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3Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Wilberforce Road, Cambridge, CB3 0WA, UK

(Received Received 18 December 2011; revised 21 July 2012; accepted 22 December 2012;

first published online 4 March 2013; corrected 28 January 2016)

The explicit exact analytic solution for harmonic perturbations from a line mass source in
an incompressible inviscid two-dimensional linear shear is derived using a Fourier trans-
form method. The two cases of an infinite shear flow and a semi-infinite shear flow over
an impedance boundary are considered. For the free field and hard wall configurations,
the pressure field is (in general) logarithmically diverging and its Fourier representation
involves a diverging integral that is interpreted as an integral of generalised functions;
this divergent behaviour is not present for a finite impedance boundary or if the fre-
quency equals the mean flow shear rate. The dominant feature of the solution is the
hydrodynamic wake caused by the shed vorticity of the source. For linear shear over an
impedance boundary, in addition to the wake, (at most) two surface modes along the
wall are excited. The implications for duct acoustics with flow over an impedance wall
are discussed.
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1. Introduction

The sound field from a mass point source in a cylindrical duct with a uniform center
part of the mean flow and finite linearly-varying boundary layers (as studied in Brambley
et al. (2012)), formulated in the form of a spatial Fourier integral, has been shown to
consist of modes (residues of the Fourier transform) and the contribution from a branch
cut. Some of the modes are purely acoustical and disappear with increasing sound speed,
and some are hydrodynamical, including some surface waves related to the impedance
wall, one of which is an instability due to the interaction between the boundary layer,
mean flow and impedance wall.

Of particular interest is the fact that if the source is inside the boundary layer, there
is a pole along the branch cut, triggering a non-modal contribution. This field is not
present when the mass source is within a uniform flow region, and it is therefore not a
normal mode, of which the existence is independent of the source.

The calculation of this contribution, and the contribution of the branch cut as a whole,
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is determined in Brambley et al. (2012) numerically. In the present paper an analytical
form is obtained in the incompressible limit which provides some useful insights into the
behaviour and properties of this contribution.

On the other hand, the present results are of wider interest. In studies of the related
problem of a Green’s function in a free mixing layer (Suzuki & Lele (2003a)) a boundary
layer along a wall (Suzuki & Lele (2003b), and a nonuniform jet flow (Goldstein &
Leib (2005) and other references therein), the solutions were formulated by a similar
spatial Fourier representation, but this non-modal contribution was either not explicitly
mentioned or was overlooked during approximation. Yet, as we will now see, there must
be one in any situation involving a mass source in sheared flow.

This non-modal contribution is here identified as a wake, non-acoustic and hydrody-
namic in nature, due to the shed vorticity of the mass source, which is analogous to the
phenomenon of vortex stretching. In linear theories of perturbations of relatively sim-
ple mean flows, this vortex shedding is well known from an external force, but it is not
common from mass sources.

Consider the equations for conservation of mass and momentum in an inviscid flow
with density ρ, pressure p, velocity v and a mass source Q and bulk force F ,

∂ρ

∂t
+∇·(ρv) = Q, ρ

∂v

∂t
+ ρ(v ·∇)v +∇p = F . (1.1)

In a barotropic fluid (for example a homentropic or incompressible fluid) we have from
the curl of the momentum equation the following equation for vorticity ω = ∇×v

∂ω

∂t
+ v ·∇ω = ω ·∇v − ω∇·v +∇×(F /ρ), (1.2)

or, by using the mass equation,

ρ

(
∂

∂t
+ v ·∇

)(ω
ρ

)
= ω ·∇v − ω

ρ
Q+∇×(F /ρ), (1.3)

where ω ·∇v is called the vortex stretching term Tennekes & Lumley (1972), Kundu &
Cohen (2002). This term stretches and tilts the vortex lines, changing the local vorticity.
Altogether we may conclude from equation (1.3) that the vorticity of a particle changes
either by stretching, by a mass source (provided ωQ 6= 0) or by a non-conservative
external force field. This shows that the presence of a mass source in a region of sheared
flow (as studied by Suzuki & Lele (2003a), Suzuki & Lele (2003b), Goldstein & Leib
(2005)) necessarily causes a trailing vorticity field.

In 2D the stretching term vanishes because there is no velocity component in the
direction of ω. So a particle’s vorticity can only change by an external force or mass
source. If ∇×(F /ρ) = 0 we have for χ, where ω = χez, the conservation equation

∂χ

∂t
+∇·(vχ) = 0 (1.4)

affirming the classic result that (without a non-conservative external force) in 2D vorticity
χ is conserved. So if the vorticity of a particle changes due to a mass source, it can only
be a redistribution because there is no vorticity production.

If the problem of interest relates to linear perturbations of an irrotational mean flow
(i.e. with vanishing mean vorticity), caused by a small force or source field, the only source
of (linear) vorticity can be the force, because the product ωQ is quadratically small. If,
however, the mean vorticity is nonzero, the mass source too may produce (redistribute)
vorticity perturbations.

This is what we will study here in a very simplified and idealised model problem,
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allowing for exact solutions. Therefore we will assume in the following that F = 0. It
should be noted that to a large degree this is a modelling assumption, although possibly
a point heating, such as from a laser, may be a viable physical example of a mass source,
or at least a volume source, of the type considered here.

When we return to the 2D vorticity equation (now without force term)

ρ
( ∂
∂t

+ v ·∇
)(χ

ρ

)
= −χ

ρ
Q (1.5)

and assume that a small source induces harmonic isentropic perturbations to a parallel
sheared flow U with otherwise constant density ρ0 and sound speed c0 given by

v = U(y)ex + v̂ eiωt, χ = −U ′(y) + χ̂ eiωt, ρ = ρ0 + c−2
0 p̂ eiωt, Q = q̂ eiωt, (1.6)

we have

ρ0

(
iω + U(y)

∂

∂x

)(
χ̂+

U ′(y)

ρ0c20
p̂
)

= ρ0U
′′(y)v̂ + U ′(y)q̂. (1.7)

With a monopole type line source of amplitude 2πS (we will use the term line source
in two dimensions for what is really a line source in three dimensions along the third
dimension)

q̂ = 2πSδ(x)δ(y) (1.8)

(where δ( ) demontes the delta function) and assuming U(y) = U0 + σy, we have

ρ0

(
iω + U(y)

∂

∂x

)(
χ̂+

U ′(y)

ρ0c20
p̂
)

= 2πSσδ(x)δ(y) (1.9)

which has, under causal free field conditions (allowing only perturbations generated by
the source) and U0 > 0, the solution

χ̂+
σ

ρ0c20
p̂ =

2πSσ

ρ0U0
H(x) e−ik0x δ(y), k0 =

ω

U0
. (1.10)

where H(x) is Heaviside’s step function. Noting that the pressure term in (1.10) cannot
be discontinuous, we see that this simple derivation shows that a line source in shear flow
produces a semi-infinite sheet of vorticity, undulating with hydrodynamic wave number
k0. (Note that if the mean flow is unstable, for example if the profile has an inflection
point, this solution will probably not exist in reality without exciting the unstable modes.)

This vortex shedding was observed in the acoustic problem of a (circumferential Fourier
component of a) point source in the linearly sheared boundary layer of a mean flow in a
duct Brambley et al. (2012). In the present paper we will show that this phenomenon is
not essentially acoustical but more generally of hydrodynamic nature.

We consider the effect of a time-harmonic line mass source on an incompressible inviscid
two-dimensional shear flow of infinite (section 2) or semi-infinite (section 3) extent. The
semi-infinite configuration concerns a shear flow along an impedance wall, including its
hard wall limit. This problem is in many respects similar to the infinite shear case, since
there is again the vorticity trailing from the source, but at the same time the interaction
with the wall is more subtle.

In order to derive exact expressions for pressure and velocity, we will assume a linearly
sheared mean flow, so with a uniform mean flow vorticity. This is a simplification valid in
a (relatively) thick boundary layer, for example the atmospheric boundary layer or down
the bypass duct of an turbofan aero-engine. Although the shear is obviously created by
viscous forces, the present problem is effectively inviscid if we assume that the Reynolds
numbers related to the relevant length scales (hydrodynamic wave length 2π/k0, velocity-
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shear ratio U/U ′) are large. For a discussion of possible effects of viscosity, including
analytical results, see Wu (2002), Wu (2011).

The exact analytic solutions obtained appear to be new, in spite of this rather simple
configuration, with the nearest known solutions being the velocity field given in Balsa
(1988), Criminale & Drazin (1990), Criminale & Drazin (2000) for the initial value prob-
lem of a line source in a linear shear layer.

As far as the vorticity component is concerned, the problem is already solved by (1.10).
As the fluid is assumed incompressible, the factors proportional to 1/c20 reduce to zero
and equation (1.10) gives the vorticity as

χ̂ =
2πSσ

ρ0U0
H(x) e−ik0x δ(y). (1.11)

The solutions for pressure and velocities are not so simple, as they have to satisfy bound-
ary conditions. Here, they are found by Fourier transformation in x, as this approach is
most flexible and versatile, and can be utilised for both free field and impedance wall
configurations to obtain the velocities as well as the pressure. In the free field problem,
the velocities can be obtained also by a more direct integration of a Greens function
representation, but this approach does not seem to be as convenient as Fourier transfor-
mation.

There is a catch however: the pressure field of a 2D source without mean flow diverges
like log(x2 + y2) for large x2 + y2, and the same appears to happen in linear shear flow
if the frequency ω is not equal to the mean flow shear rate σ. As a result, the pressure
solution for the free field and the hard wall configurations are not classically Fourier
transformable, although the impedance wall solution is found not to share this divergent
behaviour. We will circumvent this problem by considering the divergent Fourier integral
of the pressure in the context of generalised functions Jones (1982) and carefully subtract
the singular part. The result is then only unique up to addition of an undetermined
constant. This, however, is expected, as the pressure in an incompressible model with
free field or hard wall boundary conditions appears only in the form of its gradient and
is therefore only defined up to a (time-dependent) constant.

From an acoustic perspective we can understand this divergence also in another way.
This incompressible field is the inner solution, valid in a region

√
x2 + y2 � O(c0/ω),

of a small Helmholtz number approximation of Matched Asymptotic Expansion type in
much the same way as in Wu (2002), section 5. (See also Crighton etal. (1992), Lesser &
Crighton (1975)). Therefore, the diverging source field is just the leading log-term of the

small argument expansion of an outer solution of H
(2)
0 (ω

√
x2 + y2/c0)-type.

2. A time-harmonic line mass source in infinite linear shear

2.1. Free field solution

Consider the two-dimensional incompressible inviscid model problem of perturbations of
a linearly sheared mean flow due to a time-harmonic line source at x = y = 0 with time
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dependence eiωt

ρ0

(
∂u

∂x
+
∂v

∂y

)
= 2πSδ(x)δ(y), (2.1a)

ρ0

(
iω + U

∂

∂x

)
u+ ρ0

dU

dy
v +

∂p

∂x
= 0, (2.1b)

ρ0

(
iω + U

∂

∂x

)
v +

∂p

∂y
= 0. (2.1c)

The far field boundary conditions will be of vanishing velocity, but (as we will see) not of
vanishing pressure. Another point to be noted here, as it will be important later, is that
the pressure appears only as a spatial gradient, and so will necessarily only be determined
up to a (time-dependent) constant.

After Fourier transformation in x we obtain the following set of equations

ρ0(−ikũ+ ṽ′) = 2πSδ(y), iρ0Ωũ+ ρ0U
′ṽ − ikp̃ = 0, iρ0Ωṽ + p̃′ = 0, (2.2)

where Ω = ω − kU . This system may be further reduced to an incompressible form of
the Pridmore-Brown (1958) equation by eliminating ṽ and ũ, which, upon considering a
doubly-infinite linear shear flow with U(y) = U0 + σy and Ω0 = ω − kU0, becomes

p̃′′ +
2kσ

Ω
p̃′ − k2p̃ = −2πiSΩ0δ(y). (2.3)

The boundary conditions will be a decaying field at infinity, although that will be strictly
possible only for the velocity; the pressure will at best be slowly diverging.

The homogeneous equation has two independent solutions (Rayleigh (1945), Drazin &
Reid (2004)), e±ky(Ω± σ), or

p̃1(y) = e|k|y(Ω + sign(Re k)σ), p̃2(y) = e−|k|y(Ω− sign(Re k)σ), (2.4)

where

|k| = sign(Re k)k =
√
k2, (2.5)

where
√

denotes the principal value square root, and |k| has thus branch cuts along
(−i∞, 0) and (0, i∞). Note that neither of these solutions has a log-like singularity or
requires a branch cut in the complex-y plane. The Wronskian is

W (y; k) = p̃′2(y)p̃1(y)− p̃′1(y)p̃2(y) = −2|k|Ω2, (2.6)

and the Fourier transformed solution is thus

p̃(y, k) =
iπS

|k|Ω0
e−|ky|

(
ΩΩ0 − σ2|ky| − σ2

)
. (2.7)

The physical field in the x, y-domain is hence obtained by inverse Fourier transformation

p(x, y) =
1

2π

∫ ∞
−∞

p̃(y, k) e−ikx dk = 1
2 iS

∫ ∞
−∞

e−ikx−|ky|

|k|Ω0

(
ΩΩ0 − σ2|ky| − σ2

)
dk, (2.8)

which has singularities at k = 0 (if ω2 6= σ2) and at k = k0 = ω/U0 from Ω0 =
−U0(k − k0) = 0. Folding the contour around the branch cuts of |k| (upwards if x < 0
and downwards if x > 0) to obtain the steepest descent contour, while noting from (1.11)
that the contribution of the k0 pole is the downstream trailing vorticity of the line source,
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we obtain

p(x, y) =
πSσ2

ω
(1 + k0|y|)H(x) e−ik0x−k0|y|

+ iS

∫ ∞
0

e−λ|x|

λΩ±0

[(
Ω±Ω±0 − σ2

)
cosλy − σ2λy sinλy

]
dλ (2.9)

where Ω± = ω ± iλU , ± = sign(x), H(x) is Heaviside’s step function.
The singularity at k = 0 is, unlike the one at k0, not a pole and has a different origin.

Due to this singularity the Fourier representation of the pressure is too singular to be
interpreted normally. This is caused by p being not Fourier transformable, not because
p itself is singular. As mentioned before, (if ω2 6= σ2) p diverges as ∼ log(x2 + y2) for
x2 + y2 →∞ and is hence not integrable. This is an artefact of the model, including an
infinite line source in an incompressible medium. When we consider the incompressible
problem as an inner problem of a larger compressible problem, as in Wu (2002), Lesser &
Crighton (1975), Crighton etal. (1992), this divergent behaviour disappears as it changes
in the far field into an outward radiating acoustic wave.

The inverse Fourier integral, however, can be found if the singular integral is inter-
preted in the generalised sense, and the singular part is split off. Following Jones (1982),
we change the semi-infinite integral into a doubly infinite one by replacing 1/λ by the
generalised function

λ−1H(λ) =
d

dλ
H(λ) log |λ|. (2.10)

After integration by parts we obtain the convergent integrals

p(x, y) =
πSσ2

ω
(1 + k0|y|)H(x) e−ik0x−k0|y|−iS

∫ ∞
0

log λ
d

dλ

[
e−λ|x| Ω± cosλy

]
dλ

+ iSσ2

∫ ∞
0

log λ
d

dλ

[
e−λ|x|

cosλy + λy sinλy

Ω±0

]
dλ (2.11)

Each one can be integrated as follows∫ ∞
0

log λ
d

dλ

[
e−λ|x| Ω± cosλy

]
dλ = ωγ + 1

2ω log(x2 + y2)− iU
x

x2 + y2
(2.12a)

ω

∫ ∞
0

log λ
d

dλ

[
e−λ|x|

cosλy + λy sinλy

Ω±0

]
dλ

= γ + 1
2 log(x2 + y2) + 1

2 (1− k0y)E(k0, z) + 1
2 (1 + k0y)E(k0, z̄)

(2.12b)

where z = x+iy, γ = 0.5772156649 . . . is Euler’s constant and E(k0, z) = e−ik0z E1(−ik0z),
with E1 the exponential integral with (here) the standard branch cut along the nega-
tive real axis of its argument. This results for E1(−ik0z) in a branch cut along the line
x = 0, y > 0 and for E1(−ik0z̄) in a branch cut along the line x = 0, y < 0 (see Appendix,
equation A 3). Altogether, we have

p(x, y) = −S(U0 + σy)
x

x2 + y2
+

iS

ω
(σ2 − ω2)

[
γ + 1

2 log(x2 + y2)
]

+
iSσ2

2ω

[
(1− k0y)E(k0, z) + (1 + k0y)E(k0, z̄)− 2πi(1 + k0|y|)H(x) e−ik0x−k0|y|

]
.

(2.13)

A seemingly different result would have been obtained if we had scaled λ by a positive
factor. The above regularisation of the divergent integral would have produced, via the
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logarithm, a result that differs by a constant. This, however, is entirely to be expected
because the pressure appears in the form of its gradient and is therefore only defined up
to a constant in the first place. Indeed, the term in (2.13) proportional to γ is also not
relevant and can be discarded. At the same time, this explains the at first sight dubious
dimensional argument of the log(x2 + y2) function.

As opposed to p, the integrals for v or u are convergent (outside the source) and can
be found without resorting to generalised functions. We have

ṽ(y, k) =
πS

ρ0
e−|ky|

(
sign(y) + sign(Re k)

σ

Ω0

)
, (2.14a)

ũ(y, k) =
iπS

ρ0
e−|ky|

(
sign(Re k) + sign(y)

σ

Ω0

)
(2.14b)

and obtain

v(x, y) =
S

ρ0

y

x2 + y2
− Sσ

2ρ0U0

[
E(k0, z) + E(k0, z̄)− 2πiH(x) e−ik0x−k0|y|

]
(2.15a)

u(x, y) =
S

ρ0

x

x2 + y2
+

iSσ

2ρ0U0

[
E(k0, z)− E(k0, z̄) + 2πi sign(y)H(x) e−ik0x−k0|y|

]
(2.15b)

The branch cuts of the exponential integrals (in the E-functions) cancel the jumps due
to the H(x)-terms, to produce continuous p and v fields. Only u has a tangential discon-
tinuity along y = 0, x > 0, but this is due to the sign(y) term. This corresponds with the
δ(y)-function behaviour of the vorticity given in (1.11).

2.2. An example

A typical example of this solution, in the form of iso-colour plots in x− y plane of snap
shots in time of the (real parts of) pressure and velocity fields (i.e. including the factor
eiωt), is given in figure 1. The parameters used are ω = 8, σ = 6, U0 = 3, and hence
k0 = 2.667. The value of σ and ω are taken of the same order of magnitude to include
the effects of both shear and vortex shedding.

The size of the figure is chosen such, that there are 2 or 3 vortices visible. The time
(corresponding to a phase point ωt = π) is the same in all figures.

In order to remove the effect of the undetermined constant, the plot-domain averaged
value of p is subtracted from p. The hydrodynamic wave length is 2π/k0 = 2.36, cor-
responding in the figures to twice the length of the vorticity blobs. As expected, u is
discontinuous across y = 0, x > 0, whereas v and p are continuous everywhere (outside
the source). The velocity fields are confined to the neighbourhoods of source and trailing
vortices. Since ω 6= σ, the pressure diverges logarithmically, indicating the generation of
acoustic waves in a compressible far-field outer problem.

2.3. Interpretation for compressible duct flow

For a comparison with the three-dimensional acoustic problem of a cylindrical duct of
radius a, mean flow of Mach number M and boundary layer thickness ah (as considered
by Brambley et al. (2012)), we note that in the shear layer we have (in dimensionless
form)

U(r) = Mh−1(1− r) = Mh−1(1− r0) +Mh−1(r0 − r) (2.16)
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(a) pressure
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(b) u-velocity
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1

0

−1
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(c) v-velocity

Figure 1. See section 2.2. Iso-colour plots of the (real parts of) pressure and velocities for a
typical free field case in x−y plane as snapshots in time. ω = 8, σ = 6, U0 = 3, giving k0 = 2.67.

which is equivalent to the 2D problem if we identify y = a(r0 − r), U0 = c0M(1− r0)/h,
and σ = c0M/ah and ω := ωc0/a, such that the dimensionless duct equivalent of k0 is

k0 := k0a =
aω

U0
=

ωh

M(1− r0)
. (2.17)

Exactly the same trailing vorticity wave number k0 is found in the acoustic duct problem
as in the present 2D incompressible problem. In the next section we will show that this
analogy extends to the configuration where the source is positioned near an impedance
wall. We will show that the surface waves excited in the incompressible problem have a
clear and strict counterpart among the modes of the acoustic duct problem.

3. A time-harmonic line mass source in linear shear over an
impedance wall

3.1. The soft wall

Consider the same equations (2.2) as before, but now in a region y ∈ [0,∞), with a source
at y = y0, and a wall of impedance Zw = ρ0ζ at y = 0 where U vanishes. We have, with
Ω = ω − kU , U(y) = U0 + σ(y − y0) = σy, U0 = σy0, Ω0 = ω − kU0, k0 = ω/U0 and
p̃(0) = −ρ0ζṽ(0) at y = 0, the same incompressible Pridmore-Brown equation (2.3) and
far field conditions as for the free field problem, but now with boundary condition

iωp̃(0) = ζp̃′(0). (3.1)
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Note that ζ has the dimension of velocity. Similarly to the free field configuration, the
Fourier-transformed solution can be constructed and is found to be

p̃ =
iπS

|k|Ω0
e−|k|y>−|k|y<

(
Ω> − sign(Re k)σ

)(
Ω< − sign(Re k)σ

) ikζ + σ + sign(Re k)ω

ikζ + σ − sign(Re k)ω

+
iπS

|k|Ω0
e−|k|y>+|k|y<

(
Ω> − sign(Re k)σ

)(
Ω< + sign(Re k)σ

)
(3.2)

where y< = min(y, y0), y> = max(y, y0) and Ω<> = Ω(y<>). We distinguish the incident
and reflected part:

p̃ = p̃in + p̃ref (3.3a)

p̃in =
iπS

|k|Ω0
e−|k||y−y0|(ΩΩ0 − σ2|k||y − y0| − σ2) (3.3b)

p̃ref =
iπS

|k|Ω0
e−|k|(y+y0)(Ω− sign(Re k)σ)(Ω0 − sign(Re k)σ)

ikζ + σ + sign(Re k)ω

ikζ + σ − sign(Re k)ω
(3.3c)

A warning is in order here, that this split may imply the false suggestion that p̃ is singular
at k = 0. In reality the singularities of p̃in and p̃ref cancel each other, at least when ζ is
finite. In that case we have

p̃ = 2πS(iωy< + ζ) +O(k) for k → 0. (3.4)

As a result the physical field p does not diverge for large x2 + y2, and there is no
undetermined constant. In the hard wall case (ζ →∞), on the other hand, we still have
a singularity at k = 0, while the physical field diverges and is determined only up to a
constant. Note that all this agrees correctly with the role of p in the boundary condition:
a soft wall condition contains p explicitly, but in the hard wall condition we have only
its derivative.

As before, the physical field in the x, y-domain is obtained by inverse Fourier transfor-
mation,

p(x, y) =
1

2π

∫ ∞
−∞

p̃(y, k) e−ikx dk = pin + pref (3.5)

with a pole at k = k0 (the vorticity shed from the source), and possibly at one or two
locations k = ks given by the dispersion relation for surface wave-like modes

ks = iζ−1 (σ − sign(Re ks)ω) . (3.6)

In particular, assuming that σ > 0 and ω > 0, and noting that Re ζ > 0 on physical
grounds, we may distinguish the following cases (see figure 2)

Case i. Im ζ > 0, σ > ω : ks = k1 ∈ 1st quadrant
Case ii. Im ζ > 0, σ 6 ω : no ks present
Case iii. Im ζ < 0, σ > ω : ks = k2 ∈ 2nd quadrant
Case iv. Im ζ < 0, σ < ω : ks = k1 ∈ 4th quadrant

ks = k2 ∈ 2nd quadrant

where

k1 = iζ−1(σ − ω), k2 = iζ−1(σ + ω). (3.7)

If Im(ζ) = 0, the ks poles are located just on the imaginary axis, i.e. on the branch cut
of |k|. In that case we have to take the limit Im(ζ)→ 0 from above or below, with either
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x

x

x

xk2
k1

k0

k1 x>0

x<0

Figure 2. Complex k-plane with possible positions of poles, branch cuts of |k|, and original
( - - -) and deformed ( ) Fourier inversion contours for x < 0 and x > 0.

limit giving the same result. If ω = σ, k1 = 0 while there will be no contribution from
this pole.

These modes are evidently the incompressible limit of the acoustic surface waves (Rien-
stra (2003))

k = ±iω

√
ζ−2 − c−2

0 ' ±iωζ−1 (3.8)

that exist for Im ζ < 0 and no flow. There is no such clear relation, however, with the
incompressible limit of the surface waves along an impedance wall in a uniform mean flow
with Ingard–Myers condition, given by Rienstra (2003). This is indeed to be expected as
we have an infinite shear layer in one case against a vanishing boundary layer in the other.
If we rewrite equation (12) of Rienstra (2003) into the present notation (and correct a
typo), we obtain the dispersion relation

(k∞ − k)2 − i(ζ/U∞)k∞|k| = 0, (3.9)

where k∞ = ω/U∞ and U∞ is the uniform mean flow velocity. This equation has 0, 2
or 4 solutions (one in each quadrant) depending on Im ζ/U∞ being > 2, 6 2, and 6 −2
respectively. This is to be compared with the 0, 1 or 2 solutions, depending on the signs
of Im ζ and σ − ω, for the present shear flow case.

Because of the presence of the mean flow, it is not immediately clear whether the ks-
modes are stable. However, a Briggs–Bers stability analysis (Briggs (1964), Bers (1983))
shows that any ks is a stable mode. In fact, we will show that, with ζ = ζ(ω), and
ω = ω(k) defined by dispersion relation (3.6), Imω is bounded from below by zero as a
function of real k, and hence no instabilities (either absolute or convective) are possible.
Indeed, if we have k ∈ R, then

Imω = |k|Re ζ(ω). (3.10)

For a passive liner with Re ζ > 0 for real ω, this shows that Imω = 0 only if k = 0. Under
reasonable assumptions of smoothness of ζ(ω), Imω(k) is continuous and hence can only
change sign once, namely at k = 0. However, it does not change sign, for the following
reason. When |ζ(ω)| > O(ω) for ω → ∞ (a reasonable assumption if the impedance
involves inertia effects), ζ must vanish for large k, and so limk→±∞ ζ(ω) = 0. Because
of causality (Rienstra (2006)), 1/ζ must be analytic in Imω < 0 and so any zero of ζ
has a positive imaginary part. So limk→±∞ Imω(k) is always positive, and in particular
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Imω is positive on either side of k = 0 and therefore does not change sign. Hence,
mink∈R(Imω) = 0. Since this minimum is not negative, the modes are not unstable.

We continue with our construction of an explicit expression for p by noting that pin
is the same as for the free field, with y replaced by y − y0, and we denote this free
field pressure by pf (with a similar notation for the velocities). The reflected field is
a contribution of the k0 pole, any ks poles present, and the branch cut integrals. The
contribution from k0 is only present downstream (x > 0). If we close the integral via
−i∞ we capture the k0-residue of pref

− πSσ2

ω
(1 + k0(y − y0))

k0 − k2

k0 − k1
H(x) e−ik0z̄+ (3.11)

(where z± = x+i(y±y0)) representing something like the image field of the shed vorticity.
For the contributions from ks poles we have to consider different cases, according to the
possible positions of the ks poles (see below).

Folding the integration contour around the branch cuts (see figure 2), we obtain inte-
grals of the following type (derived in the same way as for (2.13), and with the branch
cuts of E still to be determined)∫ ∞

0

(λ+ p1)(λ+ p2)(λ+ p3)

λ(λ− iq1)(λ− iq2)
e−λz dλ =

1

z
+
p1p2p3

q1q2
(γ + log z)

− (p1 + iq1)(p2 + iq1)(p3 + iq1)

q1(q1 − q2)
E(q1, z)−

(p1 + iq2)(p2 + iq2)(p3 + iq2)

q2(q2 − q1)
E(q2, z).

(3.12)

Altogether we can construct for the various cases explicit results, depending on the
locations of the ks poles. In general the pressure looks like

p(x, y) =pf (x, y − y0)− Sσy x

x2 + (y + y0)2
− iS

ω
(σ2 − ω2)

[
γ + 1

2 log
(
x2 + (y + y0)2

)]
− iSσ2

2ω

[
(1− k0(y − y0))

k0 − k1

k0 − k2
E(k0, z+)

+ (1 + k0(y − y0))
k0 − k2

k0 − k1

(
E(k0, z̄+)− 2πiH(x) e−ik0z̄+

)]
+
Sk0

ζ

[k1(U0 − iζ)

k0 − k1
(σy − iζ)

(
E(k1, z̄+)− C1

)
+
k2(U0 + iζ)

k0 − k2
(σy + iζ)

(
E(k2, z+)− C2

)]
(3.13)

where C1 and C2, given below, relate to the possible contributions of the poles k1 and
k2. As noted above, this p is not divergent for large x2 + y2 and has no undetermined
constant. The terms with γ and log appear in both pf and pref and cancel each other.

Using similar reasoning as before, this time without divergent integrals, we obtain from

ṽref =
πS

ρ0
e−|k|(y+y0)

(
1− sign(Re k)

σ

Ω0

) ikζ + σ + sign(Re k)ω

ikζ + σ − sign(Re k)ω
(3.14a)

ũref =
iπS

ρ0
e−|k|(y+y0)

(
sign(Re k)− σ

Ω0

) ikζ + σ + sign(Re k)ω

ikζ + σ − sign(Re k)ω
(3.14b)
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the velocities

v(x, y) =vf (x, y − y0) +
S

ρ0

y + y0

x2 + (y + y0)2

+
Sσ

2ρ0U0

[
k0 − k1

k0 − k2
E(k0, z+) +

k0 − k2

k0 − k1

(
E(k0, z̄+)− 2πiH(x) e−ik0z̄+

)]
+

iSk0

ρ0ζ

[
k1(U0 − iζ)

k0 − k1

(
E(k1, z̄+)− C1

)
+
k2(U0 + iζ)

k0 − k2

(
E(k2, z+)− C2

)]
,

(3.15)

u(x, y) =uf (x, y − y0) +
S

ρ0

x

x2 + (y + y0)2

− iSσ

2ρ0U0

[
k0 − k1

k0 − k2
E(k0, z+)− k0 − k2

k0 − k1

(
E(k0, z̄+)− 2πiH(x) e−ik0z̄+

)]
− Sk0

ρ0ζ

[
k1(U0 − iζ)

k0 − k1

(
E(k1, z̄+)− C1

)
− k2(U0 + iζ)

k0 − k2

(
E(k2, z+)− C2

)]
.

(3.16)

The contributions C1 and C2 are as follows.

Case i (1 pole). ks = k1 is found in the upper half plane and therefore contributes
upstream.

C1 = −2πiH(−x) e−ik1z̄+ , C2 = 0. (3.17a)

Case ii (no pole). No ks pole present, so

C1 = 0, C2 = 0. (3.17b)

Case iii (1 pole). ks = k2 is found in the upper half plane and contributes upstream.

C1 = 0, C2 = 2πiH(−x) e−ik2z+ . (3.17c)

Case iv (2 poles). One ks = k1 is now found in the lower half plane and contributes
downstream, while a second ks = k2, and therefore C2, is the same as in case iii above.
We have

C1 = 2πiH(x) e−ik1z̄+ , C2 = 2πiH(−x) e−ik2z+ . (3.17d)

The exponential integral E1 in the function E(q, z), q ∈ C, defined in (A 3), does not
follow the standard definition anymore. Instead of a branch cut along the negative real
axis of the argument, the branch cut is rotated and depends on q in such a way that if
Re(q) > 0, the branch cut of E1(−iqz) is always mapped along the line x = 0, y < 0, and
thus for E1(−iqz̄) is the branch cut located along the line x = 0, y > 0; if Re(q) < 0 it
is the other way round (see Appendix for more details). This definition only differs from
the standard one if q is not both real and positive, and therefore agrees with E(k0, z)
in (2.13).

As for the free field problem, the branch cuts of the E functions now compensate for
the jumps of the Heaviside functions, which were not physical but were artefacts of the
contour being closed via the lower (if x > 0) or upper (if x < 0) complex half plane. The
resulting fields are therefore smooth and continuous apart from the discontinuity in u
due to the sign(y) term in the free field solution uf mentioned previously.
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3.2. The hard wall limit

A special case of interest is the hard wall limit, i.e. ζ →∞. This limit is relatively easily
found for the velocities. They show a certain symmetry about y = 0

vHW (x, y) =
S

ρ0

y − y0

x2 + (y − y0)2
− Sσ

2ρ0U0

[
E(k0, z−)+E(k0, z̄−)−2πiH(x) e−ik0x−k0|y−y0|

]
−
(
S

ρ0

−(y + y0)

x2 + (y + y0)2
− Sσ

2ρ0U0

[
E(k0, z̄+) + E(k0, z+)− 2πiH(x) e−ik0x−k0(y+y0)

])
,

(3.18)

uHW (x, y) =
S

ρ0

x

x2 + (y − y0)2
+
S

ρ0

x

x2 + (y + y0)2

+
iSσ

2ρ0U0

[
E(k0, z−)− E(k0, z̄−) + 2πi sign(y − y0)H(x) e−ik0x−k0|y−y0|

]
+

iSσ

2ρ0U0

[
E(k0, z̄+)− E(k0, z+) + 2πi sign(−(y + y0))H(x) e−ik0x−k0(y+y0)

]
. (3.19)

As a result, the expressions can be written in terms of the free field velocities as follows.

vHW (x, y) = vf (x, y − y0)− vf (x,−(y + y0)), (3.20a)

uHW (x, y) = uf (x, y − y0) + uf (x,−(y + y0)). (3.20b)

The hard wall limit for pressure, on the other hand, is more subtle than may be expected,
because it contains (like the free field solution) an inherent undetermined additive con-
stant, in contrast to the soft wall solution. A limit of large ζ is therefore not straight-
forward and it seems better to derive the solution directly from the Fourier integral
representation. We have

p̃ref =
iπS

|k|Ω0
e−|k|(y+y0)(Ω− sign(Re k)σ)(Ω0 − sign(Re k)σ) (3.21)

which yields for x > 0 a contribution from the k0-pole

− πSσ2

ω
(1 + k0(y − y0))H(x) e−ik0z̄+ . (3.22)

For the contributions from the branch cuts we follow the same procedure as before, using
the auxiliary result (valid whenever the integral converges)∫ ∞

0

(z + p1)(z + p2)

z(z − iq)
e−λzx dλ =

1

x
−i
p1p2

q
(γ+log x)−i

1

q
(p1+iq)(p2+iq)E(q, x) (3.23)

to obtain

pHW (x, y) =pf (x, y − y0)− Sσy x

x2 + (y + y0)2

− i
S

2ω

[
(σ + ω)2

(
γ + Log(−iz+)

)
+ (σ − ω)2

(
γ + Log(iz̄+)

)]
− i

Sσ2

2ω

[
(1− k0(y − y0))E(k0, z+)

+ (1 + k0(y − y0))
(
E(k0, z̄+)− 2πiH(x) e−ik0z̄+

)]
(3.24)

valid for both x > 0 and x < 0, and where Log denotes the principal value logarithm
(see eq. A 3). As before, the constants (like the terms with γ) can be discarded.
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Indeed, if we take directly the limit ζ → ∞ of (3.13) but ignore the diverging log ζ-
terms, we find the same result, apart of course from the additive constant.

Note that pHW is, remarkably, not similar to the corresponding expressions (3.20) for
the velocities.

3.3. Examples

In figures 3 and 4 graphical representations in the form of iso-colour plots in x− y plane
are given for the (real parts of) pressure and velocity fields along soft and hard walls
for a number of typical cases: ω = 8 combined with σ = 6 and σ = 10, and hard walls
compared with soft walls of ζ = 4 − 2i, corresponding with a case iii and a case iv.
This value of ζ is selected to be of the order of magnitude of U0. The variation in σ has
a significant effect. However, taking ζ = 4 + 2i, corresponding with case i and case ii
situations, does not give significantly different results and is therefore not shown here.
Again the effect of the undetermined constant in p for the hard-wall case is removed by
subtracting its plot-domain averaged value. The time (corresponding to a phase point
ωt = π) is the same in all figures.

The parameters chosen for figure 3 are ω = 8, y0 = 0.5, σ = 6, and hence U0 = 3,
k0 = 2.67, and k1 = 0.2 − 0.4i and k2 = −1.4 + 2.8i (case iv) for the soft wall. The
hydrodynamic wave length is 2π/k0 = 2.36, just large enough to have some interaction
with the wall.

The parameters chosen for figure 4 are ω = 8, y0 = 0.5, σ = 10, and and hence U0 = 5,
k0 = 1.6, and k1 = −0.2 + 0.4i and k2 = −1.8 + 3.6i (case iii) for the soft wall. The
hydrodynamic wave length 2π/k0 = 3.93 is now large compared to the wall distance
y0 = 0.5. This results into a strong interaction of the shed vorticity field with the wall,
especially for the velocities.

3.4. Interpretation for acoustic duct modes with lined walls

In order to compare with the acoustic problem of a lined flow duct, we note that ρ0ζ =
ρ0c0Z such that the dimensionless duct equivalents of ks are

ks := ksa =
i

Z

(
M

h
± ω

)
. (3.25)

These correspond indeed to two of the compressible surface modes, as is clearly seen in
figure 5. We use the notation and geometry of Brambley et al. (2012), i.e. a cylindrical
duct with linear-then-constant mean flow

U(r) =

{
M, 0 6 r 6 1− h,
M(1− r)/h, 1− h 6 r 6 1,

(3.26)

with M the mean flow Mach number.
It should be noted that the surface modes k+ and k− found by Brambley et al. (2012)

and shown in figure 5 around k = 70 do not have incompressible infinite-shear counter-
parts, suggesting that the physics causing them may be significantly different from the
physics causing the k0 pole despite their similar locations in the k-plane.

4. Conclusions

The analytically exact and explicit solutions for the problems of a time-harmonic line
mass source in incompressible inviscid two-dimensional linear shear mean flow are derived
for the free field situation and for a semi-infinite space with the mean flow directed parallel
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Figure 3. See section 3.3. Iso-colour plots in x − y plane of a typical case with hard and soft
walls along y = 0, as snapshots in time, of the (real parts of) pressure and velocities, while
ω = 8, σ = 6, y0 = 0.5, giving U0 = 3, k0 = 2.67. For the soft wall: ζ = 4− 2i, k1 = 0.2− 0.4i,
k2 = −1.4 + 2.8i (case iv)

to and vanishing at an impedance wall. Both problems were motivated by the problem
of an acoustic source in a shear flow along a lined wall, for example a boundary layer.

Both solutions were obtained by Fourier transformation in the mean flow direction x,
which leads to equations in the cross wise direction y that are solvable exactly (Rayleigh
(1945), Drazin & Reid (2004)). The inverse transform of the pressure, however, leads for
the free field and the hard wall problems to divergent integrals because of logarithmic
behaviour of the far field of a line source in 2D incompressible flow. This behaviour
is well-known in uniform or vanishing mean flow conditions, but appears to exist also
in shear flow unless the shear parameter σ is exactly equal to the frequency ω. In a
more comprehensive compressible context, this divergence does not exist. In a small
Helmholtz and Mach number setting of Matched Asymptotic Expansions, the far field
of the incompressible “inner” problem would match with a decaying compressible “outer
field” like in Wu (2002); see also Lesser & Crighton (1975), Crighton etal. (1992). Apart
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Figure 4. See section 3.3. Iso-colour plots in x − y plane of a typical case with hard and soft
walls along y = 0, as snapshots in time, of the (real parts of) pressure and velocities, while
ω = 8, σ = 10, y0 = 0.5, giving U0 = 5, k0 = 1.6. For the soft wall: ζ = 4− 2i, k1 = −0.2 + 0.4i,
k2 = −1.8 + 3.6i (case iii)

from its physical relevance, the divergent integral is not insurmountable and can be cured
by interpreting the integrals in a generalised sense.

The dominating feature in the solutions found is a non-decaying train of vortices, shed
from the line source (possibly comparable with a von Kármán vortex street). This trailing
vorticity field is essentially due to the mean flow shear. In an irrotational mean flow, a
line source would not generate vorticity, as shown in (1.3); generating vorticity in an
irrotational mean flow would require at least a force.

Since with hard wall conditions the pressure appears only in the form of its gradient
while it has no natural conditions at infinity, this variable is only determined up to an
undetermined constant, so care is needed when the hard wall limit is taken from the soft
wall solution. In general, it seems better to derive the solution directly from the Fourier
integral, albeit via divergent integrals. All this is not the case with the velocity. Here the
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Figure 5. Tracking the k1 and k2 surface modes in a 3D duct, for a medium turning from
fully compressible to incompressible. A case iv parameter choice is shown, with ω = 31, m = 0,
U0 = 0.5, h = 0.05, Z = 0.5 − 0.5i (scaled on ρ0). k0 depends on source position r0 and is not
drawn.

natural conditions at infinity are a vanishing velocity, such that the method of Fourier
transformation automatically sifts out the required solution.

In a compressible context, this work identifies the k0 pole found by Brambley et al.
(2012) as shed vorticity from the point source, as was speculated. However, this work also
shows that the possibly related surface modes k+ and k− found by Brambley et al. (2012)
are not present here and therefore do not have incompressible infinite-shear counterparts,
suggesting that the physics causing them may be significantly different from the physics
causing the k0 pole despite their similar locations in the k-plane. As shown in figure 5,
the two surface modes that do occur here correspond to another two of the possible six
compressible surface modes for compressible shear flow over a lining (Brambley (2011)).
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Appendix A. The exponential integral

An important function in the foregoing analysis is the function E(q, z), closely related
to the exponential integral E1 (see Abramowitz & Stegun (1965), equation 5.1.1). For



18 S.W. Rienstra, M. Darau and E.J. Brambley

q, z ∈ C we have

E(q, z) = e−iqz E1(−iqz), (A 1a)

E1(z) =

∫ ∞
z

e−t

t
dt = −γ − log z +

∞∑
k=1

(−1)k+1zk

k k!
, (A 1b)

where γ = 0.5772156649 . . . is Euler’s constant. The variable q corresponds here to
complex wave numbers (k0 and ks), while z = x+ iy relates to the physical (x, y)-space.
As is clear from the series representation, E1(z) has a logarithmic singularity, for which
the standard definition is to use the principal value, Log, with Log(1) = 0 and a branch
cut along the negative real axis. However, with our applications this choice would result
in q-dependent branch cuts in the x, y-domain and is therefore not convenient.

The branch cut discontinuity is the counterpart of the discontinuity at the line x = 0
due to the upward or downward closure of the Fourier integral contour for x < 0 or x > 0
respectively. Therefore, a most natural location for the branch cut is the imaginary axis.

The choice used here is such that if Re q > 0 the branch cut of E(q, z) is along the
line x = 0, y < 0 and thus for E(q, z̄) along the line x = 0, y > 0. If Re q < 0 it is the
opposite: the branch cut of E(q, z) is then taken along the line x = 0, y > 0. This is most
easily obtained by the logarithm

log(−iqz)
def
= Log

(
−iz

q

|q|

)
+ Log(|q|) (A 2)

with the principal value Log and |q| as defined in (2.5). So we define, with this log and
E1 the standard exponential integral, our function E as

E(q, z)
def
= e−iqz

(
E1(−iqz) + Log(−iqz)− Log

(
−iz

q

|q|

)
− Log(|q|)

)
. (A 3)

REFERENCES

Abramowitz, M. and Stegun, I.A. 1965. Handbook of Mathematical Functions. Dover.
Balsa, T.F. 1988. On the receptivity of free shear layers to two-dimensional external excitation,

Journal of Fluid Mechanics, 187, pp. 155–177
Bers, A. 1983. Space-Time Evolution of Plasma Instabilities – Absolute and Convective, Hand-

book of Plasma Physics: Volume 1 Basic Plasma Physics, edited by A.A. Galeev and R.N.
Sudan, North Holland, Chapter 3.2, pp. 451–517.

Brambley, E.J. 2011. Surface modes in sheared flow using the modified Myers boundary con-
dition, AIAA Paper 2011–2736.

Brambley, E.J., Darau, M. and Rienstra, S.W. 2011. The critical layer in sheared flow,
AIAA Paper 2011–2806.

Brambley, E.J., Darau, M. and Rienstra, S.W. 2012. The critical layer in linear-shear
boundary layers over acoustic linings, Journal of Fluid Mechanics (in press)

Briggs, R.J. 1964. Electron-Stream Interaction with Plasmas, Monograph no. 29, MIT Press.
Crighton, D.G., Dowling, A.P., Ffowcs Williams, J.E., Heckl, M. and Leppington,

F.G. 1992. Modern Methods in Analytical Acoustics, Lecture Notes. Springer–Verlag, Lon-
don.

Criminale, W.O. and Drazin, P.G. 1990. The Evolution of Linearized Parallel Flows, Studies
in Applied Mathematics 83, pp. 123–157

Criminale, W.O. and Drazin, P.G. 2000. The Initial-value Problem for a Modeled Boundary
Layer, Physics of Fluids, textbf12(2), p. 366-374

Drazin, P.G. and Reid, W.H. 2004. Hydrodynamic Stability, p. 146, Cambridge University
Press, 2nd edition.

Goldstein, M.E. and Leib, S.J. 2005. The role of instability waves in predicting jet noise,
Journal of Fluid Mechanics, 525, pp. 37–72



Trailing vorticity behind a line source (corrected) 19

Jones, D.S. 1982. The Theory of Generalised Functions, p. 105, Cambridge University Press,
2nd edition.

Kundu, P.K. and Cohen, I.M. 2002, Fluid Mechanics, p. 139, Academic Press, New York.
Lesser, M.B. and Crighton, D.G. 1975. Physical acoustics and the method of matched

asymptotic expansions. In Physical Acoustics Volume XI, W.P. Mason and R.N. Thurston,
editors. Academic Press, New York.

Pridmore-Brown, D.C. 1958. Sound Propagation in a Fluid Flowing through an attenuating
Duct, Journal of Fluid Mechanics, 4, pp. 393–406

Rayleigh, J.W.S. 1945. Theory of Sound, vol II, p. 368, Dover Publications Inc.
Rienstra, S.W. 2003. A Classification of Duct Modes Based on Surface Waves, Wave Motion,

37 (2), pp. 119–135
Rienstra, S.W. 2006. Impedance Models in Time Domain, including the Extended Helmholtz

Resonator Model, AIAA Paper 2006–2686.
Suzuki , T. and Lele, S.K. 2003a. Green’s functions for a source in a mixing layer: direct

waves, refracted arrival waves and instability waves, Journal of Fluid Mechanics, 477,
pp. 89–128

Suzuki , T. and Lele, S.K. 2003b. Green’s functions for a source in a boundary layer: direct
waves, channelled waves and diffracted waves, Journal of Fluid Mechanics, 477, pp. 129–
173

Tennekes, H. and Lumley, J.L. 1972. A First Course of Turbulence, p. 83, MIT Press.
Wu, X. 2011. On generation of sound in wall-bounded shear flows: back action of sound and

global acoustic coupling, Journal of Fluid Mechanics, 689, pp. 279–316
Wu, X. 2002. Generation of sound and instability waves due to unsteady suction and injection,

Journal of Fluid Mechanics, 453, pp. 289–313


	Introduction
	A time-harmonic line mass source in infinite linear shear
	Free field solution
	An example 
	Interpretation for compressible duct flow

	A time-harmonic line mass source in linear shear over an impedance wall
	The soft wall
	The hard wall limit
	Examples
	Interpretation for acoustic duct modes with lined walls

	Conclusions
	Appendix A

