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Sound within air
raft engines 
an be 140dB�160dB, and may be ampli�ed by 1000×

within a vis
o-thermal boundary layer over an a
ousti
 lining, triggering nonlinear e�e
ts.

It has been suggested that non-parallel e�e
ts 
ould also be important, however a
ousti


linings give rise to di�erent asymptoti
 s
alings than most previous non-parallel work for

hard walls. This paper presents an investigation into the e�e
ts of nonlinearity on the

a
ousti
s within a non-parallel boundary layer �ow over an a
ousti
 lining in a du
t. The

analysis 
ombines the e�e
ts of shear, vis
osity, and nonlinearity and uses a three-layer

formulation to obtain analyti
 solutions. Unlike the parallel �ow a
ousti
s the non-parallel

a
ousti
s do not admit a highly os
illatory ampli�ed a
ousti
 streaming (zero frequen
y)

solution. However there is still an ampli�ed nonlinear solution that propagates out into

the rest of the du
t.

I. Introdu
tion

A
ousti
 liners are an essential part of 
ivilian air
raft engines, enabling them to meet ever stri
ter

noise requirements. Sound within air
raft engines is loud, potentially 140dB-160dB, pushing the validity

of the usually assumed linearised sound over a steady ba
kground �ow. However, even if the sound within

the engine du
ting may be 
onsidered linear, an ampli�
ation me
hanism by a fa
tor of 1/δ, where δ is

the boundary layer thi
kness (typi
ally δ = 10−3
), exists within a thin vis
o-thermal boundary layer[1℄.

Experimental eviden
e also suggests nonlinearity be
omes important at lower amplitudes than expe
ted for

�ow over an a
ousti
 lining[2℄. It has been shown that nonlinearity 
an 
ause unexpe
ted a
ousti
 streaming

phenomena[3℄, although it has also been suggested that this may be an artefa
t of the assumption of parallel

mean �ow[4℄. The purpose of this paper is to investigate this by 
onsidering weakly nonlinear a
ousti
s in a

developing non-parallel vis
o-thermal boundary layer over an a
ousti
 lining.

Mu
h work on a
ousti
s in �ow over a
ousti
 linings uses the Myers boundary 
ondition[5℄. This mat
hes

the normal �uid displa
ements at the boundary, and 
omes from assuming the �uid is invis
id with an

in�nitely thin boundary layer. However this boundary 
ondition gives a vortex sheet at the boundary and


an be shown to be ill-posed[6, 7℄. More re
ent work[8℄ gave a modi�ed Myers boundary 
ondition whi
h

took a

ount of the shear in the boundary layer of the ba
kground �ow but still ignored the e�e
t of vis
osity.

This gave a 
losed form solution involving integrals over the mean �ow boundary layer pro�le. However[9℄

the e�e
t of vis
osity on the a
ousti
s o

urs at the same order of magnitude as shear, and vis
osity must also

be taken into a

ount. This means 
onsidering a �nite thi
kness vis
ous boundary layer near the a
ousti


lining and solving for the a
ousti
s in the boundary layer and then mat
hing to an outer solution, whi
h

is assumed to a
t as an invis
id �uid with uniform �ow[10, 11, 12℄. This approa
h agrees more 
losely to

results from solving the linearised Navier Stokes equations for the entire du
t. We also showed last year[3℄

that non-linearity 
ould give rise to unexpe
tedly large a
ousti
 streaming modes whi
h propagate out into

the 
entre of the du
t, suggesting that the e�e
t of nonlinearity should also be 
onsidered.

All of the above work for an a
ousti
 lining was done under the assumption of a parallel mean �ow. It

has been suggested[4℄ that the non parallel e�e
ts of developing boundary layers may have an important

e�e
t on the a
ousti
s. However this work 
onsidered only hard wall boundary 
onditions whi
h as we will

show have a di�erent s
aling regime than a
ousti
s in boundary layers near impedan
e linings.
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Density ρ∗ = ρ∗0ρ Pressure p∗ = c∗20 ρ∗0p

Velo
ity u
∗ = c∗0u Vis
osity µ = c∗0l

∗ρ∗0µ

Distan
e x∗ = l∗x Thermal Condu
tivity κ∗ = c∗0l
∗ρ∗0c

∗
pκ

Time t∗ = l∗/c∗0t Temperature T ∗ = c∗20 /c∗pT

Table 1: Dimensional and non-dimensional variables, where ∗ denotes a dimensional variable, with lengths
ale

l∗, velo
ity c∗0, density ρ∗0 and spe
i�
 heat at 
onstant pressure c∗p.
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Figure 1: Diagram of the du
t.

Here we 
onsider the e�e
t of nonlinearity with a non-parallel boundary layer mean �ow. We restri
t

ourselves to the weakly nonlinear 
ase ε ≪ δ ≪ 1, where ε is the a
ousti
 amplitude p̃/p0 and δ is a measure

of the boundary layer thi
kness. We will also look su�
iently far downstream so that 1/k ≪ x where k
is the streamwise wavenumber, whi
h means that the boundary layer is su�
iently well developed that the

e�e
t of vis
osity on the a
ousti
s is restri
ted to an inner-inner region. This means that an expansion in ε
may be used with a three-layer formulation that 
an be solved analyti
ally using asymptoti
 mat
hing and

a WKBJ solution.

II. Mathemati
al Formulation

We 
onsider the a
ousti
s in a 
ompressible vis
ous perfe
t gas inside a straight 
ylindri
al du
t. To

begin, we non-dimensionalise all quantities as shown in table 1. The governing equations are then (Landau

& Lifshitz)[13℄:

∂ρ
∂t +∇ · (ρu) = 0 (1a)

ρDu

Dt = −∇p+∇ · σ (1b)

σij = µ
(

∂ui

∂xj
+

∂uj

∂xi

)

+
(

µB − 2
3µ
)

δij∇ · u (1
)

ρDT
Dt = Dp

Dt +∇ · (κ∇T ) + σij
∂ui

∂xj
(1d)

T = p
(γ−1)ρ (1e)

where D/Dt = ∂/∂t + u · ∇ and γ = c∗p/c
∗
v is the ratio of spe
i�
 heats. We assume that the vis
osities

and thermal 
ondu
tivity depend linearly on the temperature and are independent of pressure (Prangsma,

Alberga & Beenakker)[14℄, so that we 
an write:

µ =
T

T0Re
, µB =

T

T0Re

µB∗
0

µ∗
0

, κ =
T

T0PrRe
(2)

Where Re= c∗0l
∗ρ∗0/µ

∗
0 is the Reynolds number, de�ned with respe
t to the sound speed, and Pr= µ∗

0c
∗
p/κ

∗
0

is the Prandtl number. In the du
t we use 
ylindri
al 
oordinates (r∗, θ, x∗), where l∗ is now taken to be the

radius of the du
t, so that in non-dimensionalised variables the wall of the du
t is at r = 1.
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We take the referen
e values ρ∗0, T
∗
0 , µ

∗
0, µ

B∗
0 and κ∗

0 to be those of the 
entreline mean �ow whi
h is

assumed to be uniform. This gives T0 = 1/(γ− 1), p0 = 1/γ and the non-dimensionalised mean �ow velo
ity

U0 = M is the Ma
h number. We will 
onsider the a
ousti
s due to a sour
e at (r0, x0), su�
iently far from

the leading edge so that we 
an ignore its e�e
t and don't have to know anything about the geometry of the

du
t inlet.

We will assume that the a
ousti
 lining rea
ts lo
ally and 
an be modelled by a linear impedan
e relation

p̃ = Z(ω)ṽ where p̃ is the a
ousti
 pressure, ṽ the a
ousti
 normal velo
ity and ω the frequen
y. Here we

will use the mass-spring-damper impedan
e:

Z(ω) = R− i
b

ω
+ iωd (3)

This boundary 
ondition results in there being non-zero a
ousti
 normal velo
ity at the wall whi
h then

intera
ts with the large shear to amplify the a
ousti
s within the boundary layer. This 
auses the asymptoti


s
alings to be di�erent to the 
ase of a hard wall, Z = ∞, where the a
ousti
 normal velo
ity is zero at the

wall.

A. Three Layer Setup-Asymptoti
 model

We now 
onsider a developing boundary layer �ow near the wall of the du
t, and we 
hoose x = 0 to be

the leading edge of the boundary layer. Using the standard Blasius boundary layer s
aling of inertia with

vis
osity we have our boundary layer thi
kness δL.

δL =

√

x

MRe

= δ

√

x

M

where we have de�ned δ2 = 1/Re ≪ 1. For the boundary layer approximation to be valid we need the

streamwise lengths
ale to be mu
h larger than the radial lengths
ale of the mean �ow. That is x0 ≫ δL,

where x0 is our distan
e downstream from the leading edge. This gives the requirement x0 ≫ δ2

M . Here we

will use the 
ompressible Blasius boundary layer pro�le whi
h is an exa
t solution of the boundary layer

equations for a �at plate with no pressure gradient and linear dependen
e of vis
osity with the temperature.

We now 
onsider the s
alings of the a
ousti
s. We have the time dependen
e of the a
ousti
s given by

the angular frequen
y ℜ(ω) and we let λ be the radial lengths
ale from the wall over whi
h the a
ousti
s are

a�e
ted by vis
osity. Now we 
an 
onsider the balan
e of the time dependent terms with the vis
ous terms:

∂ũ

∂t
∼ νũyy =⇒ ℜ(ω) ∼ 1

Reλ2

λ ∼ δL

√

M

ℜ(ω)x ∼ δL

√

M

krx

where kr = ℜ(k) is the streamwise a
ousti
 wavenumber. Now to avoid having to 
onsider s
attering o� the

leading edge we assume that the streamwise wavelength is shorter than our distan
e downstream. That is:

1

kr
≪ x0

whi
h gives us that λ ≪ δL so we 
an introdu
e an inner-inner region of lengths
ale λ.
We now have three distin
t regions as shown in Figure 2 where di�erent physi
al s
alings hold.

In region III, the base �ow is assumed to be approximately uniform and gradients of the a
ousti
s are

assumed to be O(1) so that the e�e
t of vis
osity is negligible at leading order. This means that the a
ousti
s


an be treated as being in an invis
id uniform �ow, for whi
h the solutions 
an be found to be in the form

of Bessel fun
tions.

In region II, the mean �ow varies over a lengths
ale δL, gradients in the a
ousti
s are assumed to be at

most O(1/δL), so the e�e
t of vis
osity is still negligible at leading order and the a
ousti
s and be treated

as being in a sheared invis
id �ow.

In region I, the mean �ow is approximately linear, but gradients in the a
ousti
s are assumed to be

O(1/λ) so the e�e
t of vis
osity is now important. Here we 
an treat the a
ousti
s as being in a linearly

sheared vis
ous �ow.

3 of 12

Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2018-3607



I

II

III

PSfrag repla
ements

y

x

Figure 2: Diagram of the du
t with inner a
ousti
 boundary layer region

B. Linear A
ousti
s

For the linear a
ousti
s we Fourier transform in x, Lapla
e transform in time and take a Fourier series in

θ so that we may 
onsider only a single mode. We want to in
lude the e�e
t of the x-dependen
e of the

mean �ow so we will introdu
e a slow streamwise variable εkx, where εk = M
krx0

≪ 1 is the ratio between

the wavelength and downstream distan
e. If we now expand our equations in ea
h region to leading order

in δL, εk and ε, where ε ≪ 1 is the s
ale of the amplitude of the a
ousti
 perturbations, we get a solution

for the pressure perturbation of the form:

p′ = εp̃0(r, εkx)e
iωt−i

∫

k(εkx)dx−imθ +O(εk, δL, ε
2)

We 
an then use this ansatz to solve in ea
h region. In III all quantities are O(ε):

p̃0 = A(εkx)Jm(αr) ũ0 =
k

ω −Mk
A(εkx)Jm(αr) ṽ0 =

−α

i(ω −Mk)
A(εkx)J

′
m(αr)

T̃0 = A(εkx)Jm(αr) w̃0 =
m

r(ω −Mk)
A(εkx)Jm(αr)

where α2 = (ω −Mk)2 − k2 and A(εkx) is a slowly varying fun
tion of x, whi
h we will not need to solve

for here.

In region II we transform into the mean �ow boundary layer using the transformation r = 1− δLζ. This
means that the mean �ow terms depend only on the similarity variable ζ and not on x and we �nd that ũ
and T̃ ∼ O(ε/δL) and p̃, ṽ and w̃ ∼ O(ε),

p̃0 = const, ṽ0 = −iC(εkx)(ω − Uk), ũ0 = −C(εkx)Uζ/δL, T̃0 = −C(εkx)Tζ/δL.

Mat
hing with the solution in region III, we �nd A = − (ω−Mk)2

αJ′
m(α) C and p̃0 = AJm(α).

In Region I we transform into the a
ousti
 boundary layer using the transformation r = 1 − λy. Now

λ is independent of x, and we 
an expand the mean �ow quantities about their values at the wall, e.g.

U = 0 + ζUζ(0) + ... = y
√

M
krx

Uζ(0) + ..., noting that krx/M = x
εkx0

∼ 1/εk. We �nd that ũ0 ∼ ε/δL,

T̃0 ∼ ε(εk)
1/2/δL and p̃0, ṽ0 ∼ ε. We then get the following solutions for ũ0 and ṽ0:

p̃0 = const ṽ0 = −iωC(εkx) ũ0 = −Uζ(0)C(εkx)

[

1− exp
( −y

√
iω√

kr(γ − 1)T (0)

)

]

/δL
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and ũ1 ∼ ε(εk)
1/2/δL, ṽ1 ∼ ε(εk)

1/2

ṽ1 = ikUζ(0)C(εkx)

[

y

√

εkx0

x
+ (γ − 1)T (0)

√

M

iωx
exp
( −y

√
iω√

kr(γ − 1)T (0)

)

]

ũ1 = −C(εkx)Uζζ(0)
y

δL

√

εkx0

x
+

Uζ(0)
2C(εkx)

4δL
√
x

[

ik
√
εkx0√

iωkr(γ − 1)T (0)
y2 +

3k
√
εkx0

ω
y

]

e

−y
√

iω√
kr(γ−1)T (0)

To �nd the modes k∗(ω) we apply the boundary 
ondition p̃ = Z(ω)ṽ and mat
h through ea
h region to

get the following dispersion relation at leading order:

Ziωα

(ω −Mk)2
J ′
m̄(ᾱ) = Jm̄(ᾱ)

[

1− kUζ(0)(γ − 1)T (0)

ω

√

M

iωx

]−1

+O(εk, δL)

We 
ould then �nd the next O(εk) solutions and apply a 
ompatibility 
ondition to �nd a di�erential

equation for the slow streamwise variation A(x). Here we will 
onsider A as being 
onstant whi
h is a

urate

to O(εk).
Previous work on a three layer model[11℄ used the assumption ξδ3L ∼ 1/Re, with ξ ∼ O(1). This work

assumed the �ow was parallel, however if we set ξ = M
xδL

we have the same s
aling regime as in this paper

and we �nd that at this order the dispersion relation above agrees with that previously found. At higher

orders the 
orre
tions to the dispersion relation will not agree as the assumption of parallel �ow means this

previous work only gives a lo
al solution.

C. For
ing

We will 
onsider a point mass sour
e at (r0, 0, x0) whi
h turns on at t = 0. i.e.

q(t) = Re[qδ(r − r0)δ(x − x0)
δ(θ)

r0
H(t)eiωf t]

where H(t) is a Heaviside fun
tion. This then gives us our 
onstant A for the linear solution and hen
e p̃0:

p̃0 =
eikx0(ω −Mk)

4

(

q

ω − ωf
+

q∗

ω + ω∗
f

)

(

(ω −Mk)Ym(α) − iαY ′
m(α)Zeff

(ω −Mk)Jm(α) − iαJ ′
m(α)Zeff

)

Jm(αr0)Jm(αr)

where Zeff = Z(ω)ω
(ω−Mk)

[

1− kUζ(0)(γ−1)T (0)
ω

√

M
iωx

]

is the e�e
tive impedan
e and kr now s
ales as O(ωf/M).

To �nd p(x, t) it is ne
essary to invert the Fourier-Lapla
e transforms. Inverting the Fourier x transfor-

mation is relatively simple, all the poles arise where (ω−Mk)Jm(α)− iαJ ′
m(α)Zeff = 0 (i.e. modes of a du
t

with impedan
e Zeff) and 
an be found numeri
ally. The singularities at α = 0 due to the Ym terms 
an
el

out so do not need to be 
onsidered and there is no 
ontinuous spe
trum. We 
an then use Jordan's lemma,


losing in the upper half plane for upstream modes x − x0 < 0 and in the lower half plane for downstream

modes x− x0 > 0, and get a sum over the poles.

p̃0(ω, x) = ±i
∑

k∗∈K±

Pe−ik∗(x−x0) lim
k→k∗

(k − k∗)

(

(ω −Mk)Ym(α) − iαY ′
m(α)Zeff

(ω −Mk)Jm(α) − iαJ ′
m(α)Zeff

)

Jm(αr0)Jm(αr)

P =
(ω −Mk∗)

4

(

q

ω − ωf
+

q∗

ω + ω∗
f

)

where K± 
orresponds to the set of upstream/downstream poles as determined by the Briggs�Bers method.

That is the set of poles whi
h end up in the upper/lower half plane as ℑ(ωf ) → −∞. If x > x0 we take the

negative sign and K− whereas if x < x0 we take the positive sign and K+.

When we invert the ω Lapla
e transform we will get a 
ontribution from the pole at ωf and a 
ontribution

from any ω poles from the k-residue term. These additional poles however will 
orrespond to transient modes,
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so if we are interested in the long time solution we expe
t to only have to 
onsider the pole at ωf . We 
an

then �nd p0(t, r, x, θ) at long time:

p0 =
∑

ω∈Q

∞
∑

m=−∞
∓
∑

k∗∈K±

Pei(ωt−k∗(x−x0)−mθ)

[

(ω −Mk∗)Ym(α)− iαY ′
m(α)Zeff

∂
∂k ((ω −Mk)Jm(α)− iαJ ′

m(α)Zeff)|k=k∗

]

Jm(αr0)Jm(αr)

P =
q(ω −Mk∗)

4

where Q is the set of for
ing frequen
ies {ωf}. Note that for ea
h for
ing frequen
y we have repla
ed the


omplex 
onjugate in P by in
luding −ω∗
f in Q, whi
h is equivalent due to the symmetry of the solution.

D. Weak Nonlinearity

So far we have only looked at the linear a
ousti
s that arise due to a point sour
e. This linear solution is

valid provided ε/δL ≪ 1 so that the nonlinear terms are mu
h smaller than the linear a
ousti
s. In air
raft

engines the a
ousti
s are often very loud whi
h means that this assumption may not be true. Here we will


onsider a weakly nonlinear perturbation to �nd a solution for the nonlinear a
ousti
s.

For the linear a
ousti
s we solved a system of equations of the form:

L(p) = q(t)

where L is a linear operator a
ting on p. If we 
onsider the nonlinear terms we now have an equation of the

form:

L(p) = Q(p, p) + q(t)

where Q is quadrati
 in p. Now using the weakly nonlinear approximation we 
an de
ompose the problem

into the linear a
ousti
s problem above and a linear problem for
ed by nonlinear quantities of the linear

solution:

L(p0) = q(t) L(p2) = Q(p0, p0)

Now we know the general form of p0:

p0 =

∞
∑

m=−∞

∑

ω∈{ωf ,ω∗(m)}

∑

k∗(ω,m)∈K±

∓Resω∗(Resk∗(p̃0))e
i(ωt−kx−mθ)

where ω∗(m) are any transient modes and k∗(ω,m) are the spatial downstream/upstream modes. If we only


onsider the long time solution we 
an ignore the ω∗(m) terms. We 
an then 
onsider quadrati
 quantities

of p0:

p0p0 =

∞
∑

m1,m2=−∞

∑

(ω∗),(v∗)∈Q

∑

k∗,l∗∈K±

Resω∗(Resk∗(p̃0))Resv∗(Resl∗(p̃0))e
i(Ωt−Kx−Mθ)

where Ω = ω∗ + v∗, K = k∗ + l∗, M = m1 + m2 and ea
h sum is now a double sum over every pair of

frequen
ies/wavenumbers (ω∗, v∗), (k∗, l∗). We 
an then write down the form for p2:

p2 =
∞
∑

m1,m2=−∞

∑

ω∗,v∗∈Q

∑

k∗(ω∗),l∗(v∗)∈K±

ResΩ(ResK(p̃2(Ω,K,M)))ei(Ωt−Kx−Mθ)

and we 
an solve for ResΩ∗(ResK∗(p̃2(Ω,K,M))) = p̃2(Ω,K,M) separately for ea
h mode.
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III. Mat
hing

Now for ea
h ω∗ 6= v∗ or k∗ 6= l∗ there is a pair of pairs (ω∗, k∗; v∗, l∗) and (v∗, l∗;ω∗, k∗) in the sum that

will give the same term, so we 
an 
ombine these 
ontributions when solving and in
lude a fa
tor of 1/2 to

avoid double 
ounting.

In region III, the equations for the leading order weakly nonlinear 
ontribution are:

i(Ω−MK)ρ̃2 − iKũ2 +
ṽ2
r

+ ṽ2r −
iM
r

w̃2 = iKρ̃∗0ũ0 +
iM
r

ρ̃∗0w̃0 −
1

r
(rρ̃∗0ṽ0)r

i(Ω−MK)ũ2 − iKp̃2 = ikũ∗
0ũ0 +

im

r
w̃∗

0 ũ0 − ṽ∗0 ũ0r − i(ω −Mk)ρ̃∗0ũ0

i(Ω−MK)ṽ2 + p̃2r = ikũ∗
0ṽ0 +

im

r
w̃∗

0 ṽ0 − ṽ∗0 ṽ0r − i(ω −Mk)ρ̃∗0ṽ0 +
1

r
w̃∗

0w̃0

i(Ω−MK)w̃2 −
iMp̃2

r
= ikũ∗

0w̃0 +
im

r
w̃∗

0w̃0 − ṽ∗0w̃0r − i(ω −Mk)ρ̃∗0w̃0 −
1

r
ṽ∗0 w̃0

i(Ω−MK)T̃2 − i(Ω−MK)p̃2 = (ikũ∗
0 +

im

r
w̃∗

0)(T̃0 − p̃0)− ṽ∗0(T̃0 − p̃0)r − i(ω −Mk)ρ̃∗0T̃0

where p̃0 = Resω∗(Resk∗(p̃0(ω, k))) = Resω∗(Resk∗(A(ω, k)))Jm(αr) and p̃∗0 = Resv∗(Resl∗(p̃0(ω, k))) and
similarly for all other leading order linear terms. All terms on the left hand side are of the same order and

all terms on the right hand side are O(ε2). When we 
ombine pairs and substitute our solution for the linear

problem this then be
omes:

i(Ω−MK)(γp̃2 − (γ − 1)T̃2)− iKũ2 +
ṽ2
r

+ ṽ2r −
iM
r

w̃2 =
i(Ω−MK)

2
p̃∗0p̃0 − i(Ω−MK)S

i(Ω−MK)ũ2 − iKp̃2 = iKS − iK

2
p̃∗0p̃0

i(Ω−MK)ṽ2 + p̃2r = −Sr +
1

2
(p̃∗0p̃0)r

i(Ω−MK)w̃2 −
iMp̃2

r
=

iM
2r

S − iM
2r

p̃∗0p̃0

i(Ω−MK)T̃2 − i(Ω−MK)p̃2 = − i(Ω−MK)

2
p̃∗0p̃0

where S =
(kl +m∗m/r2)p̃∗0p̃0 + p̃0rp̃

∗
0r

2(ω −Mk)(v −Ml)
, whi
h simpli�es to:

(

∂2

∂r2
+

1

r

∂

∂r
+ ℵ2 − M2

r2

)(

p̃2 + S − 1

2
p̃∗0p̃0

)

= 0

where ℵ2 = (Ω−MK)2 −K2
. So in region III the leading order solution is:

p̃2 = DJM(ℵr) + 1

2
p̃∗0p̃0 − S ṽ2 =

−ℵDJ ′
M(ℵr)

i(Ω−MK)

where D is an arbitrary 
onstant that will be found by mat
hing between ea
h layer and applying the

impedan
e boundary 
ondition at the wall of the du
t.

Now in region II the leading order O(ε2/δ2L) equations are:

i(Ω− UK)T̃2 −
Tζ ṽ2
δL

+
T ṽ2ζ
δL

+ iKT ũ2 =
i(Ω− UK)

T
T̃0T̃

∗
0 + iKT̃ ∗

0 ũ0 +
ṽ0ζ T̃

∗
0

δL
− ṽ∗0

δL
(
2T̃0Tζ

T
− T̃0ζ)

i(Ω− UK)ũ2 −
ṽ2Uζ

δL
= ikũ∗

0ũ0 +
ṽ0ũ

∗
0ζ

δL
+

T̃ ∗
0

T
(i(ω − Uk)ũ0 −

ṽ0Uζ

δL
)

i(Ω− UK)T̃2 −
ṽ2Tζ

δL
= ikũ∗

0T̃0 +
ṽ0T̃

∗
0ζ

δL
+

T̃ ∗
0

T
(i(ω − Uk)T̃0 −

ṽ0Tζ

δL
)
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When we substitute the results for the linear a
ousti
s and 
ombine pairs this be
omes:

i(Ω− UK)T̃2 −
Tζ ṽ2
δL

+
T ṽ2ζ
δL

+ iKT ũ2 =
C∗C

2δ2L
(iKTζUζ + i(Ω− UK)Tζζ)

i(Ω− UK)ũ2 −
ṽ2Uζ

δL
=

C∗C

2δ2L
(iKU2

ζ + i(Ω− UK)Uζζ)

i(Ω− UK)T̃2 −
ṽ2Tζ

δL
=

C∗C

2δ2L
(iKUζTζ + i(Ω− UK)Tζζ)

whi
h we 
an solve analyti
ally to �nd at leading order:

ṽ2 = − iKC∗C

2δL
Uζ −

B

δL
i(Ω− UK) ũ2 =

C∗C

2δ2L
Uζζ −

B

δL
Uζ T̃2 =

C∗C

2δ2L
Tζζ −

B

δL
Tζ

In Region I we �nd that the for
ing for the T̃2 and ṽ2 equations are O(ε2/δ2L) while the for
ing for the

ũ2 equation is O(ε2/
√
εkδ

2
L). This means that ũ2 is independent of T̃2 to O(εk) and ṽ2 is independent of T̃2

to O(
√
εk) so we have:

iKT (0)ũ2 +

√

x

εkx0
T (0)

ṽ2y
δL

= O(1)

i
(

Ω− y

√

εkx0

x
Uζ(0)K

)

ũ2 −
ṽ2Uζ(0)

δL
− kr(γ − 1)2T (0)2ũ2yy =

ṽ∗0 ũ0y

δL

√

x

εkx0
+ ikũ∗

0ũ0 +O(
√
εk)

where ṽ2 ∼ O(ε2/δL) and ũ2 ∼ O(ε2/
√
εkδ

2
L) Now, assuming that the exponential term de
ays and Ω 6= 0

we have at leading order:

ṽ2 = − iBΩ

δL
− iKC∗C

2δL
Uζ |0

(

1 +

√
ω +

√
v√

Ω
e

− y
√

iΩ√
kr(γ−1)T (0) − e

− y
√

iω√
kr(γ−1)T (0) − e

− y
√

iv√
kr(γ−1)T (0)

)

ũ2 =
C∗CUζ |0

√
ix

2δ2L
√
M(γ − 1)T (0)

(√
ωe

− y
√

iω√
kr(γ−1)T (0) +

√
ve

− y
√

iv√
kr(γ−1)T (0) − (

√
ω +

√
v)e

− y
√

iΩ√
kr(γ−1)T (0)

)

we 
an then use the impedan
e boundary 
ondition to solve for D and we �nd that p̃2 must be O(ε2/δL)
to balan
e with ṽ2 whi
h is ampli�ed in the boundary layer to be O(ε2/δL) at the wall. This then gives:

D

(

JM(ℵ)− ΩZ(Ω)
iℵJ ′

M(ℵ)
(Ω−MK)2

)

=
C∗C

2δL

(

iKZ(Ω)Uζ|0
(

1−
√
w +

√
v√

Ω

))

(4)

So we �nd that the nonlinear pressure is a fa
tor of 1/δL greater than would be expe
ted, due to the

ampli�
ation of terms within the boundary layer. Now this solution has a singularity at Ω = 0, whi
h

orresponds to the a
ousti
 streaming modes. This means that we will have to in
lude extra terms in the

equations we solve to regularise near Ω = 0.

IV. A
ousti
 Streaming (Ω = 0)

When Ω → 0, Z(Ω) → ∞ whi
h means that when the boundary 
ondition is applied at the wall we must

have ṽ2|y=0 = 0. Our solution in region I for ṽ2 is singular and even if we rewrite it in terms of an integral of

ũ2, whi
h now has a 
onstant term due to the exponential of Ω, we �nd that we still 
an't satisfy both the

boundary 
ondition at y = 0 and the mat
hing to region II. Also we are ignoring a term of the form

√
εkyũ2

at leading order whi
h will be
ome large as y → ∞ in this 
ase. So we must now 
onsider both leading order

and next order O(
√
εk) terms of the ũ2 equation together. We 
an write the ũ2 equation as:

(√

x

x0εk
Ω/K − yUζ(0)

)

ṽ2y + Uζ(0)ṽ2 − kr(γ − 1)2T (0)2
√

x

x0εk

1

iK
ṽ2yyy

=
−C∗CUζ |0

√
ix

2δL
√
M(γ − 1)T (0)

(−iω
√
ωe

− y
√

iω√
kr(γ−1)T (0) + iω

√
−ωe

− y
√−iω√

kr(γ−1)T (0) )− iKC∗C

2δL
Uζ|20 + exponentials
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whi
h is 
orre
t toO(
√
εk). Note that the �rst term on the right hand side isO(1/

√
εk) while the exponentials

that we have ignored are only O(1). We �nd that the dominant 
ontribution to the parti
ular solution 
omes

from the �rst two terms. So we get:

ṽ2 = − iKC∗C

2δL
Uζ|0

(

1− e

− y
√

iω√
kr(γ−1)T (0) − e

− y
√−iω√

kr(γ−1)T (0) + ṽc

)

+O(
√
εk)

where ṽc is the solution to the homogeneous equation with ṽc(0) = 1 and ṽ′c(0) = −
√
iω+

√
−iω√

kr(γ−1)T (0)
. This has

solution:

ṽc = Ay +By

∫ y Ai′(x(−a)1/3)

x2
dx+ Cy

∫ y Bi′(x(−a)1/3)

x2
dx

where a =
√

εkx0

x
iKUζ |0

kr(γ−1)2T (0)2 . Now Ai(x(−a)1/3) ∼ e−2/3x3/2(−a)1/2
and Bi(x(−a)1/3) ∼ e2/3x

3/2(−a)1/2
for

| arg((−a)1/3)| < π/3, so if we take the root of −a that is in this ar
 then Bi′(x) grows exponentially as x
in
reases. This means that to be able to mat
h our solution to region II we must set C = 0.

Now Ai′(x) = − 1
31/3Γ(1/3)

+O(x2) so we get:

ṽc = 1−
√
iω +

√
−iω√

kr(γ − 1)T (0)
y − y

∫ y

0

−31/3Γ(1/3)Ai′(x(−a)1/3)− 1

x2
dx

whi
h then gives:

ṽ2 = − iKC∗C

2δL
Uζ |0



2− e

− y
√

iω√
kr(γ−1)T (0) − e

− y
√−iω√

kr(γ−1)T (0) − y(
√
iω +

√
−iω)√

kr(γ − 1)T (0)
− y

∫ y

0

Ai′(x(−a)1/3)
Ai′(0) − 1

x2
dx





Now to mat
h to region II we 
onsider the large y behaviour of ṽ2. ṽ2 ∼ − iKC∗C
2δL

Uζ |0(−y
√
iω+

√
−iω√

kr(γ−1)T (0)
+

Γ(1/3)(−a)1/3

32/3
y + 1), whi
h must mat
h to − iKC∗C

2δL
Uζ +

iBUK
δL

for small ζ in region II. This gives:

D = − (MK)2

ℵJ ′
M(ℵ)

C∗C

2δL

√
iωx+

√
−iωx√

M(γ − 1)T (0)
+O(ε

−1/3
k ) ∼ O(ε

−1/2
k )

(Note we 
ould also in
lude Ω in our solution by substituting z = y−Ω/KUζ

√

x/x0εk and we �nd that this

regularised solution is valid for Ω ≪ ε
1/3
k so D will be at most O(1/

√
εk).)

A. Os
illating Streaming Solutions

So far for the a
ousti
 streaming modes we have assumed that |arg(−a)1/3| < π/3 so that the exponential

terms de
ay. We will now 
onsider the 
ase where |arg(−a)1/3| = π/3 (i.e. |arg(−iK)| = π) and these

exponential terms now os
illate and must be 
onsidered when mat
hing.

In region I the Airy fun
tion of the se
ond kind will no longer de
ay, so the solution 
an now be written

in the form:

ṽc = 1−
√
iω +

√
−iω√

kr(γ − 1)T (0)
y −By

∫ y

0

Ai′(x(−a)1/3)
Ai′(0) − 1

x2
dx− (1 −B)y

∫ y

0

Bi′(x(−a)1/3)
Bi′(0) − 1

x2
dx

ũ2 = − C∗CUζ |0
√
x

2δ2L
√
M(γ − 1)T (0)

(√
iω(e

− y
√

iω√
kr(γ−1)T (0) − 1) +

√
−iω(e

− y
√−iω√

kr(γ−1)T (0) − 1)

)

+
C∗CUζ |0

√
x

2δ2L
√
εkx0

(−a)2/3

Ai′(0)

(

B

∫ y

0

Ai(x(−a)1/3)dx + (1−B)
Ai′(0)

Bi′(0)

∫ y

0

Bi(x(−a)1/3)dx

)
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we 
an then use the following approximations for large y[15℄:

Ai(ye±
iπ
3 ) ∼ e

∓ 2i
3 y3/2

2
√
πy1/4e±

iπ
12

, Bi(ye±
iπ
3 ) ∼

√

2

π

e

±πi
6

y1/4
sin(

2x3/2

3
+

π

4
∓ i

2
ln 2),

=⇒
∫ y

0

Ai(x(−a)1/3)dx ∼ 1

3(−a)1/3
− e

− 2
3y

3/2√−a

2
√
πy3/4(−a)7/12

,

∫ y

0

Bi(x(−a)1/3)dx ∼ e

2
3y

3/2√−a

√
πy3/4(−a)7/12

± i

(

1

(−a)1/3
− e

− 2
3y

3/2√−a

2
√
πy3/4(−a)7/12

)

where the ± in the se
ond integral 
orresponds to the sign of arg((−a)1/3) = ±iπ/3. We 
an then use this

to �nd the asymptoti
 behaviour of ũ2 in region I for large y:

ũ2 ∼
C∗CUζ |0

√
x

2δ2L
√
εkx0

(−a)1/12√
πy3/4

(

(1−B)

Bi′(0)
e

2
√−a
3 y3/2 − e

− 2
√−a
3 y3/2

(

B

2Ai′(0)
± i

(1−B)

2Bi′(0)

))

+ const +O(1/y5/4)

If we now 
onsider the equations in region II for gradients ∼ 1/
√
εk to order O(

√
εk), ignoring T̃ terms

whi
h os
illate with a di�erent frequen
y and will 
ontribute to an additional solution for ṽ but not for ũ,
we have:

ṽ2ζ
δL

+ iKũ2 = O(
√
εk)

−iKUũ2 −
ṽ2Uζ

δL
−
(

M(γ − 1)2T 2

x
(ũ2ζζ +

Tζ

T
ũ2ζ) + ũ2ζ(

V

δL
+

Uζ

2x
)

)

= O(εk)

We 
an try a multiple s
ales solution of the form:

ṽ2 =
F±(ζ)

δL
e

±
∫ ζ

√

−iKUx

M(γ−1)2T2 dζ
ũ2 =

G±(ζ)

δ2L
e

±
∫ ζ

√

−iKUx

M(γ−1)2T2 dζ

and we �nd:

F±(ζ) = ±
√

−iKM(γ − 1)2T 2G±(ζ)√
Ux

G±(ζ) =
G±
U3/4

e

−
∫

ζ
0

x
2M(γ−1)2T2 (Uζ

2x + V
δL

)dζ
=

G±
U3/4

e

−
∫ η(ζ)
0

f
4 dη

where we are assuming here that U , V and T are given by the 
ompressible Blasius boundary layer and thus

f(η) satis�es the Blasius equation:

U = Mf ′, V = −MδL
2x

(ζf ′ − f/η′), η′ = ρ = 1/(γ − 1)T, f ′′′ +
ff ′′

2
= 0, f ′ → 1 as η → ∞

This means that our additional large os
illatory term in ũ2 de
ays exponentially due to the integral term

in G whi
h arises only be
ause we are in
luding the non-parallel 
ontributions. This means that the large

os
illatory streaming solution is 
on�ned to within the boundary layer. This shows that it is ne
essary

to 
onsider the non-parallel nature of the boundary layer when solving for the nonlinear modes and the

previously found large os
illatory behaviour that extended to the 
entre of the du
t was a artefa
t of the

parallel �ow assumption.

V. Results

To 
al
ulate the a
ousti
 pressure �eld we trun
ate the sum over all streamwise k-modes for |Im(k∗)| > N
and we will only plot the 
ontribution from a single azimuthal (m) mode.

Figure 3 shows the separate 
omponents of the a
ousti
 pressure �eld for a sour
e at (r0, θ0, x0) =
(0.8, 0, 10.1) with ω = 10, m = 10 and Z = 3 + 1.5iω − 1.15i/ω we use γ = 1.4, δ = 10−3

and ε = 10−5
. It


an be observed that there is some distortion at x = x0 due to the trun
ation of the sum.
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(a) Linear pressure p0

(b) Nonlinear a
ousti
 pressure p2

(
) Nonlinear streaming pressure p2

Figure 3: Linear and Nonlinear A
ousti
s at t = 0.5 for a sour
e at (r0, θ0, x0) = (0.8, 0, 10.1) with ω = 10,
m = 10 and Z = 3 + 1.5iω − 1.15i/ω, taking only the �rst four k modes in ea
h dire
tion
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VI. Con
lusion

We have shown that the nonlinear modes that arise due to the linear a
ousti
s are a fa
tor of 1/δL
greater than would be expe
ted for the nonlinear modes in a hard walled du
t. This is a 
onsequen
e of

the ampli�
ation and subsequent intera
tion of 
ertain quantities in the boundary layer. We have shown

that the previously found large O(ε2/δL) os
illatory nonlinear solution was an artefa
t of the parallel �ow

assumption. However we have also shown that even when taking into a

ount the non-parallel e�e
ts an

O(ε2/δL) ampli�ed nonlinear solution is still permitted. We have also shown that the nonlinear streaming

modes are ampli�ed further by an additional fa
tor of 1/
√
εk.

Our results also show that for the nonlinear a
ousti
s the outer pressure does not obey the e�e
tive

impedan
e boundary 
ondition due to the amplifying me
hanisms within the boundary layer. This means

that a single e�e
tive impedan
e boundary 
ondition will not adequately resolve both the linear and the

nonlinear a
ousti
s as they have di�erent e�e
tive impedan
es.
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