 lining was re
ently predi
ted1

to give an ampli�
ation by a fa
tor of order

1/δ to 
ertain elements of the a
ousti
 solution. Sin
e typi
ally δ = 10−3
for aeroengine intakes, even when

the sound within the engine du
ting may validly be 
onsidered linear, nonlinear e�e
ts would be expe
ted

within the boundary layers over a
ousti
 linings. Experimental eviden
e also suggests nonlinearity be
omes

important at lower amplitudes than might otherwise be expe
ted for �ow over an a
ousti
 lining

2

. Here,

these e�e
ts are investigated by mathemati
ally modelling weakly nonlinear a
ousti
s in a vis
o-thermal

boundary layer over an a
ousti
 lining.

A
ousti
 linings are typi
ally modelled as an array of Helmholtz resonators; the e�e
t of the a
ousti


lining is redu
ed to an impedan
e boundary 
ondition, whi
h is a linear relation between the a
ousti
 pressure

Re
(

p̃ exp{iωt− ikx − imθ}
)

and the a
ousti
 normal velo
ity Re
(

ṽ exp{iωt − ikx − imθ}) at the boundary,
p̃ = Zṽ, where Z is typi
ally a fun
tion of the frequen
y ω. Singh & Rienstra

3

showed that nonlinearity is

generally unimportant for frequen
ies away from the resonant frequen
ies of the resonators, but that near

the resonant frequen
ies the impedan
e needs to be modi�ed to in
lude a nonlinear term due to the inertia

of the �uid in the resonator ne
ks.

Mu
h of the work on a
ousti
s in �ow over a
ousti
 linings uses the Myers

4

boundary 
ondition,

p̃
ṽ
=

Zeff = ωZ
ω−Mk

, where Z is the a
tual boundary impedan
e and Zeff is the e�e
tive boundary impedan
e

seen by the a
ousti
s in the uniform base �ow of Ma
h number M within the du
t. This 
omes from

mat
hing the normal �uid displa
ement at the boundary, and is 
orre
t for thin boundary layers, either

at high frequen
ies

1,5

or for invis
id �uid

6,7

. However, the Myers boundary 
ondition implies an in�nitely

thin boundary layer at the lining, and not only do boundary layers need to be extremely thin for this

to be a

urate

6,7

, but it also 
auses the Myers boundary 
ondition to be ill-posed

8

. More re
ent work

9

gave a modi�ed Myers boundary 
ondition whi
h a

ounted for the thin sheared boundary layer of the

ba
kground �ow, but still ignored the e�e
t of vis
osity. However, Renou & Aurégan

10

demonstrated that

to 
orrelate mathemati
al and numeri
al results with the results of experiments, the e�e
t of vis
osity within

∗
PhD student, DAMTP, University of Cambridge, Cambridge CB3 0WA, United Kingdom. AIAA student member.

†
Asso
iate Professor and Royal So
iety University Resear
h Fellow, Mathemati
s Institute and WMG, University of Warwi
k,

Coventry, CV4 7AL, United Kingdom. AIAA senior member.

Copyright


© 2017 by O.D. Petrie & E.J. Brambley. Published by the Ameri
an Institute of Aeronauti
s and Astronauti
s,

In
. with permission.

1 of 12

Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2017-3376



PSfrag repla
ements

u(r)

M

δ

r

x

θ

Figure 1: Diagram of the du
t

Density ρ∗ = ρ∗0ρ Pressure p∗ = c∗20 ρ∗0p

Velo
ity u
∗ = c∗0u Vis
osity µ = c∗0l

∗ρ∗0µ

Distan
e x∗ = l∗x Thermal Condu
tivity κ∗ = c∗0l
∗ρ∗0c

∗

pκ

Time t∗ = l∗/c∗0t Temperature T ∗ = c∗20 /c∗pT

Table 1: Dimensional and Non-dimensional variables where ∗ denotes a dimensional variable, with lengths
ale

l∗, velo
ity c∗0, density ρ∗0 and spe
i�
 heat at 
onstant pressure c∗p.

the boundary layer must be in
luded, while Khamis & Brambley

11,12

demonstrated that the e�e
t of vis
osity

on the a
ousti
s are of a 
omparable magnitude with the e�e
t of shear, and thus both should be taken into

a

ount. Vis
osity within the boundary layer was investigated by Aurégan et al.

5

for weak thin boundary

layers, and by Brambley

1

for stronger thin boundary layers, while investigations of the boundary layer taking

into a

ount both base �ow shear and vis
osity have re
ently been performed by Khamis & Brambley

13,14

.

This approa
h agrees most 
losely with results from solving the linearised Navier Stokes equations for the

entire du
t. The aim of all this work has been to derive a new boundary 
ondition in terms of an e�e
tive

impedan
e Zeff as a fun
tion of the a
tual wall impedan
e Z. This is the impedan
e that an invis
id uniform

�ow would observe at the boundary given the e�e
t of the vis
ous boundary layer. None of these studies

have 
onsidered nonlinearity of the a
ousti
s within the �uid.

In this paper the e�e
t of nonlinearity is also 
onsidered. We restri
t ourselves to the weakly nonlinear


ase ε ≪ δ ≪ 1, where ε is the a
ousti
 amplitude p̃/p0 and δ is the boundary layer thi
kness.

II. Governing Equations

We 
onsider the a
ousti
s in a 
ompressible vis
ous perfe
t gas inside a 
ylindri
al du
t, as depi
ted in

�gure 1. We non-dimensionalise all quantities as shown in table 1, giving the governing equations

15

∂ρ
∂t

+∇ · (ρu) = 0 (1a)

ρDu

Dt
= −∇p+∇ · σ (1b)

σij = µ
(

∂ui

∂xj
+

∂uj

∂xi

)

+
(

µB − 2
3µ

)

δij∇ · u (1
)

ρDT
Dt

= Dp
Dt

+∇ · (κ∇T ) + σij
∂ui

∂xj
(1d)

T = p
(γ−1)ρ (1e)

where D/Dt = ∂/∂t + u · ∇ and γ = c∗p/c
∗

v is the ratio of spe
i�
 heats. We assume that the vis
osities

and thermal 
ondu
tivity depend linearly on the temperature and are independent of pressure (Prangsma,
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Figure 2: Boundary Layer Pro�le (u left, T right) for M = 0.7, Pr = 0.7, ξ = 1 and δ = 10−3

Alberga & Beenakker)

16

,

µ =
T

T0Re
, µB =

T

T0Re

µB∗

0

µ∗

0

, κ =
T

T0PrRe
(2)

where Re = c∗0l
∗ρ∗0/µ

∗

0 is the Reynolds number based on the sound speed and Pr = µ∗

0c
∗

p/κ
∗

0 is the Prandtl

number. In the du
t we use 
ylindri
al 
oordinates (r∗, θ, x∗) where l∗ is now taken to be the radius of the

du
t, so that in non-dimensionalised variables the wall of the du
t is at r = 1. We assume that the mean

�ow is uniform and time-independent and has a boundary layer thi
kness δ∗. We then take the referen
e

values ρ∗0, T
∗

0 , µ
∗

0, µ
B∗

0 and κ∗

0 to be those of the uniform �ow. This gives T0 = 1/(γ− 1) and p0 = 1/γ. The
non-dimensionalised uniform �ow velo
ity U0 = M is the Ma
h number.

At the du
t boundary r∗ = l∗ we 
onsider a steady thin boundary layer of thi
kness δ∗ = l∗δ. The

boundary layer is 
hara
terised by balan
ing vis
ous shear with inertia, so that inside the boundary layer

we use the s
alings

r = 1− δy, ξδ2 = 1/Re (3)

where ξ ∼ O(1) is a parameter adjusting the relative strength of vis
osity, and ξ = 0 gives an invis
id

boundary layer. Any boundary layer pro�le 
ould be used for what follows, provided it is independent of t
and θ and is in thermal equilibrium with the boundary, Tr(1) = 0. For the results given here, a 
ompressible

Blasius boundary layer is used, as depi
ted in �gure 2; for further details, see Ref. 1.

For a typi
al air
raft engine at sea level, ρ∗0 ≈ 1.225kgm−3
, c∗0 ≈ 340ms

−1
, µ∗

0 ≈ 2 × 10−5
Pa, c∗p ≈

103m2
s

−2
K, γ ≈ 1.4 and l∗ ≈ 1m. This then gives the order of magnitude estimates Re ≈ 107, and hen
e

δ ≈ 10−3
. For a
ousti
 power between 120dB and 160dB, we �nd ε has an order of magnitude varying

between 5× 10−5
and 5× 10−3

. For the subsequent weakly nonlinear approximation, we will require ε ≪ δ.

III. Small perturbations

We now 
onsider small perturbations to the uniform �ow of magnitude ε ≪ δ that are the real part of

terms with dependen
e exp{i(ωt− kx−mθ)}. We will write, for example, the total temperature as T + T̃ ,
where T (r) is the mean �ow value and T̃ is the small harmoni
 perturbation.

Outside the boundary layer (i.e. within the du
t away from the walls) we assume gradients are not large, so

that the vis
ous terms, whi
h are O(1/Re) = O(δ2) from (2), 
an be negle
ted at leading order. This means

that at leading order we 
an treat the �ow outside the boundary layer as invis
id with u = (M+ ũO, ṽO, w̃O),
p = 1/γ + p̃O and T = 1/(γ − 1) + T̃O.

Inside the boundary layer, we res
ale using (3), so that r = 1 − δy and u = (u + ũ,−δṽ, w̃). From Ref.

1 we know that for the leading order system to be well-posed we require ũ, ṽ, ρ̃ and T̃ to be O(ε/δ) and p̃
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and w̃ to be O(ε) at leading order. This suggests we use the expansion:

ũ =
ε

δ
ũ1 +

ε2

δ2
ũ2 + εũ3 (4a)

ṽ =
ε

δ
ṽ1 +

ε2

δ2
ṽ2 + εṽ3 (4b)

w̃ = εw̃1 +
ε2

δ
w̃2 + εδw̃3 (4
)

T̃ =
ε

δ
T̃1 +

ε2

δ2
T̃2 + εT̃3 (4d)

p̃ = εp̃1 +
ε2

δ
p̃2 + εδp̃3 (4e)

where the quantities labelled `1' are the leading order (linear) perturbations, quantities labelled `2' are the

�rst order nonlinear 
orre
tion, and quantities labelled `3' are the �rst order in δ linear 
orre
tion (i.e. the

�rst terms to involve mean �ow shear). We next expand the governing equations (1) to order O(ε2) and
O(εδ) to give linear system of ODEs for ea
h of these quantities.

IV. Linear a
ousti
s

In this se
tion we des
ribe the pro
ess for solving the governing equations (1) with the asymptoti


expansion (4) for the leading order linear terms (quantities labelled `1'), reprodu
ing the results of Ref. 1.

A similar pro
edure 
an be used for the �rst order linear 
orre
tion terms (quantities labelled `3'), as was

done in Ref. 13. These equations will be used in se
tion V to 
al
ulate the new nonlinear terms (quantities

labelled `2').

Sin
e the equations we are working with here are linear, we do not have to take the real parts of the


omplex exponentials when substituting for the perturbations, but may work instead dire
tly with the


omplex exponentials, as is usual in a
ousti
s.

A. Outer

At leading order the solution for the pressure in the 
entre of the du
t is the standard result involving Bessel

fun
tions,

p̃O = CJm(αr) where α2 = (ω −Mk)2 − k2, (5)

and C is an arbitrary 
onstant. The other quantities are then given in terms of p̃O by

i(ω −Mk)ũO − ikp̃O = 0, (6a)

i(ω −Mk)ṽO + p̃Or = 0, (6b)

i(ω −Mk)w̃O − imp̃O/r = 0, (6
)

T̃O = p̃O. (6d)

B. Inner

Inside the boundary layer, the expansion of the governing equations (1) at leading order gives

L(ũ1, ṽ1, T1;ω, k) =











i(ω − uk)T̃1 + Tyṽ1 − T ṽ1y + ikT ũ1

i(ω − uk)ũ1 + ṽ1uy − ξ(γ − 1)2T (T ũ1y + T̃1uy)y

i(ω − uk)T̃1 + ṽ1Ty − ξ(γ − 1)2T
[

1
Pr

(T̃1T )yy + T̃1(uy)
2 + 2Tuyũ1y

]











= 0 (7)

whi
h is a system of linear homogeneous ODEs.
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Figure 3: Surfa
e plot of |Zeff/Z(1− Mk
ω

)| in the k-plane for ω = 31, M = 0.5, δ = 10−3
, Pr = 0.7 and ξ = 1.

The darker shades of green are where the Myers 
ondition agrees fairly 
losely with the vis
ous asymptoti
s

whereas the lighter shades are where the two s
hemes disagree.

C. Mat
hing

The system of equations L is se
ond order in ũ and T̃ , and (due to the s
aling used, 4) we have that

ũ1 = T̃1 = 0 at the wall. To get the se
ond boundary 
ondition we look outside the boundary layer, where

the gradients of the mean �ow quantities vanish and the mean �ow quantities a
hieve their uniform �ow

values, so at y = Y ≫ 1, the system de
ouples and be
omes:

L(ũ1, ṽ1, T1;ω, k) =











η2
∞
T̃1 − 1

(γ−1) ṽ1y +
ik

(γ−1) ũ1

η2
∞
ũ1 − ξũ1yy

η2
∞
T̃1 − ξ

Pr
T̃1yy











= 0 (8)

This 
an now be solved analyti
ally, with only the de
aying solutions kept so that we 
an mat
h to our

Outer solution in the 
entre of the du
t. This allows the equations at Y to be reformulated to give �rst order

equations su
h that only the de
aying solutions are admitted:

ũ1y + η∞ũ1 = 0, ṽ1 = ṽ1∞ − η∞(γ − 1)ξ

σ
T̃1 −

ik

η∞
ũ1, T̃1y + ση∞T̃1 = 0 at y = Y

where η2
∞

= i(ω−Mk)/ξ and σ2 = Pr. This gives the results of Brambley1

; where the O(ε/δ) ampli�
ation

in the boundary layer does not propagate into the 
entre of the du
t where the a
ousti
s are O(ε). This is
be
ause both ũ1 and T̃1 de
ay to zero outside the boundary layer, while −δṽ1∞, whi
h is O(ε), is mat
hed

to the outer. It should be noted that taking the de
aying solution involves taking the square root of η2
∞

whi
h has positive real part. This leads to a bran
h 
ut in the 
omplex k-plane, with the bran
h point at

k = ω/M and the bran
h 
ut extending verti
ally downwards.

Figure 3 shows a plot of |Zeff/Z(1− Mk
ω

)| in the k-plane for the leading order vis
ous asymptoti
s. This


ompares the e�e
tive impedan
e found to the impedan
e from the Myers boundary 
ondition. The bran
h


ut is 
learly visible at Re(k) = 62 for Im(k) < 0.
For further details of this, in
luding various asymptoti
 solutions of (7) in high- and low-frequen
y limits,

the reader is referred to Ref. 1. The same pro
edure as given here may be used to 
al
ulate the �rst order

linear 
orre
tion terms (quantities labelled `3' above), and su
h an analysis is given in Ref. 13. We now turn

our attention to the nonlinear 
orre
tion terms.
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V. Nonlinear a
ousti
s

Having solved for the leading order linear terms, We now solve for the nonlinear 
orre
tion terms (quan-

tities labelled `2' in 4). Substituting the asymptoti
 ansatz (4) into the governing equations (1) and taking

terms of order O(ε2) results in a set of linear ODEs to solve for the nonlinear 
orre
tion terms, for
ed by

terms quadrati
 in the leading order linear solution. Sin
e these for
ing terms are nonlinear, we must take

the real parts of the perturbed leading order quantities before multiplying. For example, the multiple of ũ1

and dṽ1/dx is

Re
(

ũ1 exp{iωt− ikx− imθ}
)

Re
(

− ikṽ1 exp{iωt− ikx− imθ}
)

=
1

2
Re

(

− ikũ1ṽ1 exp{2iωt− 2ikx− 2imθ}+ ik⋆ũ1ṽ
⋆
1 exp{i(ω − ω⋆)t− i(k − k⋆)x}

)

, (9)

where a star denotes the 
omplex 
onjugate. This therefore results in two di�erent modes: a mode of double

the frequen
y and wavenumber of the leading order a
ousti
s; and a `zero' frequen
y mode that has the

purely imaginary frequen
y ω − ω⋆
and wavenumber k − k⋆.

A. Inner

The system of equations to solve is now:

L(ũ2, ṽ2, T̃2; Ω,K) = Q(ũ1, ṽ1, T̃1; ũ
⋆
1, ṽ

⋆
1 , T̃

⋆
1 ;ω, k) (10)

where L is as given in (7), Ω = 2ω, K = 2k and the ⋆ is ignored in the double frequen
y mode 
ase, and

Ω = ω−ω⋆
, K = k− k⋆ and the ⋆ means the 
omplex 
onjugate in the `zero' mode 
ase. The for
ing Q has

the following form:

Q =











































Ty

2T (T̃1ṽ
⋆
1)− 1

4 (T̃1ṽ
⋆
1)y +

T̃1T̃
⋆
1

4T i(Ω− uK) + 1
4 iKũ1T̃

⋆
1

i(ω−uk)
4T (ũ1T̃

⋆
1 ) +

ik
4 ũ1ũ

⋆
1 +

uy

4T (T̃1ṽ
⋆
1)− 1

4 (ṽ1ũ
⋆
1y) +

ξ(γ−1)2T
4 (T̃1ũ

⋆
1y)y

ik
4 (ũ

⋆
1T̃1)− 1

4 (ṽ1T̃
⋆
1y) +

i(ω−uk)
4T T̃1T̃

⋆
1 +

Ty

4T (T̃1ṽ
⋆
1)+

+ ξ(γ−1)2T
4Pr

(T̃ ⋆
1 T̃1y)y +

ξ(γ−1)2T
4 (T ũ1yũ

⋆
1y + 2uyT̃1ũ

⋆
1y)











































(11)

Similarly to the linear 
ase, when the extrapolation outside the boundary layer at y = Y ≫ 1 is 
arried

out we get exponential terms ∝ exp(±N∞y) where N2
∞

= i(Ω−MK)/ξ. The double frequen
y mode behaves

similarly to the leading order a
ousti
s. The bran
h 
ut for N∞ is the same as for η∞, and we 
an take the

de
aying solution and rewrite the equations to ensure only this solution is admitted. However for the `zero'

mode N2
∞

is always real, and the resulting behaviour depends on the sign of N2
∞
. For downstream de
aying

modes, N2
∞

< 0, and both exponentials have purely imaginary argument and os
illate without de
aying.

In e�e
t, this is be
ause in this 
ase the whole lower-half k-plane is the bran
h 
ut. This means that the

O(ε2/δ2) `zero' frequen
y ampli�
ation will propagate into the 
entre of the du
t. For upstream de
aying

modes, N2
∞

> 0, and the de
aying solution may be taken similarly to the leading order 
ase.

B. Intera
tion of multiple modes

We might also 
onsider the nonlinear e�e
t due to two di�erent frequen
y leading order modes intera
ting.

We now take the leading order a
ousti
s as a superposition of two waves,

ũ1 = Re
(

ũ1ae
i(ωat−kax−maθ)

)

+Re
(

ũ1be
i(ωbt−kbx−mbθ)

)

, (12)

We �nally obtain two pairs of nonlinear self-intera
tion modes, as des
ribed above, as well as two 
ross-

intera
tion modes. These 
ross-intera
tions modes will have the forms

ũ2+ = Re
(

ũ2e
i[(ωa+ωb)t−(ka+kb)x−(ma+mb)θ]

)

, ũ2− = Re
(

ũ2e
i[(ωa−ω⋆

b )t−(ka−k⋆
b )x−(ma−mb)θ]

)

. (13)
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The system of equations we now have to solve are:

L(ũ2+, ṽ2+, T̃2+; Ω,K) = Q(ũ1a, ṽ1a, T̃1a; ũ1b, ṽ1b, T̃1b;ωa, ka) +Q(ũ1b, ṽ1b, T̃1b; ũ1a, ṽ1a, T̃1a;ωb, kb) (14)

with Q from (11), Ω = ωa + ωb and K = ka + kb, and

L(ũ2−, ṽ2−, T̃2−; Ω,K) = Q(ũ1a, ṽ1a, T̃1a; ũ
⋆
1b, ṽ

⋆
1b, T̃

⋆
1b;ωa, ka) +Q(ũ⋆

1b, ṽ
⋆
1b, T̃

⋆
1b; ũ1a, ṽ1a, T̃1a;−ω⋆

b ,−k⋆b )

with Ω = ωa − ω⋆
b and K = ka − k⋆b .

The magnitude of the mat
hing outer solution depends on N2
∞

in the same way as the self-intera
tion

modes. For N2
∞

real and negative the outer solution is O(ε2/δ2), and for all other values of N2
∞

it is O(ε2).

C. Outer

In the 
ase N2
∞

> 0 (when the original mode de
ays in the upstream dire
tion) the behaviour of the `zero'

mode outside the boundary layer is similar to the leading order mode, the ampli�
ation in the boundary

layer de
ays and it mat
hes to a O(ε2) Outer solution whi
h is given by a for
ed Bessel's equation:

p̃2rr +
1

r
p̃2r +A2p̃2 −

M2

r2
p̃2 =

(γ − 1)ξ2η2
∞
N2

∞

4
p̃⋆1T̃1 −

(γ − 1)ξ2N4
∞

4
p̃⋆1T̃1

− iKξN2
∞

4
p̃⋆1ũ1 +

ξN2
∞

4
(
ṽ1
r

+ ṽ1r)p̃
⋆
1 +

ξN2
∞

4
ṽ1p̃

⋆
1r −

iMξN2
∞

4r
w̃1p̃

⋆
1

+
iK

4
[ξη2

∞
p̃⋆1ũ1 − ikũ⋆

1ũ1 + ṽ⋆1 ũ1r −
im

r
w̃⋆

1 ũ1]

+
1

4r
[−ξη2

∞
p̃⋆1ṽ1 + ikũ⋆

1ṽ1 − ṽ⋆1 ṽ1r +
im

r
w̃⋆

1 ṽ1 +
1

r
w̃⋆

1w̃1]

+
1

4
[−ξη2

∞
p̃⋆1ṽ1 + ikũ⋆

1ṽ1 − ṽ⋆1 ṽ1r +
im

r
w̃⋆

1 ṽ1 +
1

r
w̃⋆

1w̃1]r

+
iM
4r

[−p⋆1η
2
∞
ξw̃1 + ikũ⋆

1w̃1 − ṽ⋆1w̃1r +
im

r
w̃⋆

1w̃1 −
1

r
ṽ⋆1w̃1] + c.c.

where A2 = −ξ2N4
∞

− K2 = [Ω − MK]2 − K2
and M = 0. This 
an be transformed to a for
ed Bessel's

equation of order M. For the double mode the equation for the outer is the same but with M = 2m.

D. Outer for self-intera
tion mode with N2
∞

< 0

In the 
ase N2
∞

< 0, the extrapolation of the inner gives an os
illatory solution. This propagates into the

rest of the du
t and as the frequen
y of the os
illations is ∝ 1/δ, the gradients outside the boundary layer


an no longer be assumed to be small and so the vis
ous terms 
annot be ignored. However, an approximate

solution to the outer equations may be found using the method of multiple s
ales. To do this we begin by

de�ning variables y and Y su
h that r = Y +δy, so y is the rapidly varying variable and Y the slowly varying

variable. We 
an then expand all quantities as ũ2 = ε2

δ2
ũO0 +

ε2

δ
ũO1 + ε2ũO2 and expand the equations in

powers of δ. At leading order (O(ε2/δ2)) this gives:

N2
∞
ξũO0 − ξũO0yy = 0 ⇒ ũO0 = A1(Y )eify +A2(Y )e−ify

(15)

where f2 = −N2
∞
. To avoid a se
ular term at the next order (ũO1) we require:

A′

1 +
A1

2Y
= 0 and A′

2 +
A2

2Y
= 0 ⇒ ũO0 =

1√
Y
(A1e

ify +A2e
−ify). (16)

Now this solution is singular at the origin, so to eliminate one of the two 
onstants we need to solve for ũO in

an inner-outer region about r = 0 where the 1/r terms be
ome large. To do this we set r = δx and expand

our equations to leading order in δ. This gives:

N2
∞
ξũO0 − ξũO0xx − ξ

x
ũO0x = 0 ⇒ ũO0 = AJ0(fx). (17)
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For large x this solution 
an be approximated by the standard result:

ũO0 ≈ A

√

2δ

fπY
cos(fy − π

4
) (18)

This now has to mat
h with our outer solution. This means that the Outer must be:

ũO0 =
ũ2∞√
Y

cos(fy − π

4
) and A =

√

fπ

2δ
ũ2∞ (19)

We 
an use a similar method to �nd the leading order terms of T̃ , ṽ and p̃:

T̃O0 =
T̃2∞√
Y

cos(fσy − π

4
) (20a)

ṽO0 =
δi(k − k⋆)ũ2∞

f
√
Y

sin(fy − π

4
)− δfξ(γ − 1)T̃2∞

σ
√
Y

sin(fσy − π

4
) + δ2C1(Y ) (20b)

p̃O1 = δ2ξ2N2
∞
(γ − 1)

(

2 +
µB∗

0

µ∗

0

− 2

3
− 1

Pr

)

T̃O0 + δ2D1(Y ) (20
)

To �nd the slowly varying terms of ṽO and p̃O, we have to introdu
e a new slow-slow variable X su
h

that r = X/δ+Y + δy. We 
an then repeat the above method to se
ond order and �nd that C1(r)and D1(r)
are the same Outer solutions, ṽ2O and p̃2O, as in the 
ase N2

∞
> 0.

The 
onstants ũ2∞ and T̃2∞ are both O(ε2/δ2). This 
orresponds to an ampli�ed a
ousti
 streaming,

stronger than the O(ε2) a
ousti
 streaming that would be expe
ted, that is 
aused by the vis
ous boundary

layer over the a
ousti
 lining.

VI. Numeri
al Method

While asymptoti
 approximate solutions to equations (7,11,14) are possible (see, e.g. Refs. 1,14, here

these equations are solved numeri
ally using 4th order �nite di�eren
es. The resulting 3N × 3N banded

matrix system of equations is solved using the LAPACK_ZGBSV routine. To solve for the �rst order

nonlinear inner, the same matrix is used, now for
ed by terms nonlinear in the leading order quantities. The

system of equations is solved from y = 0 to y = Y , where Y is large enough so that the mean �ow terms

are approximately there uniform �ow values, and the extrapolation 
ondition (8) is used as the boundary


ondition.

By way of 
omparison, we also produ
e weakly nonlinear solutions to the full Navier Stokes equations,

without any of the asymptoti
 assumptions in δ and the mat
hing needed above. The full Navier Stokes

equations are expanded in ε, and a 4th order �nite di�eren
e s
heme is again used for the O(ε) and O(ε2)
equations thus obtained. In this 
ase we get a 5N × 5N banded matrix equation that is homogeneous in the

leading order 
ase and for
ed by leading order terms in the �rst order 
ase. To a

urately resolve the details

in the boundary layer while still solving a
ross the whole du
t, stret
hed 
oordinates η = tanh(Sr)/ tanh(S)
are used, where S is the stret
hing fa
tor. This then 
on
entrates the grid points about r = 1 so that the

rapid variations there due to the thin boundary layer are properly resolved. For the results below a stret
hing

fa
tor of S = 2.0 is used. Before solving, the matrix is balan
ed so that the largest value in ea
h row is 1;

this ensures that the solution remains stable near the origin, where terms involving 1/r 
an be
ome large.

VII. Results

Figure 4 shows plots of the mode shapes for both types of 
ross-intera
tion modes. The asymptoti


solution 
an be seen to be in good agreement with the 
omparable result derived dire
tly from the expansion

in ε of the full Navier Stokes, 
al
ulated without assumptions about asymptoti
s and mat
hing. Note that

these solutions are 
al
ulated with p̃1 = 1 at the wall, and only the real parts of the solutions are plotted

here.
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Figure 4: Inner solutions of ũ2+/ε
2
(left) and ũ2−/ε

2
(right) for wa = 5, ka = 10, ma = 10, wb = 31 + 5i,

kb = 12, mb = 12 for asymptoti
s (blue) 
ompared to expanded full Navier Stokes (green), with δ = 10−3
,

M = 0.7, Pr = 0.7 and ξ = 1
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Figure 5: Inner (left) and outer (right) mode shapes of the double frequen
y mode ũ2/ε
2
, 
omparing the

asymptoti
s (blue) to the �rst term from the expansion in ε of the full Navier Stokes (green). Parameters

are M = 0.7, δ = 10−3
, Pr = 0.7, ξ = 1, ω = 5, k = 5 + i and m = 2

A typi
al mode shape of the double-frequen
y nonlinear mode is given in �gure 5. The nonlinear asymp-

toti
 solution is shown to be in good agreement with be �rst term from the expansion in ε of the full Navier
Stokes, giving 
on�den
e in the asymptoti
 method applied. Moreover, both solutions are lo
alized within

the boundary layer (δ = 10−3
in this 
ase), 
on�rming the predi
tion that the O(1/δ) ampli�
ation within

the boundary layer

1

does indeed trigger signi�
antly more nonlinearity than would otherwise have been

expe
ted, but that, for the double frequen
y mode, it does not bleed out into the rest of the du
t.

The 
omparable `zero' frequen
y nonlinear mode, for the 
ase upstream de
aying 
ase N2
∞

> 0, is plotted
in �gure 6. This shows a similar trend to 5, in that the predi
ted O(1/δ) ampli�
ation within the boundary

layer is seen, but does not bleed out into the rest of the du
t; the a
ousti
 streaming in the 
entre of the

du
t remains the 
lassi
al magnitude of O(ε2δ0).

9 of 12

Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2017-3376



0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

-1000000

-500000

0

PSfrag repla
ements

ũ
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ũ
2

1− r
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s
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are M = 0.7, δ = 10−3
, Pr = 0.7 and ξ = 1
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Figure 7: Inner (left) and outer (right) of `zero' mode ũ2/ε
2
for ω = 5, k = 5− i and m = 2 for asymptoti
s

(blue) 
ompared to the �rst term from the expansion in ε of the full Navier Stokes (green). Other parameters

are M = 0.7, δ = 10−3
, Pr = 0.7 and ξ = 1

In 
ontrast, however, �gure 7 shows the mode-shapes in the 
ase of a downstream de
aying mode, for

whi
h N2
∞

< 0. The solution is seen to os
illate rapidly in r with a wavelength of order O(δ). This ampli�ed

rapid os
illation does not de
ay away from the boundary layer and is present throughout the du
t, with

an amplitude of O(ε2/δ2). This shows that, in this 
ase, the ampli�
ation within the boundary layer by

a fa
tor of 1/δ previously predi
ted

1

does indeed lead to signi�
ant nonlinearity beyond what would have

been expe
ted within the du
t, and that this nonlinearity is not in this 
ase 
on�ned to within the boundary

layer but bleeds out into the rest of the du
t.

Figure 8 shows the total sum of these e�e
ts, by plotting the overall perturbation to the streamwise

velo
ity ũ at di�erent a
ousti
 amplitudes. The e�e
t of the nonlinear streaming is easily seen by the hairy

appearan
e of the louder plot, although this nonlinear perturbation de
ays faster in the x dire
tion than the

damped a
ousti
s, sin
e the axial wavenumber has twi
e the de
ay rate of the linear a
ousti
s.

10 of 12

Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2017-3376



Figure 8: Plot of snapshots of the total perturbation for k = 5− i, ω = 31, m = 10 and δ = 10−3
for di�erent

initial amplitudes.

VIII. Con
lusion

In this paper, we have investigated how the previously predi
ted

1

ampli�
ation of a
ousti
s within a thin

vis
o-thermal boundary layer over an a
ousti
 lining leads to nonlinear e�e
ts be
oming apparent at lower

sound amplitudes than might have otherwise been predi
ted. It is emphasized that the nonlinearity presented

here is nonlinearity within the �uid in the boundary layer, and is separate to the nonlinear behaviour of the

a
tual boundary, su
h as the nonlinear behaviour of Helmholtz resonators near resonan
e

3

. The me
hanism

is that sound of amplitude ε enters the boundary layer of thi
kness δ and is ampli�ed to order ε/δ. Nonlinear
intera
tions then result in new a
ousti
s with an amplitude of order ε2/δ2. These new a
ousti
s have either

double the frequen
y of the in
oming sound, or `zero' times the frequen
y, the latter 
orresponding to a
ousti


streaming. The double frequen
y ampli�ed sound is lo
alized to the boundary layer, but for downstream

de
aying sound the `zero' frequen
y nonlinear modes bleed into the rest of the du
t and show an ε2/δ2

amplitude throughout the du
t. This is a fa
tor of 1/δ2 times the magnitude that would be 
reated by

ordinary nonlinear intera
tions within the du
t itself.

Also derived here are equations governing the nonlinear intera
tions of two modes of di�ering frequen
ies.

As for the self-intera
ting 
ase, nonlinearity be
omes important at lower amplitudes than expe
ted due to

the 1/δ ampli�
ation within the boundary layer. Su
h intera
tions may well be important when two well-

damped high azimuthal order spinning modes (for example, 
orresponding to the number of rotor and stator

blades respe
tively) intera
t to produ
e a poorly-damped low azimuthal order nonlinear mode.

So far, this analysis has not been applied to investigate nonlinearity within surfa
e modes

17,18

. Sin
e

surfa
e modes are lo
alized 
lose to the boundary, and sin
e one of them might be an instability whi
h might

lead to large amplitudes, investigating the impa
t of nonlinearity on su
h modes in 
ombination with the

1/δ ampli�
ation would prove interesting. For example, it may be that the nonlinearity enhan
es 
ertain

surfa
e modes and restrains others.

The analysis presented here has assumed a thin boundary layer of width δ, and a small a
ousti
 pertur-

bation of amplitude ε, with ε ≪ δ ≪ 1. In pra
ti
e this is expe
ted to be appli
able to air
raft engines up to

about 160dB, where nonlinear e�e
ts are expe
ted to be
ome important everywhere and not just 
on�ned

to the boundaries. While the use of the asymptoti
s simpli�es the governing equations, numeri
al solutions

are still needed. In the linear 
ase, other additional methods are used to derive approximate solutions and

an e�e
tive impedan
e Zeff that a

ounts for the behaviour within the boundary layer without having to

numeri
ally solve di�erential equations

1,13,14

, and su
h te
hniques may well be appli
able here.

Sin
e these modes have only been identi�ed mathemati
ally, it would be interesting to look for their

signature in existing experimental results, su
h as those of Aurégan

2

, for example.
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