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Nonlinear Acoustics in a Non-Parallel Boundary Layer
over an Acoustic Lining

Owen D. Petrie * Edward J. Brambley |

Sound within aircraft engines can be 140dB-160dB, and may be amplified by 1000x
within a visco-thermal boundary layer over an acoustic lining, triggering nonlinear effects.
It has been suggested that non-parallel effects could also be important, however acoustic
linings give rise to different asymptotic scalings than most previous non-parallel work for
hard walls. This paper presents an investigation into the effects of nonlinearity on the
acoustics within a non-parallel boundary layer flow over an acoustic lining in a duct. The
analysis combines the effects of shear, viscosity, and nonlinearity and uses a three-layer
formulation to obtain analytic solutions. Unlike the parallel flow acoustics the non-parallel
acoustics do not admit a highly oscillatory amplified acoustic streaming (zero frequency)
solution. However there is still an amplified nonlinear solution that propagates out into
the rest of the duct.

I. Introduction

Acoustic liners are an essential part of civilian aircraft engines, enabling them to meet ever stricter
noise requirements. Sound within aircraft engines is loud, potentially 140dB-160dB, pushing the validity
of the usually assumed linearised sound over a steady background flow. However, even if the sound within
the engine ducting may be considered linear, an amplification mechanism by a factor of 1/J, where ¢ is
the boundary layer thickness (typically § = 1073), exists within a thin visco-thermal boundary layer[1].
Experimental evidence also suggests nonlinearity becomes important at lower amplitudes than expected for
flow over an acoustic lining[2]. It has been shown that nonlinearity can cause unexpected acoustic streaming
phenomena|3], although it has also been suggested that this may be an artefact of the assumption of parallel
mean flow[4]. The purpose of this paper is to investigate this by considering weakly nonlinear acoustics in a
developing non-parallel visco-thermal boundary layer over an acoustic lining.

Much work on acoustics in flow over acoustic linings uses the Myers boundary condition[5]. This matches
the normal fluid displacements at the boundary, and comes from assuming the fluid is inviscid with an
infinitely thin boundary layer. However this boundary condition gives a vortex sheet at the boundary and
can be shown to be ill-posed[6, 7]. More recent work[8] gave a modified Myers boundary condition which
took account of the shear in the boundary layer of the background flow but still ignored the effect of viscosity.
This gave a closed form solution involving integrals over the mean flow boundary layer profile. However|[9]
the effect of viscosity on the acoustics occurs at the same order of magnitude as shear, and viscosity must also
be taken into account. This means considering a finite thickness viscous boundary layer near the acoustic
lining and solving for the acoustics in the boundary layer and then matching to an outer solution, which
is assumed to act as an inviscid fluid with uniform flow[10, 11, 12]. This approach agrees more closely to
results from solving the linearised Navier Stokes equations for the entire duct. We also showed last year[3]
that non-linearity could give rise to unexpectedly large acoustic streaming modes which propagate out into
the centre of the duct, suggesting that the effect of nonlinearity should also be considered.

All of the above work for an acoustic lining was done under the assumption of a parallel mean flow. It
has been suggested[4] that the non parallel effects of developing boundary layers may have an important
effect on the acoustics. However this work considered only hard wall boundary conditions which as we will
show have a different scaling regime than acoustics in boundary layers near impedance linings.
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Density p* = pp Pressure p* = cipip

Velocity u* = cju Viscosity w=cil*pop
Distance =1z Thermal Conductivity K" = cpl™ pyepk
Time t*=1*/cjt Temperature T =ct?/c;T

Table 1: Dimensional and non-dimensional variables, where * denotes a dimensional variable, with lengthscale
I*, velocity cj, density pj and specific heat at constant pressure cj,.

Figure 1: Diagram of the duct.

Here we consider the effect of nonlinearity with a non-parallel boundary layer mean flow. We restrict
ourselves to the weakly nonlinear case ¢ < § < 1, where ¢ is the acoustic amplitude p/po and ¢ is a measure
of the boundary layer thickness. We will also look sufficiently far downstream so that 1/k < x where k
is the streamwise wavenumber, which means that the boundary layer is sufficiently well developed that the
effect of viscosity on the acoustics is restricted to an inner-inner region. This means that an expansion in &
may be used with a three-layer formulation that can be solved analytically using asymptotic matching and
a WKBJ solution.

II. Mathematical Formulation

We consider the acoustics in a compressible viscous perfect gas inside a straight cylindrical duct. To
begin, we non-dimensionalise all quantities as shown in table 1. The governing equations are then (Landau
& Lifshitz)[13]:

%4V () =0 (1a)

pRY = _Vp+V.0o (1b)

oy =1 (G + 5) + (n7 = 3n) 0,V - u (1c)
pPL = D2 4 v (kVT) + 0y 25;‘. (1d)

T =2 (le)

where D/Dt = /0t +u -V and v = ¢, /c; is the ratio of specific heats. We assume that the viscosities
and thermal conductivity depend linearly on the temperature and are independent of pressure (Prangsma,
Alberga & Beenakker)[14], so that we can write:

T B T uf T
W=7 po = rt K=
T()Re TQRG Ko TOPrRe

(2)

Where Re= c§l*pf/ g is the Reynolds number, defined with respect to the sound speed, and Pr= ugc;/mg
is the Prandtl number. In the duct we use cylindrical coordinates (r*, 8, 2*), where [* is now taken to be the
radius of the duct, so that in non-dimensionalised variables the wall of the duct is at r = 1.
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We take the reference values pg, T3, 15, ug"* and k{; to be those of the centreline mean flow which is
assumed to be uniform. This gives To = 1/(y—1), po = 1/~ and the non-dimensionalised mean flow velocity
Uy = M is the Mach number. We will consider the acoustics due to a source at (rg, xo), sufficiently far from
the leading edge so that we can ignore its effect and don’t have to know anything about the geometry of the
duct inlet.

We will assume that the acoustic lining reacts locally and can be modelled by a linear impedance relation
p = Z(w)v where p is the acoustic pressure, ¢ the acoustic normal velocity and w the frequency. Here we
will use the mass-spring-damper impedance:

Z(w)=R— zg +iwd (3)

This boundary condition results in there being non-zero acoustic normal velocity at the wall which then
interacts with the large shear to amplify the acoustics within the boundary layer. This causes the asymptotic
scalings to be different to the case of a hard wall, Z = oo, where the acoustic normal velocity is zero at the
wall.

A. Three Layer Setup-Asymptotic model

We now consider a developing boundary layer flow near the wall of the duct, and we choose z = 0 to be
the leading edge of the boundary layer. Using the standard Blasius boundary layer scaling of inertia with
viscosity we have our boundary layer thickness d,.

X X
L=\ amme OV T

where we have defined 6> = 1/Re < 1. For the boundary layer approximation to be valid we need the
streamwise lengthscale to be much larger than the radial lengthscale of the mean flow. That is z¢g > Jr,
where xg is our distance downstream from the leading edge. This gives the requirement zy > %. Here we
will use the compressible Blasius boundary layer profile which is an exact solution of the boundary layer
equations for a flat plate with no pressure gradient and linear dependence of viscosity with the temperature.
We now consider the scalings of the acoustics. We have the time dependence of the acoustics given by
the angular frequency R(w) and we let A be the radial lengthscale from the wall over which the acoustics are
affected by viscosity. Now we can consider the balance of the time dependent terms with the viscous terms:
ot 1
FriN Vig, = Rw)~—-—5

A~ oL R(w)x ~or kex

where k, = R(k) is the streamwise acoustic wavenumber. Now to avoid having to consider scattering off the
leading edge we assume that the streamwise wavelength is shorter than our distance downstream. That is:

1
k_r < Zo
which gives us that A < §1, so we can introduce an inner-inner region of lengthscale .

We now have three distinct regions as shown in Figure 2 where different physical scalings hold.

In region III, the base flow is assumed to be approximately uniform and gradients of the acoustics are
assumed to be O(1) so that the effect of viscosity is negligible at leading order. This means that the acoustics
can be treated as being in an inviscid uniform flow, for which the solutions can be found to be in the form
of Bessel functions.

In region II, the mean flow varies over a lengthscale 0y, gradients in the acoustics are assumed to be at
most O(1/41), so the effect of viscosity is still negligible at leading order and the acoustics and be treated
as being in a sheared inviscid flow.

In region I, the mean flow is approximately linear, but gradients in the acoustics are assumed to be
O(1/)\) so the effect of viscosity is now important. Here we can treat the acoustics as being in a linearly
sheared viscous flow.
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M
0" = ol*

p* = pop
B = cpl*pou

M=l 1 T

Figure 2: Diagram of the duct with inner acoustic boundary layer region

B. Linear Acoustics

For the linear acoustics we Fourier transform in z, Laplace transform in time and take a Fourier series in
f so that we may consider only a single mode. We want to include the effect of the x-dependence of the
mean flow so we will introduce a slow streamwise variable epx, where ¢, = Wj\io < 1 is the ratio between
the wavelength and downstream distance. If we now expand our equations in each region to leading order
in 01, e and €, where € < 1 is the scale of the amplitude of the acoustic perturbations, we get a solution
for the pressure perturbation of the form:

p/ _ Eﬁo(T, Ekx)eiwt—ifk(akm)dm—imé + (9(61€7 51”52)

We can then use this ansatz to solve in each region. In IIT all quantities are O(g):

. . k ~ - ’
Po = A(erx)Jm (ar) g = mA(skx)Jm(ar) T = mA(akx)Jm(ar)
- _ m
TO = A(Ek.I)Jm (047") wo = mA(SkI)Jm(QT)
where o? = (w — Mk)? — k? and A(erx) is a slowly varying function of x, which we will not need to solve

for here.

In region II we transform into the mean flow boundary layer using the transformation r = 1 — 6. This
means that the mean flow terms depend only on the similarity variable ¢ and not on z and we find that @
and T ~ O(g/ér) and p, ¥ and w ~ O(e),

Po = const, o = —iC(epa)(w — Uk), iip = —Cl(egx)Uc¢ /61, Ty = —Cl(eg)T; /1.
Matching with the solution in region III, we find A = —%C and po = AJp ().

In Region I we transform into the acoustic boundary layer using the transformation r = 1 — Ay. Now
A is independent of z, and we can expand the mean flow quantities about their values at the wall, e.g.

U=0+UN0)+ ... = yq/%UC(O) + ..., noting that k.ax/M = 2 ~ 1/e. We find that 4y ~ /41,

ELTO

Ty ~ e(ex)'/? /61, and Py, 5o ~ €. We then get the following solutions for @o and o:

—yiw )

et 1)) |

Do = const Ug = —iwC(egx) Gy = —Uc(0)C(exx) ll - exp(
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and @y ~ e(eg)/2 /61, B1 ~ e(eg)/?

By = ikUc(0)C (era) ly\/s’“gcE +(y = 1)T(0) % exp(\/k—(;y%%)

_ y [exzo . Uc(0)2Clerz) { 1k\/exTo o 3k\/Erzo ] —yViw
=-C Uec(0) = \/ — VEr(v-1T(0)
Uy (exm)Ucc( )5L . + 10T iwkr(’y—l)T(O)y + » yle

To find the modes k*(w) we apply the boundary condition p = Z(w)?d and match through each region to
get the following dispersion relation at leading order:

-1

Ziwa _ RO = DTO) [ M| o )

(w — Mk)QJr/ﬁ(d) = Jﬁl(d) [1 w ’LW_IE

We could then find the next O(ey) solutions and apply a compatibility condition to find a differential
equation for the slow streamwise variation A(x). Here we will consider A as being constant which is accurate
to O(ek)-

Previous work on a three layer model[11] used the assumption {63 ~ 1/Re, with & ~ O(1). This work
assumed the flow was parallel, however if we set £ = % we have the same scaling regime as in this paper
and we find that at this order the dispersion relation above agrees with that previously found. At higher
orders the corrections to the dispersion relation will not agree as the assumption of parallel flow means this

previous work only gives a local solution.

C. Forcing

We will consider a point mass source at (79,0, x¢) which turns on at ¢ = 0. i.e.

0(6) = Relad(r — ro)o(z — 20) L (1))

where H(t) is a Heaviside function. This then gives us our constant A for the linear solution and hence py:

) dmtamn)nan)

_ etko(w — Mk) q n q* (w—MEK)Y, () —iaY] (o) Zes
Po = 4 w-wp  wtw; (w— ME)Jm(a) —iad! (&) Zog

where Zeg = (fg\)j};) {1 - kUC(O)(Zfl)T(O) v/ %} is the effective impedance and k, now scales as O(wy/M).

To find p(z,t) it is necessary to invert the Fourier-Laplace transforms. Inverting the Fourier x transfor-
mation is relatively simple, all the poles arise where (w — Mk)Jp, () —iaJ! () Zegr = O (i.e. modes of a duct
with impedance Z.g) and can be found numerically. The singularities at & = 0 due to the Y, terms cancel
out so do not need to be considered and there is no continuous spectrum. We can then use Jordan’s lemma,
closing in the upper half plane for upstream modes x — o < 0 and in the lower half plane for downstream
modes x — xp > 0, and get a sum over the poles.

Po(w, x) = +i Z Pe~th=(@=0) Jim (k — k,)
= k—ky

4 w-wr  wtwk

where K4 corresponds to the set of upstream /downstream poles as determined by the Briggs—Bers method.
That is the set of poles which end up in the upper/lower half plane as S(wy) — —oo. If z > zo we take the
negative sign and K_ whereas if z < x¢ we take the positive sign and I .

When we invert the w Laplace transform we will get a contribution from the pole at wy and a contribution
from any w poles from the k-residue term. These additional poles however will correspond to transient modes,

((w — ME)Y, () —iaY,] () Zeg

(W= ME)Jm(a) - iaJJn(a)Zcﬁ> Fm{@ro)Jm(ar)
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so if we are interested in the long time solution we expect to only have to consider the pole at wys. We can
then find po(t,r, x,0) at long time:

po = Z Z == Z Pei(wtfk*(zfzo)fme) 5 (w - Mk*)Ym (Oé) _ ZQYA*L(Q)ZCH Jm(OZ’I”())Jm(CYT)
2 272 T ((w ~ M)Jm(a) — iy () Zem) e,
p_ q(w —4Mk*)

where Q is the set of forcing frequencies {ws}. Note that for each forcing frequency we have replaced the
complex conjugate in P by including —w} in Q, which is equivalent due to the symmetry of the solution.

D. Weak Nonlinearity

So far we have only looked at the linear acoustics that arise due to a point source. This linear solution is
valid provided e/d;, < 1 so that the nonlinear terms are much smaller than the linear acoustics. In aircraft
engines the acoustics are often very loud which means that this assumption may not be true. Here we will
consider a weakly nonlinear perturbation to find a solution for the nonlinear acoustics.

For the linear acoustics we solved a system of equations of the form:

L(p) = q(t)

where L is a linear operator acting on p. If we consider the nonlinear terms we now have an equation of the
form:

L(p) = Q(p,p) +q(t)

where @ is quadratic in p. Now using the weakly nonlinear approximation we can decompose the problem
into the linear acoustics problem above and a linear problem forced by nonlinear quantities of the linear
solution:

L(po) = q(t) L(p2) = Q(po, po)
Now we know the general form of py:
po = Z Z Z FRes.,, (Resy. (po))e' @ kx=mo)
m=—00 we{ws,ws(m)} ks (w,m)eL+

where w,(m) are any transient modes and k. (w, m) are the spatial downstream /upstream modes. If we only
consider the long time solution we can ignore the w,(m) terms. We can then consider quadratic quantities
of po:

ppo= > Y Resu.(Resi. (o) Res,. (Res. (7o) M0
m1,m2=—00 (w,),(vs)EQ k«,l. €L+

where = wy + v, K = ky + 1., M = m1 + mo and each sum is now a double sum over every pair of
frequencies/wavenumbers (ws, v« ), (ks,l«). We can then write down the form for ps:

D2 = Z Z Z Resq(Resk (p2(, K, M)))e! (- Ke=M?)

M1,M2==00 Wi, Vx €Q ky(wy),li (Vi) EL L

and we can solve for Resq, (Resk, (p2(Q, K, M))) = p2(Q2, K, M) separately for each mode.
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III. Matching

Now for each w, # v, or k. # [, there is a pair of pairs (wx, ky; s, l+) and (v, L ws, ks ) in the sum that
will give the same term, so we can combine these contributions when solving and include a factor of 1/2 to
avoid double counting.

In region III, the equations for the leading order weakly nonlinear contribution are:

. - o v - iM _ iM 1, ..
(= MK)py —iKas + 72 + Vop — ng 1K phtio + — powo — T(TPOUO)T

i(Q — MK)ug — iKpe = iktjto + ﬁwouo — Oty — t(w — ME)pito
. ~ ~ 7~k m ~ %~ ~% ~ . ~% ~ 1~*~
i(Q — M K)vy + par = tkuvo + Twovo — 0y Uor — t(w — ME)pivo + ;wowo

iMpo

r

i(QQ — MK)wy — ikudwo + ﬁwowo — Dywor — i(w — Mk)pywo — —’Uo’wo
r

) ~ ) ~ m ) o
i(Q— MK)Ty —i(Q2 — MK)ps = (ikag + TU’O)(TO — po) — 95(To — po)r — ilw — ME)piTo

where g = Res,,. (Resy. (fo(w, k) = Res,. (Resy, (A(w, k) (ar) and pj = Res,. (Resi. (Fo(w, k) and
similarly for all other leading order linear terms. All terms on the left hand side are of the same order and
all terms on the right hand side are O(¢2). When we combine pairs and substitute our solution for the linear
problem this then becomes:

_ i iM Q- MK) , .
0= ME) o — (= D) — i + 2 o+ 1, - Dy = g — it -y
iK
i(Q = MK)iiz — iKp = iKS = —=P3ho
. ~ ~ 1 Sk s
i(Q — MK)Vy + por = =S, + §(popo)r
iMpy M M
ro 2 2r PoPo

O - MK) .
(= MK) Q—Z(Q MEK)py, = — %popo

i(Q — MK )iy —

(kL +m*m/r*)psPo + PorPoy,
2(w— MEk)(v — M)

9 10 M? 1,
(W*’;E"‘N 2 )(p2+5’ 2]90]90)—0

where R? = (Q — MK)? — K2. So in region III the leading order solution is:

where S =

, which simplifies to:

1 —NDJ}(¥r)
=DJpm(X —papo — S by = ——— M 2
s (Rr) + 5Popo 27 50 - MK)
where D is an arbitrary constant that will be found by matching between each layer and applying the
impedance boundary condition at the wall of the duct.
Now in region II the leading order O(¢?/6%) equations are:

- Tevy T O-UK Ty o 2ToT, -
Q- UK)Ty — =2 4 Z2¢ L KTy = U2 -UK) >T0T0 +iK T + 2t _ 5 21oTe — Toc)
or oL T or or T
0o U, VolUy T bl
i(Q — UKy — 228 = ikidiio + —2 + 2 (i(w — Uk)ig — —22%)
5. 5. T 51
v21¢ oTg. Ty ool
Q- UK)Ty — =5 = ika} 20 (j(w — Uk)Ty —
i( )13 T 5 7 (i )To 5. )
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When we substitute the results for the linear acoustics and combine pairs this becomes:

Tevy T i
U2 | T C@KQU¢+KQ UK)T¢c)

i(Q—UK)T, — st HikT = oo
L L L
im—UKmrﬁdkzcng%+MQ—mﬂwd
51, 202
im—UKﬁy}ﬂz:CgﬁKQQ+MQ—UMQQ
o 202

which we can solve analytically to find at leading order:

g%gw—§M%ﬂK) @zgﬂm—ﬁw fE:QQT—EQ
L L

2= 262 oL 262 T 5L

In Region I we find that the forcing for the 75 and o equations are O(e?/67) while the forcing for the
fip equation is O(g2/,/z VEk 62). This means that s is independent of Ty to O(eg) and ¥2 is independent of Ty

to O(\/€k) so we have:
i KT (0)a /LT ﬁﬁ =
) (0)ag + . ( )5L o(1)

. - v U (0 -
’L(Q — Y4/ Ekjo UC(O)K) Uy — ?}2572() —ke(y— 1)2T(0)2quy anioy W — p—— + iktgto + O(V/ek)

where 0y ~ O(¢2/6,) and Gy ~ O(g%/,/;0%) Now, assuming that the exponential term decays and Q # 0
we have at leading order:

; ; * yViQ _ yViw _ yViv
Ty = _iBQ iKC CU<|0 14+ Me_ VEr(=DT©) _ g VEr(-DT© _ g VEr(y—DT(0)
oL 26 VQ

C*CU¢loVix ( Vi _M)
e VErG-DTO L\ /pe W(v T _ W+ Vo)e VEG-DT0)
TG NG (V& + /)

U9 =

we can then use the impedance boundary condition to solve for D and we find that po must be O(?/5.)
to balance with @, which is amplified in the boundary layer to be O(2/4L) at the wall. This then gives:

D(JMm)—QZ@%é%%¢2;>::gzjcszﬂQb(L—i§%$E)> (4)

So we find that the nonlinear pressure is a factor of 1/0;, greater than would be expected, due to the
amplification of terms within the boundary layer. Now this solution has a singularity at £ = 0, which
corresponds to the acoustic streaming modes. This means that we will have to include extra terms in the
equations we solve to regularise near 2 = 0.

IV. Acoustic Streaming (2 =0)

When Q — 0, Z(2) — oo which means that when the boundary condition is applied at the wall we must
have 92],=¢ = 0. Our solution in region I for s is singular and even if we rewrite it in terms of an integral of
U2, which now has a constant term due to the exponential of 2, we find that we still can’t satisfy both the
boundary condition at y = 0 and the matching to region II. Also we are ignoring a term of the form /gxyt»
at leading order which will become large as y — oo in this case. So we must now consider both leading order
and next order O(,/€) terms of the @2 equation together. We can write the @y equation as:

~ - 12 o [ w1
({52 /K = 9Ue©)) 2y + U0 = b o = 12T o

—C*CU, ] __yiw uiw iIKC*C
:25Lm(7 C_|01\;_;E(0) (—iw\/c_ue VEr(=DTO) 4 jon/—we VFr=DT0) ) — ¢ 25 U<|3 + exponentials
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which is correct to O(,/2x). Note that the first term on the right hand side is O(1/,/2x) while the exponentials
that we have ignored are only O(1). We find that the dominant contribution to the particular solution comes
from the first two terms. So we get:

; * _ yViw _ yV—iw
Uy = —szg CU<|0 (1 —e VEO-DTO g VEG-DTO) 4 ?7c) + O(Ver)
where 7. is the solution to the homogeneous equation with 9.(0) = 1 and v.(0) = —\/gj% %. This has
solution:
Y A _4\1/3 Y By _\1/3
@C:AwBy/ Mdﬁcy/ Bila(—a) 7) 4,
x x

where a = /£%0 %. Now Ai(z(—a)/3) ~ e=2/3%2(=a)'"* and Bi(z(—a)'/3) ~ e2/35* 2 (=)' gor

|arg((—a)'/?)| < m/3, so if we take the root of —a that is in this arc then Bi’(z) grows exponentially as
increases. This means that to be able to match our solution to region II we must set C' = 0.
Now Ai'(z) = _31/%(1/3) + O(2?) so we get:

dx

s Yiwt Vi v —3130(1/3) A (w(—a) /) — 1
”C‘“mw-mmy‘y/o P2

which then gives:

Ai' (z(—a)'?)

* _ yViw _ yv—iw \/1 \/ —1 v i’ -1
By = _IKC CU<|0 92— e VE(-DTO) _ g VEr(-DTO) _ y(Wiw + v—iw) —y/ G O N
201, VEr (v = 1)T(0) 0 z?
Now to match to region II we consider the large y behaviour of ¥s. 7 ~ —iKQgCUdo( yﬁj “1)_“(”) +

wy + 1), which must match to —%Ug + % for small ¢ in region II. This gives:

32/3
(MK)? C*C Viwz + V—iwx
NI (R) 26 VM (y — 1)T(0)

(Note we could also include €2 in our solution by substituting z = y — Q/KU¢+/x/z0e), and we find that this
regularised solution is valid for 2 < a,lc/ % s0 D will be at most O(1/ VEE)-)

D=-

O, ) ~ 0%

A. Oscillating Streaming Solutions

So far for the acoustic streaming modes we have assumed that |arg(—a)'/3| < 7/3 so that the exponential
terms decay. We will now consider the case where |arg(—a)'/?| = 7/3 (i.e. |arg(—iK)| = 7) and these
exponential terms now oscillate and must be considered when matching.

In region I the Airy function of the second kind will no longer decay, so the solution can now be written
in the form:

Ail (z(—a)'/?) Bi' (w(—a)'/3)

n — Yy — L _1 97., —1
. Viw + v/ zw) —By/ A7(0) da:—(l—B)y/ Bi7(0) o
0 0

e T ey — D10y 22 22
_ yViw __ y/mw
= 2523_0 (U<|0\1)F 7(0) (@(e V=0T - 1) 4/ Zi(e W“”””—U)
C*CU¢|ov/ 2/3 1/3 Ai'(0) /y ; 1/3
+ 252 Jewwo Az /Az )da + (1 B)Bi’(()) ; Bi(z(—a)"/?)dx
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we can then use the following approximations for large y[15]:

: oFHY? : 2et% 232 p
. gim . tiry = . T _1
Ai(ye™3 ) ~ 72ﬁy1/4e 7 Bi(ye™ %) \/;—y1/4 sin( 3 + 173 In2),
1 e~ 5v*V=a
. A 1/3 d ~ _
/ A e ™ 3T A
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where the + in the second integral corresponds to the sign of arg((—a)!/3) = +in/3. We can then use this
to find the asymptotic behaviour of 49 in region I for large y:
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If we now consider the equations in region II for gradients ~ 1/,/zx to order O(,/ef), ignoring T terms
which oscillate with a different frequency and will contribute to an additional solution for ¥ but not for «,
we have:
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We can try a multiple scales solution of the form:

¢ —iKT —iRT
by = Fi—(oeif VG onzrz 9 fly = -2/ if \/ M(WZ Dz e

oL 52

and we find:
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where we are assuming here that U, V and T are given by the compressible Blasius boundary layer and thus
f(n) satisfies the Blasius equation:

M5L ff”

U=Mf, V=-—

Cf =fm), n'=p=1/(y-1T, f"+=-=0 f =1 a n—o0

This means that our additional large oscillatory term in w2 decays exponentially due to the integral term
in G which arises only because we are including the non-parallel contributions. This means that the large
oscillatory streaming solution is confined to within the boundary layer. This shows that it is necessary
to consider the non-parallel nature of the boundary layer when solving for the nonlinear modes and the
previously found large oscillatory behaviour that extended to the centre of the duct was a artefact of the
parallel flow assumption.

V. Results

To calculate the acoustic pressure field we truncate the sum over all streamwise k-modes for [Im(k.)| > N
and we will only plot the contribution from a single azimuthal (m) mode.

Figure 3 shows the separate components of the acoustic pressure field for a source at (rg,8p,z9) =
(0.8,0,10.1) with w = 10, m = 10 and Z = 3 + 1.5iw — 1.15i/w we use v = 1.4, § = 1073 and ¢ = 107°. It
can be observed that there is some distortion at z = 2y due to the truncation of the sum.
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Figure 3: Linear and Nonlinear Acoustics at ¢t = 0.5 for a source at (ro, 0o, x0) = (0.8,0,10.1) with w = 10,
m =10 and Z = 3 + 1.54w — 1.15¢/w, taking only the first four & modes in each direction
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VI. Conclusion

We have shown that the nonlinear modes that arise due to the linear acoustics are a factor of 1/4y,

greater than would be expected for the nonlinear modes in a hard walled duct. This is a consequence of
the amplification and subsequent interaction of certain quantities in the boundary layer. We have shown
that the previously found large O(g2/d) oscillatory nonlinear solution was an artefact of the parallel low
assumption. However we have also shown that even when taking into account the non-parallel effects an
O(g2/41,) amplified nonlinear solution is still permitted. We have also shown that the nonlinear streaming
modes are amplified further by an additional factor of 1/,/g.

Our results also show that for the nonlinear acoustics the outer pressure does not obey the effective

impedance boundary condition due to the amplifying mechanisms within the boundary layer. This means
that a single effective impedance boundary condition will not adequately resolve both the linear and the
nonlinear acoustics as they have different effective impedances.
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