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Sound within aircraft engines can be 120dB–160dB, pushing the validity of linearized

governing equations. Moreover, some components of sound within a visco-thermal mean flow

boundary layer over an acoustic lining may be amplified by a factor of ∼ 100 (∼ 40 dB) in a

typical aircraft engine compared with the sound outside the boundary layer, which may be

expected to trigger nonlinear effects within the boundary layer. This is in addition to the

well-known nonlinear effects within the holes of the perforated lining facing sheet. This paper

presents a mathematical investigation into the effects of weak nonlinearity on the acoustics

within a thin parallel mean flow boundary layer in flow over an acoustic lining in a cylindrical

duct. (This is the first investigation of nonlinear acoustics in a boundary layer flow over a

non-rigid surface, to our knowledge.) In certain cases, a surprisingly large acoustic streaming

effect is found that escapes the mean flow boundary layer and pervades well out into the interior

of the duct.

I. Introduction

A
coustic liners are an essential part of civilian aircraft engines, enabling them to meet ever stricter noise require-

ments. Sound within aircraft engines is loud, potentially 120dB–160dB or more, pushing the validity of the

usual assumption of linearised sound over a steady mean background flow. Moreover, a thin visco-thermal mean flow

boundary layer of thickness δ∗ over an acoustic lining was recently predicted [1] to give an amplification by a factor of

order λ∗/δ∗ to certain elements of the acoustic solution, where λ∗ is a typical wavelength. Since typically λ∗/δ∗ ≈ 100

for aeroengine intakes, even when the sound within the intake may validly be considered linear, nonlinear effects would

be expected within the mean flow boundary layers over acoustic linings owing to this amplification. Experimental

evidence also suggests nonlinearity becomes important at lower amplitudes than might otherwise be expected for flow

over an acoustic lining [2]. This is a separate effect to the nonlinearities that occur within acoustic linings [e.g. 3].

Here, the effects of nonlinearities within thin mean flow boundary layers are investigated by mathematically modelling

weakly nonlinear acoustics in a visco-thermal boundary layer flow over an acoustic lining in a cylindrical duct.

Acoustic linings are typically modelled as an array of Helmholtz resonators. Assuming a linear response, the effect

of the acoustic lining is reduced to an impedance boundary condition, which is a linear relation between the acoustic

pressure Re
(
p̂ exp{iωt − ikx − imθ}

)
and the acoustic normal velocity Re

(
v̂ exp{iωt − ikx − imθ}) at the boundary,

p̂ = Z v̂, where Z is typically a function of the frequencyω. Singh and Rienstra [3] showed that nonlinearity is generally

unimportant for frequencies away from the resonant frequencies of the resonators, but that near the resonant frequencies

the impedance needs to be modified to include a nonlinear term due to the inertia of the fluid in the resonator necks.

Other authors have considered introducing nonlinearity by making the impedance Z depend on the wave amplitude as

well as the frequency [e.g. 4]. It is again emphasized that the current study investigates the effects of nonlinearity in

the mean flow boundary layer above the lining, not in the lining itself, and so is complementary to these other studies.

Much of the work on acoustics in flow over acoustic linings uses the Myers [5] boundary condition,
p̂

v̂
= Zeff =

ωZ
ω−Uk

,

where Z is the actual boundary impedance and Zeff is the effective boundary impedance seen by the acoustics in a

uniform mean flow of velocity U within the duct. This comes from matching the normal fluid displacement at the
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boundary, and is correct for thin mean flow boundary layers, either at high frequencies [1, 6] or for inviscid flows [7, 8].

Rienstra [9] showed that the Myers boundary condition leads not only to the expected acoustic modes, but also to surface

modes that exist predominantly near the wall of the duct, one of which he categorized as a hydrodynamic instability;

the presence of instabilities which grow in amplitude is another reason to consider nonlinear effects. However, the

Myers boundary condition implies an infinitely thin mean flow boundary layer at the lining, and not only do boundary

layers need to be extremely thin for this to be accurate [7, 8], but it also causes the Myers boundary condition to be

ill-posed [10]. More recent work [11] gave a modified Myers boundary condition which accounted for the thin boundary

layer of the mean flow, but still ignored the effect of viscosity. However, Renou and Auregan [12] demonstrated that to

correlate mathematical and numerical results with the results of experiments, the effect of viscosity within the mean

flow boundary layer must be included, and Khamis and Brambley [13, 14] demonstrated that the effects of viscosity

on the acoustics are of a comparable magnitude to the effects of shear, and thus both should be taken into account.

Viscosity within the mean flow boundary layer was investigated by Aurégan, Starobinski, and Pagneux [6] for thin

low-velocity mean flow boundary layers, and by Brambley [1] for thin mean flow boundary layers of arbitrary subsonic

velocity, while investigations taking into account both shear and viscosity within the mean flow boundary layer have

recently been performed by Khamis and Brambley [15, 16]. This approach agrees most closely with results from

solving the linearised Navier Stokes equations (LNSE) for the entire duct. The aim of all this work has been to derive

a new boundary condition in terms of an effective impedance Zeff as a function of the actual wall impedance Z . This

is the impedance that sound in an inviscid uniform mean flow would observe at the boundary, and includes the effects

of the viscous mean flow boundary layer. None of these studies have considered nonlinearity of the acoustics within

the fluid.

Several studies have considered nonlinearity within mean flow boundary layers over rigid non-deformable sur-

face [e.g. 17–19], or surfaces where the motion of the surface is known a priori and does not react to the acoustics [e.g.

20]. For example, Dong and Wu [18] considered free stream vortical disturbances to the Orr-Sommerfeld/Squire

equations for an incompressible mean flow boundary layer and also found an amplification in the streamwise velocity;

however, they deemed such solutions to be non-physical due to “entanglement of Fourier components”. This work has

subsequently been generalized to compressible flows [21]. Wu [20] derived effective impedances accounting for the

effect of the mean flow boundary layer on perturbations to several non-reacting surfaces, where the behaviour of the

surface is given a priori and does not react to the perturbation. However, the asymptotic scaling is significantly different

between these non-reacting walls and the reacting lined walls considered here, and in particular the amplification by a

factor of λ∗/δ∗ mentioned above does not occur with non-reacting walls.

In this paper, the effect of nonlinearity in sound in a mean flow boundary layer above a non-rigid lined wall is

considered. We restrict ourselves to the weakly nonlinear regime |ṽ |/ω ≪ δ∗ ≪ ℓ∗, where ℓ∗ is the duct radius; that is,

the acoustic displacement is much smaller than the mean flow boundary layer thickness, and the mean flow boundary

layer thickness is much smaller than the duct radius. In this regime, the linearised results are reproduced at leading

order, while nonlinear effects occur as higher order corrections. This is compatible with nonlinear impedance models,

and is a similar scaling to that used by Singh and Rienstra [3] away from resonance. We will not look at the stability

and nonlinear effects of surface modes, however the analysis presented here could be used in the future to carry out

such an investigation. After setting out the governing equations and nondimensionalization used here in section II and

the mean flow used in section III, the asymptotic expansion used for weakly nonlinear perturbations to a thin mean flow

boundary layer is presented in section IV. This is then solved, first for the linear acoustics in section IV.A, and then

for the next order nonlinear perturbation in section IV.B. Plots of the results of this analysis, compared with solutions

to the Weakly Non-Linear Navier–Stokes Equations (WNLNSE), are given in section V, after which conclusions and

opportunities for further research are discussed in section VI.

II. Governing Equations
We consider the acoustics in a compressible viscous perfect gas inside a cylindrical duct, as depicted in figure 1.

We non-dimensionalise all quantities as shown in table 1, giving the governing equations [22]
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Fig. 1 Diagram of the duct

Density ρ∗ = ρ∗
R
ρ Pressure p∗ = c∗2

R
ρ∗
R

p

Velocity u∗
= c∗

R
u Viscosity µ = c∗

R
ℓ∗ρ∗

R
µ

Distance x∗ = ℓ∗x Thermal Conductivity κ∗ = c∗
R
ℓ∗ρ∗

R
c∗pκ

Time t∗ = ℓ∗/c∗
R

t Temperature T ∗
= c∗2

R
/c∗pT

Table 1 Dimensional and non-dimensional variables where ∗ denotes a dimensional variable, with reference

lengthscale ℓ∗, reference velocity c∗
R

, reference density ρ∗
R

, and specific heat at constant pressure c∗p.

∂ρ

∂t
+ ∇ · (ρu) = 0 (1a)

ρDu
Dt
= −∇p + ∇ · σ (1b)

σij = µ
(
∂ui
∂x j
+

∂uj

∂xi

)
+

(
µB − 2

3
µ
)
δij∇ · u (1c)

ρDT
Dt
=

Dp

Dt
+ ∇ · (κ∇T ) + σij ∂ui∂x j

(1d)

T =
γp

(γ−1)ρ (1e)

where D/Dt = ∂/∂t + u · ∇ and γ = c∗p/c∗v is the ratio of specific heats. We assume that the viscosities and thermal

conductivity depend linearly on the temperature and are independent of pressure [23],

µ =
T

TRRe
, µB

=

T

TRRe

µB
∗

R

µ∗
R

, κ =
T

TRPrRe
, (2)

where Re = c∗
R
ℓ∗ρ∗

R
/µ∗

R
is the Reynolds number based on the sound speed c∗

R
and Pr = µ∗

R
c∗p/κ∗R is the Prandtl number.

In the duct we use cylindrical coordinates (r∗, θ, x∗). We assume that the mean flow is uniform and time-independent

and has a boundary layer thickness δ∗. We then take the reference values c∗
R

, ρ∗
R

, T ∗
R

, µ∗
R

, µB
∗

R
and κ∗

R
to be those

of the uniform mean flow outside the boundary layer, and the reference lengthscale ℓ∗ to be the duct radius. In

non-dimensional terms, this gives the reference temperature TR = 1/(γ−1) and the reference pressure pR = 1/γ, while

the duct wall is at r = 1; the non-dimensionalised uniform mean flow velocity UR = M is the Mach number. For air at

sea level, ρ∗
R
≈ 1.225kgm−3, c∗

R
≈ 340ms−1, µ∗

R
≈ 2 × 10−5Pa · s, c∗p ≈ 103m2s−2K−1, and γ = 1.4. Taking ℓ∗ ≈ 1m

and a thin (perhaps laminar) boundary layer of δ∗ ≈ 1mm then gives the order of magnitude estimates Re ≈ 107 and

δ∗/ℓ∗ = δ ≈ 10−3, while a thicker (perhaps turbulent) boundary layer of δ∗ ≈ 1cm would give δ ≈ 10−2.

An acoustic perturbation is a small amplitude perturbation of magnitude ε to an otherwise steady mean flow. Here

we specify ε explicitly as the nondimensionalized root mean square pressure oscillation, p∗rms = ρ
∗
R

c∗2
R
ε. This is often

given as a Sound Pressure Levels in deciBels, which at sea level is given by

SPL = 20 log10

(
p∗rms

2 × 10−5 Pa

)
≈ 197 + 20 log10 ε. (3)

For sound pressure levels between 120dB and 160dB, we find ε has an order of magnitude varying between 1.4×10−4

and 1.4 × 10−2. For the subsequent weakly nonlinear approximation to be valid, we will require ε ≪ δ.
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Fig. 2 Boundary Layer Profile (u left, T right) for M = 0.7, Pr = 0.7, ξ = 1 and δ = 10−3

III. Mean Flow
At the duct wall r = 1 we consider a steady thin boundary layer of thickness δ. Since the boundary layer is

characterised by balancing viscous shear with inertia, inside the boundary layer we use the scalings

r = 1 − δy, ξδ2 = 1/Re (4)

where ξ is a parameter adjusting how well developed the boundary layer is, and we assume here ξ ∼ O(1). The mean

flow boundary layer is then given by

u = u0(y)ex, T = T0(y), ρ = ρ0(y), and p = 1/γ. (5)

Any parallel non-swirling boundary layer profile could be used for what follows, provided it is independent of t, x and

θ and is in thermal equilibrium with the boundary, meaning dT0/dy = 0 at y = 0. Examples common in aeroacoustics

include parabolic, 1/7th power law, logarithmic and exponential boundary layer profiles. For the results given here, a

parallel non-developing compressible Blasius boundary layer is used, as was used in [1]. This profile is given by

u0 = M
d f

dζ
,

1

(γ − 1)ρ0
= T0 =

1

γ − 1
+

1

2
M2τ(ζ), y =

1
√

M

∫ ζ

0

1 +
(γ − 1)

2
M2τ(q)dq, (6)

where

f f ′′ + 2 f ′′′ = 0, τ′ = −2Pr ( f ′′)Pr

∫ ζ

0

( f ′′(q))2−Prdq, (7)

with boundary conditions

f (0) = f ′(0) = 0, f ′ → 1 as ζ → ∞, τ → 0 as ζ → ∞. (8)

These equations are solved numerically, and an example is plotted in figure 2. As was pointed out in [1], it is only

physically justifiable to take this Blasius boundary layer profile as being parallel (i.e. not spatially developing in x)

if the region under consideration is far downstream for the duct entrance, which would correspond to ξ ≪ 1 in the

scalings above. Notwithstanding this, and since the analysis which follows is valid for an arbitrary parallel boundary

layer profile, we shall not limit ourselves here to ξ ≪ 1 but shall consider the general case ξ = O(1).

IV. Acoustic Perturbations
Outside the mean flow boundary layer (i.e. within the duct away from the walls) we assume gradients are not large,

so that the viscous terms, which are O(1/Re) = O(δ2) from (2), can be neglected. Writing all variables as O(ε) time

dependent perturbations to the steady mean flow,

u = (M + εũO, εṽO, εw̃O), p = 1/γ + εp̃O, ρ = 1 + ερ̃O, and T = 1/(γ − 1) + εT̃O, (9)
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the governing equations (1) become, with subscripts denoting differentiation,

ρ̃Ot + M ρ̃Ox + ũOx +
1
r
(r ṽO)r + 1

r
w̃Oθ = −ε

[
(ρ̃OũO)x + 1

r
(r ρ̃O ṽO)r + 1

r
(ρ̃Ow̃O)θ

]
(10a)

ũOt + MũOx + p̃Ox = −ε
[
ρ̃O ũOt + ρ̃OMũOx + ũOũOx + ṽOũOr +

1
r
w̃OũOθ

]
+ O(ε2) (10b)

ṽOt + M ṽOx + p̃Or = −ε
[
ρ̃O ṽOt + ρ̃OM ṽOx + ũO ṽOx + ṽO ṽOr +

1
r
w̃O ṽOθ − 1

r
w̃Ow̃O

]
+ O(ε2)

(10c)

w̃Ot + Mw̃Ox +
1

r
p̃Oθ = −ε

[
ρ̃Ow̃Ot + ρ̃OMw̃Ox + ũOw̃Ox + ṽOw̃Or +

1
r
w̃Ow̃Oθ +

1
r
ṽOw̃O

]
+ O(ε2)

(10d)

T̃Ot + MT̃Ox − p̃Ot − Mp̃Ox = −ε
[
ρ̃OT̃Ot + ρ̃OMT̃Ox + ũOT̃Ox + ṽOT̃Or +

1
r
w̃OT̃Oθ

− ũO p̃Ox − ṽO p̃Or − 1
r
w̃O p̃Oθ

]
+ O(ε2) (10e)

γ p̃O − ρ̃O − (γ − 1)T̃O = ε(γ − 1)T̃O ρ̃O (10f)

where we have used that the mean flow is constant with u0 = M, ρ0 = 1, p0 = 1/γ andT0 = 1/(γ−1). Equation (10f) may

be used to eliminate ρ̃O from the other governing equations, ρ̃O = γ p̃O−(γ−1)T̃O−εγ(γ−1)T̃O p̃O+ε(γ−1)2T̃2
O
+O(ε2),

leaving five equation (10a)–(10e) in the five unknowns p̃O, T̃O, ũO, ṽO and w̃O. The order of magnitude of the terms

in (10) suggest the asymptotic expansion

T̃O = T̃O1 + εT̃O2 + O
(
ε2

)
⇒ T = T0 + εT̃O1 + ε

2T̃O2 + O
(
ε3

)
, (11)

and similarly for the other variables. The quantities labelled ‘1’ are the leading order (linear) perturbations, while the

quantities labelled ‘2’ are the first order nonlinear corrections. Note that it will turn out later that some quantities

labelled ‘2’, for example ṽO2, will be O(1/δ) from matching with the inner solution within the boundary layer, and will

therefore give rise to an overall effect of magnitude O(ε2/δ), larger than would otherwise be expected from ordinary

weak nonlinearity. We will return to solving these equation in section IV.A.1.

Inside the mean flow boundary layer, we rescale using (4) and the leading order scaling from [1], giving

u =
(
u0 +

ε
δ

ũ, −εṽ, εw̃
)
, p = 1/γ + εp̃ ρ = ρ0 +

ε
δ
ρ̃, and T = T0 +

ε
δ

T̃ . (12)

Note that ũ, ρ̃ and T̃ give contributions that are a factor 1/δ larger than in the outer scaling; this is in order to balance

at leading order once we rescale into the boundary layer [see, e.g. 1], as will be seen below. The additional minus sign

in front of ṽ in (12) is for convenience, meaning that ṽ is positive in the positive y-direction, while ṽO is positive in the

positive r-direction. Substituting this into the governing equations (1) and expanding in powers of ε and δ leads to

ε

δ

[
ρ̃t + u0 ρ̃x + ρ0ũx + (ρ0 ṽ)y

]
+

ε2

δ2

[
(ρ̃ũ)x + (ρ̃ṽ)y

]
+ ε

[
ρ0w̃θ − ρ0 ṽ

]
= O

(
ε2

δ
, εδ

)
(13a)

ε

δ

[
ρ0ũt + ρ0u0ũx + ρ0u0y ṽ − ξ(γ − 1)(T̃u0y + T0ũy)y

]

+

ε2

δ2

[
ρ̃ũt + ρ̃u0ũx + ρ̃ṽu0y + ρ0ũũx + ρ0ṽũy − ξ(γ − 1)(T̃ ũy)y

]

+ ε
[
ξ(γ − 1)[T̃u0y + T0ũy] + p̃x

]
= O

(
ε3

δ3
,
ε2

δ
, εδ

)
(13b)

ε

δ
p̃y = ε


−ρ0(ṽt + u0ṽx) + ξ(γ − 1)[T̃u0y + T0ũy]x + ξ(γ − 1)

[

2T0ṽy +

(
µB

∗

0

µ∗
0

− 2

3

)

T0(ṽy + ũx)
]

y



+ O
(
ε3

δ2
,
ε2

δ
, εδ

)
(13c)

ε
[
ρ0w̃t + ρ0u0w̃x + p̃θ − ξ(γ − 1)(T0w̃y)y

]
= O

(
ε3

δ2
,
ε2

δ
, εδ

)
(13d)
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ε

δ

[
ρ0T̃t + ρ0u0T̃x + ρ0 ṽT0y −

ξ(γ − 1)
Pr

(T0T̃)yy − ξ(γ − 1)(T̃u2
0y + 2T0u0y ũy)

]

+

ε2

δ2

[
ρ0ũT̃x + ρ0 ṽT̃y + ρ̃T̃t + ρ̃u0T̃x + ρ̃ṽT0y −

ξ(γ − 1)
Pr

(T̃T̃y)y − ξ(γ − 1)(T0ũ2
y + 2T̃u0y ũy)

]
(13e)

− ε
[
p̃t − u0 p̃x +

ξ(γ − 1)
Pr

(T0T̃)y
]
= O

(
ε3

δ3
,
ε2

δ
, εδ

)

ε

δ

[
T0 ρ̃ + T̃ ρ0

]
+

ε2

δ2
T̃ ρ̃ − ε γ

γ − 1
p̃ = 0 (13f)

As before, (13f) may be used to eliminate ρ̃ from the other governing equations,

ρ̃ = − ρ0

T0

T̃ + δ
γ

(γ − 1)T0

p̃ +
ε

δ

ρ0

T2
0

T̃2 − ε γ

(γ − 1)T2
0

T̃ p̃ + O(δ2), (14)

leaving five equation (13a)–(13e) in the five unknowns p̃, T̃ , ũ, ṽ and w̃. The order of magnitude of the terms in (13)

suggest the expansion

T̃ = T̃1 +
ε

δ
T̃2 + δT̃3 + O

(
ε2

δ2
, ε, δ2

)
, ⇒ T = T0 +

ε

δ
T̃1 +

ε2

δ2
T̃2 + εT̃3 + O

(
ε3

δ3
,
ε2

δ
, εδ

)
(15a)

ũ = ũ1 +
ε

δ
ũ2 + δũ3 + O

(
ε2

δ2
, ε, δ2

)
, ⇒ u · ex = u0 +

ε

δ
ũ1 +

ε2

δ2
ũ2 + εũ3 + O

(
ε3

δ3
,
ε2

δ
, εδ

)
(15b)

ṽ = ṽ1 +
ε

δ
ṽ2 + δṽ3 + O

(
ε2

δ2
, ε, δ2

)
, ⇒ u · er = − εṽ1 −

ε2

δ
ṽ2 − εδṽ3 + O

(
ε3

δ2
, ε2, εδ2

)
(15c)

w̃ = w̃1 +
ε

δ
w̃2 + δw̃3 + O

(
ε2

δ2
, ε, δ2

)
, ⇒ u · eθ = εw̃1 +

ε2

δ
w̃2 + εδw̃3 + O

(
ε3

δ2
, ε2, εδ2

)
(15d)

p̃ = p̃1 +
ε

δ
p̃2 + δp̃3 + O

(
ε2

δ2
, ε, δ2

)
, ⇒ p =

1

γ
+ εp̃1 +

ε2

δ
p̃2 + εδp̃3 + O

(
ε3

δ2
, ε2, εδ2

)
(15e)

The quantities labelled ‘1’ are the leading order (linear) perturbations, quantities labelled ‘2’ are the first order nonlinear

correction, and quantities labelled ‘3’ are the first order in δ linear correction (i.e. the first terms to involve mean flow

shear). Note that we make no assumption about the relative size of ε/δ compared with δ, and so quantities labelled

‘3’ should not be thought of as giving a smaller contribution than terms labelled ‘2’, although both contributions are

smaller than those from terms labelled ‘1’.

A. Linear acoustics

In this section we describe the process for solving the governing equations (10) and (13) with the asymptotic

expansions (11) and (15) for the leading order linear terms (quantities labelled ‘1’), reproducing the results of [1]. A

similar procedure can be used for the first order linear correction terms (quantities labelled ‘3’), as was done in [15].

We consider monochromatic perturbations, so that

p̃O1(x, r, θ, t) = Re
(
p̂O1(r) exp{iωt − ikx − imθ}

)
, (16)

and similarly for the other linear variables. Here, ω is the frequency and k is the axial wavenumber, both of which will

in general be complex, while m is the azimuthal wavenumber and is necessarily an integer. Since the equations we are

working with here are linear, we do not have to take the real parts of the complex exponentials when substituting for

the perturbations, and may instead work directly with the complex exponentials, as is usual in acoustics.

1. Outer solution in the duct interior

At leading order the governing equations (10) reduce to the standard Bessel equation for acoustics in a cylindrical

duct. Applying the boundary condition that the solution is regular at r = 0, the solution for the pressure is given by

p̂O1 = CJm(αr) where α2
= (ω − Mk)2 − k2, (17)
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and C is an arbitrary constant. The other quantities are then given in terms of p̂O1 by

i(ω − Mk)ûO1 − ikp̂O1 = 0, (18a)

i(ω − Mk)v̂O1 + p̂O1r = 0, (18b)

i(ω − Mk)ŵO1 − imp̂O1/r = 0, (18c)

T̂O1 = p̂O1. (18d)

Since this solution is not valid within the mean flow boundary layer close to the wall, an inner solution that is valid in

the mean flow boundary layer is needed.

2. Inner solution in the boundary layer

Inside the mean flow boundary layer, the expansion of the governing equations (13) at leading order, using the

scalings in (15), gives

L(û1, v̂1, T̂1;ω, k) =



i(ω − u0k)T̂1 + T0y v̂1 − T0v̂1y + ikT0û1

i(ω − u0k)û1 + v̂1u0y − ξ(γ − 1)2T0(T0û1y + T̂1u0y)y
i(ω − u0k)T̂1 + v̂1T0y − ξ(γ − 1)2T0

[
1
Pr

(T̂1T0)yy + T̂1(u0y)2 + 2T0u0y û1y

]




= 0 (19a)

p̂1y = 0 (19b)

where a subscript y denotes d/dy, giving a system of linear homogeneous ODEs in y. The boundary conditions at the

wall (y = 0) are those of no slip (û1 = 0), thermal equilibrium (T̂1 = 0, obtained by assuming that the wall has a far

higher thermal capacity than the fluid), and the impedance boundary condition p̂1 = Z v̂1, where Z(ω) is the known

impedance of the boundary and is unrestricted apart from the assumption that it is independent of the wavenumbers

k and m. Note that p̂1y = 0 implies that p̂1 is constant through the boundary layer, and so p̂1(0) = p̂O1(1). Since the

system of equations L is second order in û and T̂ , one further boundary condition on each of û and T̂ is needed, which

is obtained by requiring the inner solution to be compatible with an outer solution as y → ∞. Finding a compatible

outer solution to match to the inner solution is considered next.

3. Matching the outer and inner solutions

Sufficiently far outside the mean flow boundary layer for y ≥ Y ≫ 1, the gradients of the mean flow quantities

vanish and the mean flow quantities attain their uniform mean flow values. Hence, for y ≥ Y the system of ODEs (19)

decouples and becomes:

L(û1, v̂1, T̂1;ω, k) =




η2
∞ξT̂1 − 1

(γ−1) v̂1y +
ik

(γ−1) û1

η2
∞û1 − û1yy

η2
∞T̂1 − 1

σ2 T̂1yy




= 0 (20)

where σ2
= Pr is the Prandtl number and η2

∞ = i(ω − Mk)/ξ with Re(η∞) > 0. This can now be solved analytically.

The second and third equations have solutions which exponentially grow or decay as y → ∞, and in order to match

to an outer solution in the main part of the duct, only the decaying solutions are allowed. This leads to the boundary

conditions at y = Y

û1y + η∞û1 = 0, v̂1 = v̂1∞ − η∞(γ − 1)ξ
σ

T̂1 −
ik

η∞
û1, T̂1y + ση∞T̂1 = 0 at y = Y, (21)

where v̂1∞ = v̂O1(1) is the radial velocity from the outer solution at the wall that the inner solution should match to.

In conclusion, solving (19) subject to the boundary conditions T̂1 = 0 and û1 = 0 at y = 0 and (21) at y = Y ,

where v̂1∞ is given by (17) and (18) yields a unique solution. Requiring also the impedance boundary condition

p̂O1(1) = p̂1(0) = Z v̂1(0) at y = 0 gives a dispersion relation relating allowable values of k and ω. This gives the

results of Brambley [1]. From the above, and the scalings given in (11) and (15), we note that the O(ε) perturbations

outside the boundary layer force O(ε/δ) perturbations within the mean flow boundary layer, but that these O(ε/δ)
perturbations within the mean flow boundary layer do not propagate out of the mean flow boundary layer into the centre

of the duct, where all terms remain O(ε). This is because both û1 and T̂1 decay to zero outside the mean flow boundary

7
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Fig. 3 Contour plot of |1 − Zeff

Z/(1− Mk
ω

) | in the k-plane for ω = 31, M = 0.7, δ = 10−3, Pr = 0.7 and ξ = 1,

corresponding to Re = 106. The lighter shades are where the Myers condition agrees fairly closely with the

viscous asymptotics whereas the darker shades are where the two schemes disagree.

layer. It should be noted that taking the decaying solution in (20) involves taking the correct branch of the square root

of η2
∞, so that Re(η∞) > 0. This leads to a branch cut in the complex k-plane, with the branch point at k = ω/M and the

branch cut extending vertically downwards towards −i∞. This branch cut can be seen prominently in figure 3, which

plots |1 − (1 − Mk/ω)Zeff/Z | in the k-plane for the leading order viscous asymptotics. Here, Zeff = p̂O1(1)/v̂O1(1) is

the impedance the outer solution would see at the wall if it were not for the mean flow boundary layer, and therefore

Zeff includes the effect of both the liner and the mean flow boundary layer. Figure 3 therefore compares this effective

impedance with the impedance from the Myers boundary condition, Z/(1 − Mk/ω).
For further details, including various asymptotic solutions of (19) in high- and low-frequency limits, the reader

is referred to [1]. The same procedure as given here may be used to calculate the first order linear correction terms

(quantities labelled ‘3’ above), and such an analysis is given in [15]. Since these first order linear correction terms are

not needed for calculating the nonlinear correction terms below, we do not reproduce this argument here. We now turn

our attention to the nonlinear correction terms.

B. Nonlinear acoustics

We now solve for the nonlinear correction terms (quantities labelled ‘2’ in equation 15). Substituting the asymptotic

ansatz (15) into the governing equations (13) and taking terms quadratic in ε results in a set of linear ODEs to solve

for the nonlinear correction terms, forced by terms quadratic in the leading order linear solution. Since these forcing

terms are nonlinear, we must take care with the monochromatic assumption, by taking the real parts of the perturbed

leading order quantities before multiplying. (Note that, in general, both ω and k may be complex, while m is an integer

and so is necessarily real.) For example, the multiple of ũ1 and dṽ1/dx is

ũ1
dṽ1

dx
= Re

(
û1 exp{iωt − ikx − imθ}

)
Re

(
− ik v̂1 exp{iωt − ikx − imθ}

)

=

1

2
Re

(
− ikû1 v̂1 exp{2iωt − 2ikx − 2imθ} + ik⋆û1v̂

⋆
1 exp{i(ω − ω⋆)t − i(k − k⋆)x}

)
, (22)

where a star denotes the complex conjugate. This therefore results in two different Fourier components: one of

double the frequency Ω = 2ω and double the axial wavenumber K = 2k and azimuthal wavenumber M = 2m of the

leading order acoustics; and a ‘zero’ frequency component that has the purely imaginary frequency Ω = ω − ω⋆ and
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wavenumber K = k − k⋆ and M = 0. In either case, we write, e.g.,

p̃O2(x, r, θ, t) = Re
(
p̂O2(r) exp{iΩt − iK x − iMθ}

)
, (23)

and similarly for the other nonlinear variables.

1. Inner solution in the boundary layer

Substituting the scaling (15) into the governing equations (13) and equating terms of order ε2/δ2 gives the system

of equations

L(û2, v̂2, T̂2;Ω,K) = Q(û1, v̂1, T̂1; û⋆1 , v̂
⋆
1 , T̂

⋆
1 ;ω, k), (24a)

p̂2y = 0, (24b)

where L is as given in (19). In the double frequency case,Ω = 2ω, K = 2k and the⋆ is ignored. In the ‘zero’ frequency

case, Ω = ω − ω⋆, K = k − k⋆ and the ⋆ denotes the complex conjugate. The forcing Q has the following form:

Q =




T0y

T0
T̂1v̂

⋆
1
− 1

2
(T̂1v̂

⋆
1
)y + i(Ω−u0K)

2T0
T̂1T̂⋆

1
+

1
2
iKû1T̂⋆

1

i(ω−u0k)
2T0

û1T̂⋆
1
+

ik
2

û1û⋆
1
+

u0y

2T0
T̂1v̂

⋆
1
− 1

2
v̂1û⋆

1y
+

ξ(γ−1)2T0

2

(
T̂1û⋆

1y

)
y

ik
2

û⋆
1
T̂1 − 1

2
v̂1T̂⋆

1y
+

i(ω−u0k)
2T0

T̂1T̂⋆
1
+

T0y

2T0
T̂1 v̂

⋆
1

+
ξ(γ−1)2T0

2Pr
(T̂⋆

1
T̂1y)y + ξ(γ−1)2T0

2
(T0û1yû⋆

1y
+ 2u0yT̂1û⋆

1y
)




(25)

Similarly to the linear case, when the extrapolation outside the mean flow boundary layer at y = Y ≫ 1 is carried

out we get exponential terms ∝ exp(±N∞y) where N2
∞ = i(Ω − MK)/ξ. The equations for large y are:




N2
∞ξT̂2 − 1

(γ−1) v̂2y +
iK

(γ−1) û2

N2
∞ξû2 − ξû2yy

N2
∞ξT̂2 − ξ

σ2 T̂2yy




=




− 1
2
(T̂1v̂

⋆
1
)y + i(Ω − MK)γ−1

2
T̂1T̂⋆

1
+

1
2
iKû1T̂⋆

1

i(ω − Mk)γ−1

2
û1T̂⋆

1
+

ik
2

û1û⋆
1
− 1

2
v̂1û⋆

1y
+

ξ(γ−1)
2

(
T̂1û⋆

1y

)
y

ik
2

û⋆
1
T̂1 − 1

2
v̂1T̂⋆

1y
+ i(ω − Mk)γ−1

2
T̂1T̂⋆

1
+

ξ(γ−1)
2Pr

(T̂⋆
1

T̂1y)y + ξ

2
û1y û⋆

1y



(26)

We have already shown that, for large y, û1 and T̂1 decay exponentially, so we find the right hand side of (26) decays

exponentially, and so we get similar boundary conditions to the leading order case:

û2y + N∞û2 = 0, v̂2 = v̂2∞ − N∞(γ − 1)ξ
σ

T̂2 −
iK

N∞
û2, T̂2y + σN∞T̂2 = 0 at y = Y . (27)

The double frequency solution behaves similarly to the leading order acoustics. The branch cut for N∞ is the same

as for η∞, and we can take the decaying solution and rewrite the equations to ensure only this solution is admitted.

However, unlike the leading order case where the boundary condition on v̂1 was matching to the outer solution as

y → ∞ through v̂1∞, here the boundary condition on v̂2 is the impedance boundary condition at y = 0, since we do not

have any freedom to chose Ω and K to match this boundary condition later. The outer solution must still match with

v̂1∞, and therefore v̂1∞ provides a boundary condition to the outer solution, calculated below.

The situation is potentially very different for the ‘zero’ frequency case, however, since necessarily N2
∞ is always

real, and the resulting behaviour depends on the sign of N2
∞. For downstream decaying modes, N2

∞ < 0, and both

exponentials have purely imaginary argument and oscillate without decaying. In effect, this is because in this case the

whole lower-half k-plane is mapped to the branch cut under the transformationΩ = ω − ω⋆, K = k − k⋆. This means

that the O(ε2/δ2) ‘zero’ frequency amplification will propagate out of the mean flow boundary layer and into the centre

of the duct. For upstream decaying modes, N2
∞ > 0, and the decaying solution may be taken similarly to the double

frequency case. It is worth noting that the impedance boundary condition in the ‘zero’ frequency case is necessarily

v̂2 = 0 at y = 0, since an oscillating wall at zero frequency is necessarily rigid.

9



2. Outer solution in the duct interior

Applying the asymptotic expansion (11) to the governing equations (10) and equating terms of order ε2, the

resulting equations may be rearranged into a Bessel equation forced by the linear outer solution,

p̂O2rr +
1

r
p̂O2r +

(
(Ω − MK)2 − K2 − M2

r2

)
p̂O2 =

(γ − 1)ξ2η2
∞N2

∞
2

p̂⋆O1T̂1 −
(γ − 1)ξ2N4

∞
2

p̂⋆O1T̂O1

− iKξN2
∞

2
p̂⋆O1ûO1 +

ξN2
∞

2
( v̂O1

r
+ v̂O1r )p̂⋆O1 +

ξN2
∞

2
v̂O1 p̂⋆O1r −

iMξN2
∞

2r
ŵO1 p̂⋆O1

+

iK

2
[ξη2

∞ p̂⋆O1ûO1 − ikû⋆O1ûO1 + v̂
⋆
O1ûO1r −

im

r
ŵ
⋆
O1ûO1]

+

1

2r
[−ξη2

∞ p̂⋆O1v̂O1 + ikû⋆O1v̂O1 − v̂
⋆
O1v̂O1r +

im

r
ŵ
⋆
O1 v̂O1 +

1

r
ŵ
⋆
O1ŵO1]

+

1

2
[−ξη2

∞ p̂⋆O1v̂O1 + ikû⋆O1 v̂O1 − v̂
⋆
O1v̂O1r +

im

r
ŵ
⋆
O1v̂O1 +

1

r
ŵ
⋆
O1ŵO1]r

+

iM
2r

[−p̂⋆O1η
2
∞ξŵO1 + ikû⋆O1ŵO1 − v̂

⋆
O1ŵO1r +

im

r
ŵ
⋆
O1ŵO1 −

1

r
v̂
⋆
O1ŵO1], (28)

where, as before, in the double-frequency case Ω = 2ω, K = 2k, M = 2m and the ⋆ is ignored, while in the

‘zero’-frequency case Ω = ω − ω⋆, K = k − k⋆, M = 0 and the ⋆ denotes the complex conjugate.

The boundary conditions to be applied to (28) are regularity at r = 0, as for the linear case, and matching to the

inner solution as r → 1, implying p̂O2(1) = p̂2/δ and v̂O2(1) = v̂2∞/δ. Since these terms are O(1/δ), so too is p̂O2

and consequently the other outer nonlinear variables, and so the forcing on the right hand side of (28), which gives an

O(1) effect, is relatively unimportant and is dominated by the O(1/δ) effect of the inner solution. Here , these terms

are nonetheless included, and equation (28) is solved numerically.

Note that for the ‘zero’ frequency inner solution in the case N2
∞ < 0, the inner solution does not tend to a constant,

and so cannot be matched to this outer solution; this is considered separately in section IV.B.3 below.

3. Outer solution for self-interaction nonlinear components with N2
∞ < 0

In the case N2
∞ < 0, the inner solution remains highly oscillatory outside the mean flow boundary layer, and does

not match with the outer solution (28). This is because, as the wavelength of the oscillations is short, of O(δ), the

gradients outside the mean flow boundary layer become large and the viscous terms cannot be ignored. By including

the viscous terms and rapid oscillation, an asymptotic solution to the outer equations at O(ε2) may be found using

the method of multiple scales, capable of matching with the inner solution within the mean flow boundary layer. The

derivation of this solution is given in appendix A. The result from equation (A.25) is that, away from the duct centreline

r = 0,

ε2T̂O2 =
ε2

δ2
T̂2∞√

r
cos

(
βσ

δ
r − π

4

)
+ O

(
ε2

δ

)
(29a)

ε2ûO2 =
ε2

δ2
û2∞√

r
cos

(
β

δ
r − π

4

)
+ O

(
ε2

δ

)
(29b)

ε2
v̂O2 =

ε2

δ

[
iKû2∞

β
√

r
sin

(
β

δ
r − π

4

)
− βξ(γ − 1)T̂2∞

σ
√

r
sin

(
βσ

δ
r − π

4

)
+ D

J ′
0
(Λr)

J ′
0
(Λ)

]
+ O

(
ε2

)
(29c)

ε2 p̂O2 = −ε
2

δ
D

i(Ω − MK)
ΛJ ′

0
(Λ) J0(Λr) + O

(
ε2

)
, (29d)

where β2
= −i(Ω − MK)/ξ, Λ2

= (Ω − MK)2 − K2, and the constants T̂2∞, û2∞ and D are to be matched to the inner

solution within the mean flow boundary layer. At y = Y ≫ 1, the inner solution is governed by (26). Matching û2 and

T̂2 at y = Y ≫ 1 therefore gives two boundary conditions on the inner solution within the boundary layer,

û2y = −û2β tan

(
βy − β

δ
+

π

4

)
at y = Y, (30a)

T̂2y = −T̂2βσ tan

(
βσy − βσ

δ
+

π

4

)
at y = Y, (30b)
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and sets the two constants û2∞ and T̂2∞ in the outer solution,

û2∞ =
1

iβ
eiβy−iβ/δ+i π

4 (iβû2 − û2y) at y = Y, (31)

T̂2∞ =
1

iβσ
eiβσy−iβσ/δ+i π

4 (iβσT̂2 − T̂2y) at y = Y . (32)

Similarly, matching v̂2 and v̂O2 at y = Y ≫ 1 leads to

D = v̂2 +
iKû2∞
β

sin

(
βy − β

δ
+

π

4

)
− βξ(γ − 1)T̂2∞

σ
sin

(
βσy − βσ

δ
+

π

4

)
at y = Y . (33)

Since the contribution from the inner solutions are O(ε2/δ2) and do not decay, the constants ũ2∞ and T̃2∞, once

matched, are both O(1). These outer solutions therefore contribute an O(ε2/δ2) amplified acoustic streaming, stronger

than the O(ε2) acoustic streaming that would be expected, that is caused by the viscous mean flow boundary layer over

the acoustic lining. An example of this behaviour is given later in figure 7.

Also from equation (A.25) in appendix A, the leading order behaviour of ûO2 and T̂O2 near the duct centreline

r = 0 is given as

ε2T̂O2 =
ε2

δ5/2
T̂2∞

√
βσπ

2
J0

(
βσ

δ
r

)
+ O

(
ε2

δ

)
, (34a)

ε2ûO2 =
ε2

δ5/2
û2∞

√
βπ

2
J0

(
β

δ
r

)
+ O

(
ε2

δ

)
, (34b)

showing that near the centreline r = 0 the oscillatory solutions grow from O(ε2/δ2) to O(ε2/δ5/2). This will also be

seen later in figure 7.

4. Interaction of multiple modes

We might also consider the nonlinear effect due to two different frequency leading order modes interacting. We

now take the leading order acoustics as a superposition of two waves,

ũ1 = Re
(
û1aei(ωa t−kax−maθ)

)
+ Re

(
û1bei(ωb t−kbx−mbθ)

)
, (35)

We finally obtain two pairs of nonlinear self-interaction Fourier components, as described above, as well as two

cross-interaction components. These cross-interactions components will have the forms

ũ2+ = Re
(
û2+ei[(ωa+ωb )t−(ka+kb )x−(ma+mb )θ]), ũ2− = Re

(
û2−ei[(ωa−ω⋆

b
)t−(ka−k⋆b )x−(ma−mb )θ]) . (36)

The system of equations we now have to solve are:

L(û2+, v̂2+, T̂2+;Ω,K) = Q(û1a, v̂1a, T̂1a; û1b, v̂1b, T̂1b ;ωa, ka) + Q(û1b, v̂1b, T̂1b ; û1a, v̂1a, T̂1a;ωb, kb) (37)

with Q from (25), Ω = ωa + ωb and K = ka + kb , and

L(û2−, v̂2−, T̂2−;Ω,K) = Q(û1a, v̂1a, T̂1a; û⋆1b, v̂
⋆
1b, T̂

⋆
1b;ωa, ka) + Q(û⋆1b, v̂

⋆
1b, T̂

⋆
1b ; û1a, v̂1a, T̂1a;−ω⋆b,−k⋆b ) (38)

with Ω = ωa − ω⋆b and K = ka − k⋆
b
.

The magnitude of the matching outer solution depends on N2
∞ in the same way as the self-interaction solutions. For

N2
∞ real and negative the outer solution is O(ε2/δ2), and for all other values of N2

∞ it is O(ε2/δ). However, for N2
∞ to be

real and negative a rather particular choice of ωa, ωb , ka and kb is needed, and the usual case will be of O(ε2/δ) and

therefore the amplification is expected to remain contained within the mean flow boundary layer for most nonlinear

wave interactions.
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Fig. 4 Inner solutions of û2+/δ2 (left) and û2−/δ2 (right) for ωa = 5, ka = 10, ma = 10, ωb = 31 + 5i, kb = 12,

mb = 12 for asymptotics (real part dark blue, imaginary part green) compared to the WNLNSE (real part light

blue, imaginary part red), with δ = 10−3, M = 0.7, Pr = 0.7 and ξ = 0.8, giving Re = 1.25 × 106.

V. Numerical Results
In what follows, a number of examples are computed and described. The parameters for these examples are chosen

to illustrate the range of different behaviours achievable. The examples are not intended to represent realistic choices of

parameters for any particular practical application. In particular, the values of ω and k chosen would only correspond

to modes if the impedance at the duct wall at r = 1 takes the particular value Z = p̂1(1)/v̂1(1).
While asymptotic approximate solutions to equations (19,25,37) are possible [see, e.g. 1, 16], here these equations

are solved numerically using 4th order finite differences. The resulting 3N × 3N banded matrix system of equations

is solved using the LAPACK_ZGBSV routine. To solve for the first order nonlinear inner, the same matrix is used,

now forced by terms nonlinear in the leading order quantities. The system of equations is solved from y = 0 to y = Y ,

where Y is chosen large enough so that the mean flow terms are approximately their uniform mean flow values, and the

extrapolation condition (20) is used as the boundary condition.

By way of comparison, we also produce numerical solutions to the Weakly Non-Linear Navier Stokes Equations

(WNLNSE), formed by expanding the full Navier Stokes equations to leading and first order in ε, without any of the

asymptotic assumptions in δ and the matching needed above. The WNLNSE are solved numerically using a 4th order

finite difference scheme for the O(ε) and O(ε2) equations thus obtained. In this case we get a 5N × 5N banded matrix

equation that is homogeneous in the leading order case and forced by leading order terms in the first order case. In

order to accurately resolve the details in the mean flow boundary layer while still solving across the whole duct, the

numerical points are equally spaced in a stretched coordinates rs = tanh(Sr)/tanh(S), where S is the stretching factor.

This concentrates the grid points about r = 1 so that the rapid variations there due to the thin mean flow boundary

layer are properly resolved. For the results below a stretching factor of S = 2.0 is used. Before solving, the matrix is

balanced so that the largest value in each row is 1; this ensures that the solution remains stable near the origin, where

terms involving 1/r can become large.

The boundary conditions at the origin for the WNLNSE are found by assuming all quantities have a regular series

expansion near the origin and matching powers of 1/r. This eliminates the possibility of any non-regular terms in the

acoustic quantities and gives boundary conditions that are consistent with the expected Bessel function solutions.

Presented below in figures 4–7 are plots of the weakly nonlinear axial velocity, scaled such that the contribution to

the overall axial velocity is ε2 times what is plotted; this scaling means that the results are independent of the actual

amplitude ε chosen. From the outer scaling (11) this means plotting ûO2 as the solution outside the mean flow boundary

layer, while from the inner scaling (15b) this means plotting û2/δ2 as the solution inside the mean flow boundary layer.

Figure 4 shows plots of the axial velocity for both types of cross-interaction solutions. The asymptotic solution can

be seen to be in good agreement with the WNLNSE, calculated without assumptions about thin mean flow boundary

layers and matching. Note that these solutions are normalized so that p̂1 = 1 at the wall.
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Fig. 5 Inner (û2/δ2, left) and outer (ûO2, right) profiles of the double frequency solution, comparing the

asymptotics (real part dark blue, imaginary part green) to the first term from the WNLNSE (real part light

blue, imaginary part red). Parameters are ω = 5, k = 5 + i, m = 2, Pr = 0.7, M = 0.7, δ = 10−3, and ξ = 0.8,

giving Re = 1.25 × 106.
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ûO2

1 − r

Fig. 6 Inner (û2/δ2, left) and outer (ûO2, right) profiles of the ‘zero’ frequency nonlinear component for ω = 5,

k = 5+ i and m = 2 for asymptotics (real part dark blue, imaginary part green) compared to the first term from

the WNLNSE (real part light blue, imaginary part red). Other parameters are M = 0.7, δ = 10−3, Pr = 0.7 and

ξ = 0.8, corresponding to Re = 1.25 × 106.

A typical profile of the double-frequency nonlinear solution is given in figure 5. The nonlinear asymptotic solution

is shown to be in good agreement with the first term from the WNLNSE, giving confidence in the asymptotic method

applied. Moreover, both solutions are localized within the mean flow boundary layer (δ = 10−3 in this case), confirming

the prediction that the O(1/δ) amplification within the mean flow boundary layer [1] does indeed trigger significantly

more nonlinearity than would otherwise have been expected, but that, for the double frequency solution, it does not

bleed out into the rest of the duct.

The comparable ‘zero’ frequency nonlinear solution, for the case upstream decaying case N2
∞ > 0, is plotted in

figure 6. This shows a similar trend to figure 5, in that the predicted O(1/δ) amplification within the mean flow

boundary layer is seen, but does not bleed out into the rest of the duct; the acoustic streaming in the centre of the duct

remains the classical magnitude of O(ε2δ0). Figure 5 could be compared to Rayleigh streaming [e.g. 24], since there

is acoustic streaming (motion at zero frequency) in one direction within the mean flow boundary layer and in the other

direction outside the mean flow boundary layer. However, this differs from classical Rayleigh streaming in a number

of ways, including that the boundary layer concerned is the mean flow boundary layer and not the acoustic boundary

layer, that the effect in figure 5 is inviscid while Rayleigh streaming is viscous, and that the effect in figure 5 is axially

uniform instead of consisting axially of cells as it would with Rayleigh streaming.
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WNLNSE (real part light blue, imaginary part red). Other parameters are M = 0.7, δ = 10−3, Pr = 0.7 and

ξ = 0.8, giving to Re = 1.25 × 106.

11 dB 117 dB

Fig. 8 Plot of snapshots of the total perturbation for k = 5 − i, ω = 31, m = 10 and δ = 10−3 for different initial

amplitudes. The amplitudes are: ε = 5 × 10−10, giving 11 dB (left); and ε = 10−4, giving 117 dB (right).

In contrast, however, figure 7 shows the profiles in the case of a downstream decaying mode, for which N2
∞ < 0.

The solution is seen to oscillate rapidly in r with the predicted wavelength of order O(δ) from (29). This amplified

rapid oscillation does not decay away from the mean flow boundary layer and is present throughout the duct, with

an amplitude of O(ε2/δ2), growing to O(ε2/δ5/2) towards r = 0 as predicted in (34). This shows that, in this case,

the amplification within the mean flow boundary layer by a factor of 1/δ previously predicted [1] does indeed lead to

significant nonlinearity beyond what would have been expected within the duct, and that this nonlinearity is not in this

case confined to within the mean flow boundary layer but bleeds out into the rest of the duct.

Figure 8 shows the total sum of these effects, by plotting the overall perturbation to the streamwise velocity ũ at

different acoustic amplitudes. Figure 8 picks a single linear mode εũ1 introduced on the left of the plots at x = 0

with the given amplitudes, and plots the sum of this mode and its induced double-frequency and ‘zero’-frequency

nonlinear contributions from ũ2. The effect of the nonlinear streaming is easily seen by the hairy appearance of the

louder plot, although this nonlinear perturbation decays faster in the x direction than the damped acoustics, since the

axial wavenumber has twice the decay rate of the linear acoustics.
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Fig. 9 Diagram of the routes by which the linear amplification within the boundary layer and nonlinear interactions within

the boundary layer lead to larger than expected nonlinear acoustics outside the boundary layer.

VI. Conclusion
In this paper, we have investigated how the previously predicted [1] amplification by a factor of 1/δ of acoustics

within a thin visco-thermal mean flow boundary layer of thickness δ over an acoustic lining leads to nonlinear effects

becoming apparent at lower sound amplitudes than might have otherwise been expected. It is emphasized that the

nonlinearity presented here is nonlinearity within the mean flow boundary layer, and is separate to the nonlinear

behaviour of the actual boundary, such as the nonlinear behaviour of Helmholtz resonators near resonance [3]. A

schematic diagram of the routes leading to this amplification is given in figure 9. The mechanism is that sound of

amplitude ε enters the mean flow boundary layer of thickness δ and is amplified to order ε/δ. Nonlinear interactions

then result in new acoustics with an amplitude of order ε2/δ2. These new acoustics have either double the frequency

of the incoming sound, or ‘zero’ times the frequency, the latter corresponding to acoustic streaming. The double

frequency amplified sound within the boundary layer leads to double frequency sound in the rest of the duct of order

ε2/δ, a factor of 1/δ larger than would have been expected from nonlinear interactions within the duct itself. By

contrast, for downstream decaying sound the ‘zero’ frequency nonlinear component bleed into the rest of the duct and

show an order ε2/δ2 amplitude throughout the duct and a rapid radial oscillation with a wavelength of order δ. This

amplification is a factor of 1/δ2 times the magnitude that would be created by ordinary nonlinear interactions within

the duct itself.

This is an unexpected result as one would not expect such highly oscillatory solutions in the centre of the duct.

However this behaviour is present in both our asymptotic solution and in the numerical results from the weakly

nonlinear Navier Stokes equations (WNLNSE). Since these solutions have only been identified mathematically, it

would be interesting to look for their signature in existing experimental results, such as those of Aurégan and Leroux

[2], for example. It is also possible that this behaviour is a consequence of one of our assumptions. It would therefore

be interesting in future to investigate the effect of weakening some of our assumptions, in particular that of uniform

mean flow, as in real aircraft engines we would expect to have a developing mean flow boundary layer profile.

Also derived here are equations governing the nonlinear interactions of two modes of differing frequencies. As for

the self-interacting case, nonlinearity becomes important at lower amplitudes than expected due to the 1/δ amplification

within the mean flow boundary layer. Such interactions may well be important when two well-damped high azimuthal

order spinning modes (for example, corresponding to the number of rotor and stator blades respectively) interact

to produce a poorly-damped low azimuthal order nonlinear solution. Another such case might be a pair of helical

modes (ω, k,±m) interacting, giving a “zero-frequency” component with an azimuthal wavenumber 2m, although in

aeroacoustics applications such symmetry would usually be broken by the direction of rotation of the rotor blades.

So far, this analysis has not been applied to investigate nonlinearity within surface modes [9, 25]. Since surface

modes are localized close to the boundary, and since one of them might be an instability which might lead to large

amplitudes, investigating the impact of nonlinearity on such modes in combination with the 1/δ amplification would

prove interesting. For example, it may be that the nonlinearity enhances certain surface modes and restrains others.

The analysis presented here has assumed a thin mean flow boundary layer of width δ, and a small acoustic

perturbation of amplitude ε, with ε ≪ δ ≪ 1. In practice this is expected to be applicable to aircraft engines up to
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about 150 dB, depending on the boundary layer thickness, and at such amplitudes nonlinear effects are expected to

become important everywhere and not just confined to the mean flow boundary layers. While the use of the asymptotics

simplifies the governing equations, numerical solutions are still needed. In the linear case, other additional methods

have been used [1, 15, 16] to derive approximate solutions and an effective impedance Zeff that accounts for the

behaviour within the mean flow boundary layer without having to numerically solve differential equations, and such

techniques may well be applicable here.

Finally, the analysis presented here is valid for arbitrary parallel mean flow boundary layer profiles, and not just

the Blasius boundary layer profile used for the numerical examples here, provided that the mean flow boundary layer

is parallel and not axially developing. The authors hope to study weak nonlinearity in a slowly developing mean flow

boundary layer in a future publication.
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A. Outer Solution for Oscillating Nonlinear Self-interaction

This appendix gives the derivation of the nonlinear self-interaction outer solutions in the oscillatory case N2
∞ < 0.

From (15) we know that the weakly-nonlinear solution within the boundary layer contributes to both ũ and T̃ at order

O(ε2/δ2), while contributing to ṽ, p̃ and w̃ only at O(ε2/δ). In the case we consider here, N2
∞ < 0, equation (26)

shows that the weakly nonlinear solutions û2, T̂2 and v̂2 do not decay away from the mean flow boundary layer, but

instead rapidly oscillate on the length scale y = O(1), r = O(1/δ); because of this, they cannot match to the outer

solution given in (28), since this outer solution was derived from governing equations (10) which neglect such rapid

oscillations. Note that the weakly-nonlinear component of pressure, p̂2, is also O(ε2/δ), like v̂2, but unlike v̂2 it is

constant over the boundary layer and so is not rapidly oscillating. Our task, therefore, is to find a new outer solution

which matches to these highly-oscillatory inner solutions. To do this we allow for rapid oscillations in the outer solution

by using the Method of Multiple Scales, introducing a fast scale y and a slow scale R such that r = R − δy, and hence

∂/∂r = ∂/∂R− δ−1∂/∂y. Evaluating this solution along R = r and y = −r/δ gives the Multiple Scales solution in the

original variable r. We then consider the full governing equations (1) outside the mean flow boundary layer, so that

T0 = 1/(γ − 1), p0 = 1/γ, and ρ0 = 1, but retain the viscous terms that were dropped when deriving (10). We then

expand using the asymptotic expansion (11), but in order to match with the inner solution we further expand the O(ε2)
weakly-nonlinear terms in powers of δ,

T̃O2 = Re
( 1

δ2

[
T̂Θ0 + δT̂Θ1 + δ

2T̂Θ2 + O(δ3)
]

exp
{
iΩt − iK x

})
, (A.1a)

ũO2 = Re
( 1

δ2

[
ûΘ0 + δûΘ1 + δ

2ûΘ2 + O(δ3)
]

exp
{
iΩt − iK x

})
, (A.1b)

ṽO2 = Re
(1

δ

[
v̂Θ0 + δv̂Θ1 + δ

2
v̂Θ2 + O(δ3)

]
exp

{
iΩt − iK x

})
, (A.1c)

w̃O2 = Re
(1

δ

[
ŵΘ0 + δŵΘ1 + δ

2
ŵΘ2 + O(δ3)

]
exp

{
iΩt − iK x

})
, (A.1d)

p̃O2 = Re
(1

δ

[
p̂Θ0 + δp̂Θ1 + δ

2 p̂Θ2 + O(δ3)
]

exp
{
iΩt − iK x

})
, (A.1e)

where it is emphasized that T̃O2 and ũO2 are one order of magnitude in δ larger than the other variables. In what

follows, the shorthand T̂Θ = T̂Θ0 + δT̂Θ1 + δ
2T̂Θ2 + · · · will be used, and similarly for the other variables. At O(ε2) this

leads to the following equations

δ−2
[
− i(Ω − MK)(γ − 1)T̂Θ − iKûΘ − v̂Θy

]
+ δ−1

[
i(Ω − MK)γ p̂Θ +

1
R
(Rv̂Θ)R

]
= PRHS + O(δ), (A.2a)

δ−2
[
i(Ω − MK)ûΘ − ξûΘyy

]
+ δ−1

[
2ξûΘRy +

1
R
ξûΘy − iKp̂Θ

]

+ ξ(2 + λ)K2ûΘ − iKξ(1 + λ)v̂Θy − 1
R
ξ
(
rûΘR

)
R
= URHS + O(δ),

(A.2b)

−δ−2p̂Θy + δ
−1

[
i(Ω − MK)v̂Θ + p̂ΘR − ξ(2 + λ)v̂Θyy − iKξ(1 + λ)ûΘy

]

+ 2(2 + λ)ξ v̂ΘRy + 1
R
(2 + λ)ξ v̂Θy + iK(1 + λ)ξûΘR = VRHS + O(δ),

(A.2c)
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δ−1
[
i(Ω − MK)ŵΘ − ξŵΘyy

]
+ 2ξŵΘRy +

1
R
ξŵΘy = WRHS + O(δ), (A.2d)

δ−2
[
i(Ω − MK)T̂Θ −

ξ

σ2
T̂Θyy

]
+ δ−1

[
− i(Ω − MK)p̂Θ + 2

ξ

σ2
T̂ΘRy +

ξ

Rσ2
T̂Θy

]

− ξ
σ2

[
T̂ΘRR +

1
R

T̂ΘR − K2T̂Θ
]
= TRHS + O(δ)

(A.2e)

whereσ2
= Pr is the Prandtl number, λ = (µB/µ−2/3), and we have used that ρ̂Θ = −(γ−1)T̂Θ+δγ p̂Θ−δ2 (γ−1)

2
T̂O1 ρ̂

⋆
O1

(from equations 1e, 22 and A.1). The right hand side terms are the forcing terms that arise from terms quadratic in the

linear acoustics. They are given by:

PRHS =
1

2

(
N2
∞ξ(γ − 1)p̂⋆O1 p̂O1 + iKp̂⋆O1ûO1 − 1

R

(
Rp̂⋆O1v̂O1

)
R

)
(A.3a)

URHS =
1

2

(
−η2

∞ξûO1 p̂⋆O1 + ikû⋆O1ûO1 − v̂
⋆
O1ûO1R +

im

R
ŵ
⋆
O1ûO1

)
(A.3b)

VRHS =
1

2

(
−η2

∞ξ v̂O1 p̂⋆O1 + ikû⋆O1 v̂O1 − v̂
⋆
O1v̂O1R +

im

R
ŵ
⋆
O1 v̂O1 +

1
R
ŵ
⋆
O1ŵO1

)
(A.3c)

WRHS =
1

2

(
−η2

∞ξŵO1 p̂⋆O1 + ikû⋆O1ŵO1 − v̂
⋆
O1ŵO1R +

im

R
ŵ
⋆
O1ŵO1 − 1

R
v̂
⋆
O1ŵO1

)
(A.3d)

TRHS =
1

2

(
−η2

∞ξ p̂O1 p̂⋆O1

)
(A.3e)

where we have used that T̂O1 = ρ̂O1 = p̂O1 (from equation 18).

First of all, expanding p̂Θ and equating powers of δ in the radial the radial momentum equation (A.2c) gives

O
(
δ−2

)
: p̂Θ0y = 0, (A.4a)

O
(
δ−1

)
: p̂Θ1y = p̂Θ0R + ξN

2
∞ v̂Θ0 − ξ(2 + λ)v̂Θ0yy − iKξ(1 + λ)ûΘ0y, (A.4b)

O
(
1
)

: p̂Θ2y = p̂Θ1R + ξN
2
∞ v̂Θ1 − ξ(2 + λ)v̂Θ1yy − iKξ(1 + λ)ûΘ1y (A.4c)

+ 2(2 + λ)ξ v̂Θ0Ry +
1
R
(2 + λ)ξ v̂Θ0y + iK(1 + λ)ξûΘ0R − VRHS.

The O(δ−2) equation implies that p̂Θ = p̄(R) is only a function of the slow variable R and is not rapidly oscillating,

which agrees with the solution within the mean flow boundary layer. We will return to the high order equations below.

Next, equating powers of δ in the streamwise momentum equation (A.2b) gives

O
(
δ−2

)
: N2

∞ûΘ0 − ûΘ0yy = 0 (A.5a)

O
(
δ−1

)
: N2

∞ûΘ1 − ûΘ1yy = −2ûΘ0yR −
ûΘ0y

R
+

iK

ξ
p̂Θ0 (A.5b)

O
(
1
)

: N2
∞ûΘ2 − ûΘ2yy = −2ûΘ1Ry −

ûΘ1y

R
+

iK

ξ
p̂Θ1 (A.5c)

− (2 + λ)K2ûΘ0 + iK(1 + λ)v̂Θ0y + ûΘ0RR +
1
R

ûΘ0R +URHS

We may solve the leading order O(δ−2) equation for ûΘ0, giving

ûΘ0 = A1(R)eiβy
+ A2(R)e−iβy where β2

= −N2
∞ (A.6)

Substituting this into the next order equation (A.5b), we find

ûΘ1yy − N2
∞ûΘ1 = iβeiβy

(
2A1R +

A1

R

)
− iβe−iβy

(
2A2R +

A2

R

)
+

iK

ξ
p̂Θ0(R). (A.7)

To avoid a secular term that grows rapidly on the short lengthscale y, we require that both exponential terms on the

right hand side vanish. This implies that 2A1R + A1/R = 0, meaning that A1(R) = a1R−1/2 for some constant a1, and

similarly for A2. Hence,

ûΘ0 = R−1/2 (a1eiβy
+ a2e−iβy

)
. (A.8)
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Evaluating this solution along R = r and y = −r/δ gives the Multiple Scales solution. However, this solution is

generally singular at r = 0 due to the 1/R terms, and so enforcing regularity at r = 0 provides one of the two constants

on a1 and a2. To formulate this constraint, we need to solve for ũO2(r) about r = 0 where the 1/r terms become large.

To do this we set r = δq and expand the governing equations (1) to leading order in δ; this may also be accomplished

by setting R = δq in (A.2b). Either way, we arrive at

N2
∞ξûΘ0 − ξûΘ0qq −

ξ

q
ûΘ0q = 0 ⇒ ûΘ0 = AJ0(βq), (A.9)

for some constant A. For large q this solution can be approximated by the standard Bessel function asymptotics:

ûΘ0 ≈ A

√
2

βπq
cos

(
βq − π

4

)
(A.10)

This now has to match with our outer solution in terms of R and y, which means that the outer must be:

ûΘ0 =
û2∞√

R
cos

(
βy +

π

4

)
and A =

√
βπ

2δ
û2∞, (A.11)

where û2∞ is an arbitrary constant that will be set by matching with the solution inside the mean flow boundary layer.

This also means that we may form a uniformly valid solution for ûΘ0 outside the mean flow boundary layer,

ûΘ0 =

√
βπ

2δ
û2∞J0

(
βr

δ

)
, (A.12)

which agrees with both (A.9) and (A.11). Note also that, since A = O(δ−1/2), this outer solution acquires the largest

amplitude, giving an overall contribution of O(ǫ2/δ5/2), near the centreline axis of the duct, a feature that can be seen

in Fig. 7.

A similar argument may be followed for the temperature perturbation T̂Θ. Equating equal power of δ in the energy

equation (A.2e) gives

O
(
δ−2

)
: σ2N2

∞T̂Θ0 − T̂Θ0yy = 0 (A.13a)

O
(
δ−1

)
: σ2N2

∞T̂Θ1 − T̂Θ1yy = σ
2N2

∞ p̂Θ0 − 2T̂Θ0Ry − 1
R

T̂Θ0y (A.13b)

O
(
1
)

: σ2N2
∞T̂Θ2 − T̂Θ2yy = σ

2N2
∞ p̂Θ1 − 2T̂Θ1Ry − 1

R
T̂Θ1y + T̂Θ0RR +

1
R

T̂Θ0R − K2T̂Θ0 +
σ2

ξ
TRHS (A.13c)

with the leading order solution regular at the origin given by

T̂Θ0 =

√
βσπ

2δ
T̂2∞J0

(
βσr

δ

)
≈ T̂2∞√

R
cos

(
βσy +

π

4

)
. (A.14)

The last of the leading order solutions, v̂Θ0, may be found from equating equal powers in δ in the mass equation (A.2a),

giving

O
(
δ−2

)
: v̂Θ0y + iKûΘ0 + ξN

2
∞(γ − 1)T̂Θ0 = 0 (A.15a)

O
(
δ−1

)
: v̂Θ1y + iKûΘ1 + ξN

2
∞(γ − 1)T̂Θ1 = ξN

2
∞γ p̂Θ0 +

1
R
(Rv̂Θ0)R (A.15b)

O
(
1
)

: v̂Θ2y + iKûΘ2 + ξN
2
∞(γ − 1)T̂Θ2 = ξN

2
∞γ p̂Θ1 +

1
R
(Rv̂Θ1)R − PRHS. (A.15c)

At leading order, O(δ−2), we may solve for v̂Θ0 to get

v̂Θ0 = − iKû2∞

β
√

R
sin

(
βy +

π

4

)
+

βξ(γ − 1)T̂2∞

σ
√

R
sin

(
βσy +

π

4

)
+ v̄(R), (A.16)

where v̄(R) is a slowly varying non-oscillatory term, similar in nature to p̄(R).
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We now move on to the next order solutions from the O(δ−1) equations. Equation (A.5b) may be solved to give

ûΘ1 = B1(R)eiβy
+ B2(R)e−iβy

+ ū(R) where ξN2
∞ū(R) = iKp̄(R). (A.17)

Using the same argument, equation (A.13b) may be solved to find

T̂Θ1 = C1(R)eiβσy
+ C2(R)e−iβσy

+ T̄ (R) where T̄(R) = p̄(R). (A.18)

Substituting in the now known solutions for v̂Θ0 and ûΘ0 into the radial velocity equation at O(δ−1), equation (A.4b)

gives

p̂Θ1y = p̄R + ξN
2
∞ v̄ − (γ − 1)ξ2N2

∞

(
2 + λ − 1

σ2

)
σβ

T̂2∞√
R

sin
(
βσy +

π

4

)
(A.19)

with solution

p̂Θ1 = y
[
p̄R + ξN

2
∞ v̄

]
+ p̄1 + (γ − 1)ξ2N2

∞

(
2 + λ − 1

σ2

)
T̂2∞√

R
cos

(
βσy +

π

4

)
, (A.20)

where p̄1(R) is another non-oscillatory function of R independent of y. Avoiding the secular term y[· · · ] which grows

rapidly (i.e. linearly in y = r/δ) implies that

p̄R + ξN
2
∞ v̄ = 0. (A.21)

Finally, the O(δ−1) mass equation (A.15b) gives the solution for v̂Θ1. Similarly to the equation for p̂Θ1, in order to

avoid a secular term in v̂Θ1 that grows linearly in y, the terms in (A.15b) independent of y must identically vanish. This

leads to
1
R
(Rv̄)R − iKū − ξN2

∞(γ − 1)T̄ + ξN2
∞γ p̄ = 0 (A.22)

Combining the derived equations for the non-oscillatory functions ū, T̄ , p̄ and v̄ from (A.17), (A.18), (A.21) and (A.22)

gives the governing equation for p̄

p̄RR +
1
R

p̄R +
[
(Ω − MK)2 − K2

]
p̄ = 0, (A.23)

which is exactly the wave equation expected in a uniform flow, with solution

p̄ = −D
i(Ω − MK)
ΛJ ′

0
(Λ) J0(ΛR), where Λ

2
= (Ω − MK)2 − K2, (A.24)

where D is an arbitrary constant, and where p̄ has been normalized so that v̄(1) = D.

A. Summary

By using the Method of Multiple Scales, we have derived the leading order behaviour of the O(ε2) solution outside

the mean flow boundary layer needed to match to the highly oscillatory solution within the boundary layer from

section IV.B.1 when N2
∞ < 0 as r → 1 and that satisfies the regularity conditions at the duct centreline r = 0. This

solution is given by

T̂O2 = δ
−5/2T̂2∞

√
βσπ

2
J0

(
βσ

δ
r

)
+ O

(
δ−1

)
≈ δ−2 T̂2∞√

r
cos

(
βσ

δ
r − π

4

)
+ O

(
δ−1

)
(A.25a)

ûO2 = δ
−5/2û2∞

√
βπ

2
J0

(
β

δ
r

)
+ O

(
δ−1

)
≈ δ−2 û2∞√

r
cos

(
β

δ
r − π

4

)
+ O

(
δ−1

)
(A.25b)

v̂O2 ≈ δ−1

[
iKû2∞

β
√

r
sin

(
β

δ
r − π

4

)
− βξ(γ − 1)T̂2∞

σ
√

r
sin

(
βσ

δ
r − π

4

)
+ D

J ′
0
(Λr)

J ′
0
(Λ)

]
+ O

(
1
)

(A.25c)

p̂O2 = −δ−1D
i(Ω − MK)
ΛJ ′

0
(Λ) J0(Λr) + O

(
1
)

(A.25d)

where the approximations are valid away from r = 0. The constants T̂2∞, û2∞ and D are free to be matched to the inner

solution within the mean flow boundary layer, as described in section IV.B.3.
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