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We consider the propagation of linear gravity waves on the free surface of steady, axisymmetric
flows with purely azimuthal velocity. We propose a two-dimensional set of governing equations for
surface waves valid in the deep-water limit. These equations come from a closure condition at the
free surface that reduces the three-dimensional Euler equations in the bulk of the fluid to a set of two-
dimensional equations applied only at the free surface. Since the closure condition is not obtained
rigorously, it is validated numerically through comparisons with full three-dimensional calculations
for vortex flows, including for a Lamb–Oseen vortex. The model presented here overcomes three
limitations of existing models, namely: it is not restricted to potential base flows; it does not assume
the base flow to have a flat free surface; and it does not require the use of infinite-order differential
operators (such as tanh(∇)) in the governing equations. The model can be applied in the case of
rapid swirl (large Froude number) where the base free surface is substantially deformed. Since the
model contains only derivatives of finite order, it is readily amenable to standard numerical study.
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I. INTRODUCTION

Interaction between waves and vortices has long been a source of study in different fields of fluid dynamics, not
only due to the beauty of these phenomena, but also owing to the rich physics and variety of applications they have.
Examples can be found in acoustics [1–3], geophysical fluid dynamics [4] and wave generation by turbulence [5, 6].
In this paper, we are interested in the interaction between surface waves and free-surface swirling flows, i.e. vortical
flows whose upper boundary is not fixed, but is delimited by the free surface of the fluid. The corresponding linear
perturbation problems are in principle three dimensional (3D) in space, giving rise to computationally costly problems
to be solved. The authors previously studied [7] the 3D linear perturbation problem for a Lamb–Oseen base flow in
a horizontally unbounded region with a finite, non-small depth, using a modal analysis. These computations show
the difficulty in resolving just normal mode eigenfunctions for extreme parameter values, let alone the difficulties
of performing simulations of general time-dependent linear waves over strong vortices in deep water. In addition to
dealing with the deformed free surface, a substantial difficulty is the need to deal with effectively unbounded horizontal
directions, which necessitates implementing some method to eliminate wave reflections at computational boundaries.
This can be both difficult and computationally costly. In order to partially overcome such difficulties, simple swirling
flows, such as solid-body rotation and a potential vortex in a finite cylindrical container, have been considered in [8–14]
where the full perturbation equations, including axial dependence, could be addressed using modest computational
resources. Otherwise, due to the numerical expense, waves on more complicated swirling flows have mostly been
studied under the shallow-water approximation, resulting in a two-dimensional (2D) problem to solve.

The shallow-water equations were first derived by Barré de Saint-Venant [15] in order to describe the time-dependent
evolution of a fluid free surface without needing to solve the complete Navier-Stokes equations in the bulk of the fluid.
The shallow-water approximation holds at wavelengths much longer than the fluid depth, but fails rapidly once this
condition is not met, and results in non-dispersive waves where all frequencies travel at the same wave speed. A first
attempt to include the effect of depth, and the associated dispersion in water waves, was carried out by Boussinesq
[16], who derived a dispersive wave equation taking into account the effects of depth. The Boussinesq equation and
subsequent models are all based on the potential flow assumption, as well as the approximation that the free surface
is flat and is located at a level, say z = H, above a rigid base at z = 0. One strategy for deriving Boussinesq-type
equations is to depth average the governing Laplace equation for the velocity potential and then to use integration
by parts to link the average potential and the potential evaluated on the free surface. By doing so, one can obtain a
hierarchy of wave equations that approximate with increasing accuracy the dispersive character of the surface waves
propagating on a finite-depth fluid. The accuracy of the model is dictated by the truncation in the series of integrals
computed. In particular, Boussinesq kept only the first three terms in the series coming from integration by parts,
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where ϕ is the velocity potential on the free surface z = H and ∇⊥ = (∂x, ∂y) is the horizontal gradient operator.
Recent, more accurate models have been derived by, in effect, keeping higher-order terms in the series. The pseudo-
differential equation obtained by Milewski and Keller [17],

∂2ϕ

∂t2
− ig∇⊥ tanh(−iH∇⊥)ϕ = 0, (2)

may be viewed as resulting from retaining all terms in such a series expansion. Equivalently, this equation is
obtained by the Dirichlet-Neumann operator for the velocity potential at the free surface [18, 19]. The opera-
tor −i∇⊥ tanh(−iH∇⊥) can easily be defined in Fourier space, leading to the familiar dispersion relation ω2 =
g|k| tanh(|k|H), but contains infinitely many spatial derivatives which complicates its numerical solution in the spatial
domain.

To study surface waves on a vortex, Torres et al. [20] generalized Eq. (2) to linear waves on a free surface over a
background potential flow denoted U0. By assuming that the background free surface remains flat, they obtained the
equation

D2
tϕ− ig∇⊥ tanh(−iH∇⊥)ϕ = 0, (3)

where ϕ is again the velocity potential for linear perturbations, now with respect to a non-zero background flow, and
Dt = ∂t + U0 ·∇ is the convective derivative with respect to the background flow. By means of ray-tracing [21],
Torres et al. [20] studied equation (3) analytically giving predictions for both growth rates and oscillation frequencies
of surface waves propagating over a potential vortex.

In the present paper, in section II we propose a set of reduced model equations for linear surface waves in deep
water, accounting for both a deformed mean free-surface and vorticity of the underlying background flow, without
resorting to the infinite-order derivatives of (2)– (3), thus allowing for numerical solution by straightforward methods.
The key point in our derivation is the introduction of a closure condition imposed along the background free surface
in section IIC. We justify the validity of this closure condition in section III by means of numerical results and
comparisons with full three-dimensional calculations from [7] for three vortex profiles, including a Lamb–Oseen vortex.
Finally, conclusions and opportunities for future research are described in section IV.

II. MATHEMATICAL MODEL

A. Governing equations and base flow

We assume that viscosity is negligible and hence that the fluid flow is governed by the incompressible Euler equations,

∂U

∂t
+U · ∇U = −1

ρ
∇P − gẑ, ∇ · U = 0, (4)

where U is the velocity, P is the pressure, ẑ is a unit vector in the vertical direction, and the constants ρ and g are the
fluid density and the acceleration due to gravity respectively. The fluid is contained between a bottom boundary at
z = 0 and an upper free surface at z = H, where in general H varies in space. The fluid must satisfy no penetration
through the bottom boundary, so that U · ẑ = 0 at z = 0. The flow must satisfy kinematic and dynamic boundary
conditions at the free surface. We neglect surface tension and assume the fluid above the free surface to be dynamically
passive, and in particular, to have a constant pressure P̄ . Together, these give the boundary conditions

∂H

∂t
+U · ∇H = U · ẑ, and P = P̄ , at z = H. (5a,b)

We consider any swirling base flow of the form U0(r, θ, z) = U0(r)θ̂, where (r, θ, z) are the usual cylindrical
coordinates, and such that U0(∞) = 0 so as the vortex decays at infinity. The governing equations and boundary
conditions are satisfied by such a flow provided the base pressure and surface height are, respectively,

P0(r, z) = P̄ + ρg (H0(r)− z) , H0(r) = H∞ − 1

g

∫ ∞

r

U2
0 (r̂)

r̂
dr̂, (6)

where H∞ is the depth of the fluid at r = ∞. The base flow angular velocity Ω0(r) = U0(r)/r and axial vorticity
Ξ0(r) = (rU0(r))

′/r will also be useful in what follows, where ′ denotes differentiation with respect to the single
argument r.
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B. Linearized equations

We are interested in the behavior of infinitesimal perturbations to the base flow. Let u(r, θ, z, t) = ur(r, θ, z, t)r̂ +

uθ(r, θ, z, t)θ̂ + uz(x, y, z, t)ẑ be the perturbation velocity, p(r, θ, z, t) the perturbation pressure, and h(r, θ, t) the

perturbation height, so that the total velocity is U = U0θ̂ + u, the total pressure is P = P0 + p, and the total fluid
height is H = H0 + h. Assuming the perturbations to be small, the perturbation dynamics are given by linearizing
the incompressible Euler equations (4) and boundary conditions (5) about the base flow:

Dtur − 2Ω0uθ +
1

ρ

∂p

∂r
= 0, (7a)

Dtuθ + Ξ0ur +
1

ρr

∂p

∂θ
= 0, (7b)

Dtuz +
1

ρ

∂p

∂z
= 0, (7c)

1

r

∂
(
rur

)
∂r

+
1

r

∂uθ

∂θ
+

∂uz

∂z
= 0, (7d)

uz = 0, on z = 0, (7e)

Dth− uz +H ′
0ur = 0, on z = H0(r), (7f)

p− ρgh = 0, on z = H0(r), (7g)

where Dt = ∂/∂t+U0 · ∇ ≡ ∂/∂t+ Ω0(r)∂/∂θ is the convective derivative with respect to the base flow, as before,
and primes denote differentiation with respect to the single coordinate r, as before. Note that equation (7g) above
is the linearization of the dynamic boundary condition (5b) and enforces that the total pressure P0 + p on the free
surface is atmospheric pressure. While we cannot introduce a velocity potential here as our flow is not in general
irrotational, for irrotational flows Bernoilli’s equation would give p = −ρDtϕ where ϕ is the perturbation velocity
potential, and so equation (7g) could then be written involving a temporal derivative of a velocity potential, which
may be more familiar to some readers.

Equations (7) apply for any type of linear perturbation to the base flow. Our interest here is in surface waves in
deep water, for which we expect exponential decay of the perturbations away from the free surface and hence that
the bottom boundary condition, Eq. (7e), is unimportant [see e.g. 22, pp. 63–65]. We define the unknowns on the
base free surface as

u = ur|H0
, v = uθ|H0

, w = uz|H0
, h =

1

ρg
p|H0

, (8)

where here and throughout |H0
means evaluated at z = H0(r). The expression for h is not a new definition, but

is rather a consequence of the dynamic boundary condition (7g). The model will be expressed in these free-surface
unknowns.

We will use some identities for derivatives of quantities evaluated on the surface. Let f(r, θ, z, t) represent any of
the four unknowns ur, uθ, uz or p. Then,

∂(f |H0
)

∂r
=

∂f

∂r

∣∣∣∣
H0

+H ′
0

∂f

∂z

∣∣∣∣
H0

, (9a)

Dt (f |H0
) = (Dtf)|H0

+ (U0 ·∇H0)
∂f

∂z

∣∣∣∣
H0

= (Dtf)|H0
. (9b)

The final equality holds because U0 is azimuthal while H0 varies only with r. Using these identities (9), the linearized
momentum equations (7a)-(7c), the incompressibility constraint (7d), and the kinematic boundary condition (7f)
evaluated on the free surface z = H0(r) become

Dtu− 2Ω0v + g
∂h

∂r
− H ′

0

ρ

∂p

∂z

∣∣∣∣
H0

= 0, (10a)

Dtv + Ξ0u+
g

r

∂h

∂θ
= 0, (10b)

Dtw +
1

ρ

∂p

∂z

∣∣∣∣
H0

= 0, (10c)
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∂(ru)
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∂v

∂θ
+

∂uz
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H0

−H ′
0

∂ur

∂z
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H0

= 0, (10d)

Dth− w +H ′
0u = 0. (10e)

Exploiting equations (10c) and (10e), w and ∂zp can be eliminated from the system and the remaining equations
become

Dtu− 2Ω0v + g
∂h

∂r
+H ′

0Dt(Dth+H ′
0u) = 0, (11a)

Dtv + Ξ0u+
g

r

∂h

∂θ
= 0, (11b)

1

r

∂(ru)

∂r
+

1

r

∂v

∂θ
+

∂uz

∂z

∣∣∣∣
H0

−H ′
0

∂ur

∂z

∣∣∣∣
H0

= 0. (11c)

Equations (11) are expressed entirely in terms of the free-surface unknowns u, v, h, with the exception of the last two
terms in the continuity equation (11c). To express these terms as function of u, v and h we next consider a closure
model.

C. Closure condition

The closure for the continuity equation (11c) will take the form of a boundary condition imposed along the base
free surface. We begin by defining the functional

Ψ[ur, uz, p](r, θ, z, t) = uz −H ′
0ur −

1

ρg
Dtp, (12)

such that kinematic boundary condition (7f) is obtained by setting the functional to zero along the free surface:
Ψ(r, θ,H0(r), t) = 0. The ansatz we make to close the system is that the axial gradient of Ψ evaluated on the free
surface is also zero:

∂Ψ

∂z

∣∣∣∣
H0

=
∂uz

∂z

∣∣∣∣
H0

−H ′
0

∂ur

∂z

∣∣∣∣
H0

− 1

ρg

∂(Dtp)

∂z

∣∣∣∣
H0

= 0. (13)

From this ansatz, we obtain

∂uz

∂z

∣∣∣∣
H0

−H ′
0

∂ur

∂z

∣∣∣∣
H0

=
1

ρg
Dt

∂p

∂z

∣∣∣∣
H0

(14a)

= −1

g
D2

tw (14b)

= −1

g
D2

t (Dth+H ′
0u) , (14c)

where the first line uses (9b), the second line uses (10c), and the third line uses (10e). While all three forms are
equally valid, we will use the first for numerical verification (Sec. III B); the second form is most readily relatable
to the simpler case of waves on a fluid at rest (Appendix A); the final form is used to close the system in terms of
variables evaluated only on the free surface, as we now discuss.

Substituting (14c) into the continuity equation (11c), we arrive at our final set of governing equations, which are
a 2D system of equations expressed in terms of the variables evaluated at the free surface, u(r, θ, t), v(r, θ, t), and
h(r, θ, t),

Dtu− 2Ω0v + g
∂h

∂r
+H ′

0Dt(Dth+H ′
0u) = 0, (15a)

Dtv + Ξ0u+
g

r

∂h

∂θ
= 0, (15b)

1

r

∂(ru)

∂r
+

1

r

∂v

∂θ
− 1

g
D2

t (Dth+H ′
0u) = 0. (15c)
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Ansatz (13) has been assumed above without justification; while we have been unable to derive it from the full
governing equations under suitable assumptions, and so we do not claim it to be exactly true (even in an asymptotic
sense), we show below in section III that it is nonetheless satisfied to a high degree of accuracy for surface waves
calculated numerically using the full three-dimensional governing equations. Some insight into the ansatz and closure
can be found in Appendix A. There we elaborate on the parallel between the model equations for the swirling 3D
base flow and those that are obtained in the same way for a simple 2D fluid. This suggests an alternative view
towards deriving the model. Rather than invoking ansatz (13), we may assume that (14b) holds. This equation is a
natural generalization of the case for a 2D fluid (see Appendix A). If Eq. (14b) holds then all equalities in Eqs. (14)
hold. Beyond this analogy, we have been unsuccessful in our attempts to rigorously or formally justify (13) [23]. We
therefore resort to numerical evidence for the validity of the closure. In Sec. III B, we validate closure condition (14c)
for linear modes on the free surface of vortices in deep water. Then in Sec. III C we show that modal solutions of the
reduced 2D equations (15) match very accurately modal solutions of the full 3D Euler equations (7).

D. Non-dimensionalization

We express the equations in non-dimensional form. We assume the base flow is characterised by a reference velocity
Ū and by a reference length a and use the following non-dimensionalization

r = ar̃, θ = θ̃, t =

√
a

g
t̃,

(u, v) =
√
ag(ũ, ṽ), h = ah̃,

U0 = Ū Ũ0, H0 = aH̃0.

(16)

The resulting dimensionless equations read

(
1 + H̃ ′

0

2
)
D̃tũ− 2F Ω̃0ṽ +

∂h̃

∂r̃
+ H̃ ′

0D̃
2
t h̃ = 0, (17a)

D̃tṽ + F Ξ̃0ũ+
1

r̃

∂h̃

∂θ̃
= 0, (17b)

1

r̃

∂

∂r̃
(r̃ũ) +

1

r̃

∂ṽ

∂θ̃
− D̃2

t

(
D̃th̃+ H̃ ′

0ũ
)
= 0, (17c)

where F = Ū/
√
ag is the Froude number, Ξ̃0 = (r̃Ũ0)

′/r̃ is the dimensionless base vorticity, H̃ ′
0 = F 2r̃Ω̃0 is the

dimensionless free surface deformation, and D̃t = ∂/∂t̃ + FΩ0∂/∂θ̃. In what follows, all variables have been nondi-
mensionalized, and we drop the tildes from nondimensional variables for readability.

For later validation of the closure condition, we will consider the non-dimensionalized version of (14a) given by

∂uz

∂z

∣∣∣∣
H0

−H ′
0

∂ur

∂z

∣∣∣∣
H0

= Dt
∂p

∂z

∣∣∣∣
H0

. (18)

III. MODEL VALIDATION

We will numerically validate the model for surface gravity waves on axisymmetric vortices. While the model is a
general time-dependent, 2D system of equations, we require solutions from the full 3D Euler equations with which
to compare. For this we turn to modal solutions, focusing primarily on the Lamb–Oseen vortex for which modal
solutions of the Euler equations have been recently obtained [7, 23].

We will first directly verify that, in the limit of deep water, eigenmodes for surface waves from the 3D linear Euler
equations indeed satisfy closure condition (18) to a high degree of accuracy. We will then show that solutions to the
reduced 2D model (17) accurately reproduce surface gravity modes from the 3D Euler equations in deep water.
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A. Numerical test case

We will examine surface gravity waves on a base Lamb–Oseen vortex given by the azimuthal velocity and corre-
sponding free-surface height

U0(r) =
1− exp(−r2)

r
, H0(r) = H∞ − F 2

∫ ∞

r

U2
0 (r

′)

r′
dr′. (19)

This base flow has been non-dimensionalized by taking size of the vortex core as the lengthscale a. The Froude number
F is a non-dimensional measure of the vortex circulation. The parameter H∞ is the non-dimensional fluid depth at
infinity. Thus, the base flow is specified by two non-dimensional parameters: F and H∞.

For full 3D Euler computations, we use the numerical method of Zuccoli et al. [7], concentrating on modal solutions.
Since the base flow is steady and axisymmetric, eigenmodes will have (θ, t) dependence of the form exp{−iωt+ imθ},
where ω is a (complex) temporal eigenvalue and m is the (integer) azimuthal wavenumber. The linear Euler equations
(7) can readily rendered into dimensionless form, and then transformed into an eigenvalue problem for ω and the
corresponding eigenmodes. The eigenvalues and eigenmodes are in general complex, with Re(ω) the frequency and
Im(ω) the growth rate of the mode. The eigenvalue problem is discretized and solved numerically using a spectral
method. To emulate an unbounded radial domain, an absorbing layer method is used to provide non-reflecting
boundary condition at a finite spatial location r = R ≫ 1. While we obtain all eigenvalues, we show below the
dominant eigenvalues with the largest growth rate for specified values of F,m, andH∞. The corresponding eigenmodes
are given by the fields ur(r, z), uθ(r, z), uz(r, z), p(r, z), and h(r). See Zuccoli et al. [7, 23] for details.

B. Validating the closure condition

For the modal solutions, the convective derivative operator Dt = ∂t + FΩ0(r)∂θ appearing in Eq. (18) is given by
Dt = −iω + imFΩ0(r). Hence, the closure condition that we will validate takes the form

∂uz

∂z

∣∣∣∣
H0

−H ′
0

∂ur

∂z

∣∣∣∣
H0

=
(
−iω + imFΩ0

) ∂p
∂z

∣∣∣∣
H0

. (20)

We begin by examining one typical surface eigenmode. We set F = 0.5 and m = 7, and consider the least damped
mode as we vary the fluid depth H∞. Figure 1 (left panels) illustrate the form of the eigenmodes, visualized using
the modulus of the pressure field |p(r, z)|, at three values of H∞. The shape of the base free surface due to the base
vortex is evident. The eigenmode is localized to the core region of the vortex and is referred to as a trapped mode.
(The eigenmode “seen from above” is shown in figure 5 and is discussed below.) For the top results, at a depth of
H∞ = 0.25, it is visually evident that the vertical structure of the mode is affected by the bottom boundary, and this is
therefore an intermediate-depth case between deep water, where the mode is unaffected by the bottom boundary, and
shallow water, where the mode is entirely independent of z. The bottom results at a depth of H∞ = 1 is comfortably
in the deep water regime.

To validate the closure condition, we compute the left-hand side and right-hand side of equation (20) from the
eigenmode fields and plot these as a function of r in the right panels of figure 1. Eigenmodes have been normalized
so that the maximum value of the left-hand side is 1 in each case. While at H∞ = 0.25 the closure condition is
not satisfied, for depth H∞ = 0.5 and larger the closure condition is well satisfied. To quantify this, we compute
the residual Res = ∥LHS − RHS∥2/∥LHS∥2, the L2 norm of the difference between the left-hand-side (LHS) and
right-hand-side (RHS) of equation (20), normalized by the L2 norm of the left-hand-side, for each of the cases shown.
The residual gives Res = [6.7 × 10−2, 1.2 × 10−3, 8.7 × 10−4] for H∞ = [0.25, 0.5, 1], respectively. More detailed
results are shown in figure 2 where the residual for the least damped modes arising at F = 0.5 is plotted against the
fluid depth H∞ for different azimuthal wavenumbers m. It can be noted that as the regime passes from shallow to
deep water, the residuals decrease quickly (approximately exponentially) reaching a level of 10−3 which is close to the
limits of what we can resolve with our numerical computations; the resolution used in the 3D computations has been
chosen as a compromise between obtaining sufficiently well-resolved modes structure and computational time (see [7]
for details of the numerical method, including an extensive convergence study). The deeper the fluid and higher the
azimuthal mode number, the thinner and more localized to the surface the structure of the modes becomes [7], thus
the more difficult it becomes to properly compute and resolve those modes given a limited resolution. This explains
the small increase in the residuals of figure 2 for m = 8, 9 close to H∞ = 1.

We have conducted many similar tests of the closure condition for a variety of other surface waves and other base
swirling flows, and in all cases we find that the closure condition is satisfied in deep water. Here, we present and
discuss a few other illustrative cases.
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FIG. 1. Accuracy of the closure condition for the least-damped surface-wave modes with Froude number F = 0.5 and azimuthal
wavenumber m = 7 at three values of fluid depth. The three modes are all marginally stable with growth rate Im(ω) ∼ −10−9.
Left panels illustrate the modes with contours of the modulus of the pressure field |p(r, z)|. Contours are equally spaced with
blue representing zero pressure magnitude and yellow representing the maximum pressure magnitude. The modulus of both
left-hand and right-hand sides of the closure condition are evaluated and plotted in the right panels, with the eigenfunction
normalized so that the maximum value of the left-hand side is 1.
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FIG. 2. Trend of the residuals Res = ∥LHS − RHS∥2/∥LHS∥2 on a log-scale as function of the fluid depth H∞ for the least
damped modes computed at F = 0.5 and several azimuthal wavenumbers m.
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FIG. 3. Accuracy of the closure condition for the least-damped surface-wave modes with Froude number F = 0.3 and azimuthal
wavenumber m = 7 at three values of fluid depth. All three modes are nearly neutrally stable and are slowly decaying in time,
with growth rates ℑ[ω] = [−0.053,−0.031,−0.014], respectively. Left panels illustrate the modes with contours of the modulus of
the pressure field |p(r, z)|. Contours are equally spaced with blue representing zero pressure magnitude and yellow representing
the maximum pressure magnitude. The modulus of both left-hand and right-hand sides of the closure condition are evaluated
and plotted in the right panels, with the eigenfunction normalized so that the maximum value of the left-hand side is 1.

Figure 3 shows a set of plots similar to those in figure 1, but at a smaller Froude number of F = 0.3. In this
case, the surface eigenmode is a radiating mode and extends radially outside the vortex core. (Figure 5 shows the
eigenmode “seen from above” and is discussed below.) Compared with the previous case, here the base free surface
is less deformed, the peak in the mode is shifted slightly to larger radius, and most significantly the horizontal
lengthscale of the mode is larger. As a result, we observe that at H∞ = 0.4 the mode is visibly distorted from the
deep-water limit. Nevertheless, as the right-hand panels in figure 3 show, the eigenmode fields satisfy the closure
condition in deep water. Quantitatively, the residual norms in satisfying the closure condition for this case are
Res = [7.7× 10−2, 4.3× 10−3, 8.2× 10−4] for H∞ = [0.4, 0.5, 1], respectively.

Figure 4 illustrates a variety of further cases with the same types of figures already shown. We forgo plotting
different fluid depths and show only the deep-water cases. In figure 4(a), we show a higher-order surface gravity
mode, comparable to that shown in the bottom plots of figure 1 but with two radial oscillations instead of one, and
indeed the closure condition is satisfied in this case also. This is typical of the agreement we have found for all surface
gravity modes, irrespective of whether they are the least damped mode or not. In figure 4(b) we show a surface
gravity mode at F = 1.0 to illustrate a situation where the base free surface significantly deviates from flat. The
closure condition is nevertheless satisfied by the surface gravity mode.

We have tested the accuracy of our closure for two other axisymmetric vortices given by the following angular-
velocity profiles:

Ω0(r) =
r

4
exp{2− r}, (21)
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FIG. 4. (left) modulus of pressure eigenfunction in the r-z plane. (right) Modulus of the corresponding contributions to the
closure condition. Unless otherwise stated, F = 0.5, m = 7, H∞ = 1. (a) A doubly-oscillatory surface wave mode, Lamb–Oseen
profile, Im(ω) ∼ −10−7. (b) A surface wave mode, Lamb–Oseen profile, with F = 1, Im(ω) ∼ −10−8. (c) A surface wave mode,
profile (21), Im(ω) ∼ −10−8. (d) A surface wave mode, profile (22), Im(ω) ∼ −10−8. (e) An inertial wave mode, profile (21),
Im(ω) ∼ −10−9.
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and

Ω0(r) =
1

r2 + 1
. (22)

This second profile was considered by Patrick et al. [24]. The results are shown in figures 4(c) and 4(d). The shape
of the base free surface and the details of the surface gravity modes differ from those of the Lamb-Oseen vortex, but
again the eigenmodes satisfy the closure condition.

Finally, the model we derived applies to surface gravity modes and not the other type of linear waves that can arise
in swirling flows, such as inertial or Rossby modes (see for example Mougel et al. [13], Mougel et al. [14]). Thus, we
conclude this section by showing explicitly that our closure condition fails for an inertial mode. Figure 4(e) shows a
representative inertial mode arising from vortex in equation (21), for m = 7 and F = 0.5. The closure condition fails
to hold for such a mode. Indeed inertial modes arise when there is no momentum flux across the vertical boundaries
[25] and only the rotation of the base flow is responsible for these waves. This implies ∂zp|H0 ≃ 0 on the free surface
for the inertial mode. The right-hand side of the closure condition is zero while the left-hand side is not, giving a
residual of Res = 0.9975.

C. Comparison between full and model eigenmodes

This section is devoted to a side-by-side comparison of eigenmodes obtained from the linearized 3D Euler equations
and those obtained from the reduced 2D system coming from the closure condition. The reduced 2D equations (17)
can be re-expressed as an eigenvalue problem, and due to the modal dependence in the azimuthal direction eimθ,
numerical computations are required to compute fields depending only on the radial coordinate r. Recall that for the
Euler equations, the corresponding numerical computations must capture fields in a (r, z)-domain with a deformed
free-surface, as in figures 1-4. Hence, the model both reduces the number of space dimensions and removes the need
to compute fields in the complex regions bounded by the deformed base free surface. This is a significant saving of
effort. On a more technical side, a further advantage of the model is that one can derive a non-reflecting boundary
condition for the model as discussed in Appendix B.

In figure 5 we show a comparison between the eigenmodes from the Euler and model equations for a radiating
(at F = 0.3) and trapped (at F = 0.5) mode with azimuthal wavenumber m = 7, and in the case of the Euler
equations, height H∞ = 1. Here we show the modes in the horizontal plane (“seen from above”). We plot the
pressure, or equivalently the height fields. The modes are complex, corresponding to rotating waves, and the phases
plotted in figure 5 are arbitrary. The modes from the model are nearly identical with those from the Euler equations.
This is expected given that we have verified the accuracy of the closure condition in these cases. A more quantitative
comparison between the two modes is given in panels (e) and (f), which show the norm of the difference in the modulus
of the free surface height

∣∣|h3D| − |h2D|
∣∣ as functions of the radial coordinate for the radiating mode (F = 0.3) and

the trapped mode (F = 0.5), respectively. The absolute error is at most 0.1 in the radiating case and about 0.05 for
the trapped mode case, confirming the accuracy of the model predictions. In addition, a direct comparison of the
eigenvalues as function of Froude number computed using 3D numerics and model is given in figure 6. The agreement
is excellent even at moderately large Froude numbers where the surface deformation is considerable.

IV. CONCLUSION

In this paper we have presented a novel, spatially two-dimensional set of equations to study the propagation of deep-
water surface waves over a general steady base vortex flow. The model overcomes the widely used approximations of
neglecting the free surface deformation and of considering potential base flows. The model is obtained by evaluating
the linearized Euler equations on the base free surface and then introducing a closure equation to account for the
vertical derivatives at the free surface. The model has been derived from a heuristic argument, with numerical results
used to validate the closure. Specifically, we have computed eigenmodes of the fully 3D Euler equations for the
Lamb-Oseen vortex with various fluid depths and have directly evaluated the closure condition for these modes. In
the deep-water regime, the closure condition is found to hold. We have verified this for both radiating and trapped
modes over the Lamb-Oseen vortex and we have extended this test for two other vortex profiles. Furthermore,
we have directly compared leading eigenvalues and eigenmodes from the full 3D computations and the model, and
the agreement is excellent over a wide range of Froude numbers. While we have presented only results for specific
parameters, e.g., azimuthal mode number m = 7, we have found these results to be representative of a variety of other
conditions. The overall comparison is excellent and confirm the accuracy of our reduced model.
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FIG. 5. Comparison of perturbation height eigenmodes between the 3D computations and our reduced model. (a): radiating
mode (m = 7, F = 0.3, H∞ = 1, ω = −1.377 − 0.014i) from 3D numerics. (b): radiating mode (m = 7, F = 0.3, ω =
−1.374 − 0.013i) from model. (c): trapped mode (m = 7, F = 0.5, H∞ = 1, ω = −0.536 − 10−9i) from 3D numerics. (d):
trapped mode (m = 7, F = 0.5, ω = −0.540 − 10−13i) from model. (e): norm of the error between radiating mode from 3D
numerics (|h3D|) and model (|h2D|). (f): norm of the error between trapped mode from 3D numerics (|h3D|) and model (|h2D|).
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FIG. 6. Comparison of the least damped modes spectrum as function of the Froude number for the Lamb-Oseen vortex flow
between the 3D simulations and the model. Parameters have been taken as m = 7 and H∞ = 5.
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More than just reducing the number of spatial dimensions, the model presented allows for an exact non-reflecting
boundary condition in the frequency domain (as derived in appendix B). This is important for simulations of infinitely
extended waves and radiating eigenmodes in finite computational domains. For the full 3D Euler equations, such exact
non-reflecting boundary conditions are not available, and numerically preventing reflections, for example by using an
absorbing layer as in [7], further increases the computational demand.

The closure condition used to recover our two-dimensional model is only valid for surface gravity waves, and we
have shown that other waves such as inertial waves are not captured by it. This is both a blessing and a curse: by
using our two-dimensional model, we are able to calculate only the surface gravity waves without needing to waste
computation on computing other modes; however, the other modes are unobtainable using our method. We note
that we do not find spurious modes that are an artifact of the closure condition. These observations may be of use
when considering how a rigorous derivation of our condition may be obtained, as at some point in the derivation an
assumption specific to surface gravity waves must be made.

As future work we leave the possibility of formally justifying the closure condition, using the model to investigate
the propagation of waves over axisymmetric vortices, and generalizing the model to non-axisymmetric base flows.
While we have attempted to justify the model closure [23], we have been unable to find any argument or formal
calculation justifying it and hence we leave this for future work; the obvious assumption of a simple exponential decay
with depth away from the free surface fails due to significant radial variation of the exponential decay rate, and more
sophisticated multiple-scales-like analyses would rely on a separation of length scales not apparent in figure 3, for
example. We have validated the model against eigenmodes of the full Euler equations because these can be obtained
at moderate computational cost in deep water owing to separability in the azimuthal direction. However, the model is
a time-dependent, two-dimensional system that is not restricted to describing just eigenmode solutions. We envision
it being used to investigate phenomena that would be extremely challenging to simulate in the full Euler equations,
for example, the scattering of surface waves by strong vortices in deep water. Generalizing the closure to more general
base flows, i.e. non-axisymmetric and involving three velocity components, appears to be possible, but introduces a
lot of complexity that we have opted not to address here. A fully general model could be used to make predictions of
the behaviour of deep-water surface waves on complex flows with complex surface deformations that are out of reach
with fully three-dimensional simulations, such as a vortex dipole, as briefly discussed by Vivanco and Melo [26] from
an experimental point of view.
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Appendix A: Closure for the flat, 2D Cartesian case

Insight into our closure condition can be gained by examining the corresponding closure for the simple case of
surface waves on a 2D fluid at rest, and then considering the formal generalization to a swirling base flow. Let the
depth of the 2D fluid be infinite and take the flat free surface to be at z = 0. Then the governing equations for linear
perturbation are the horizontal and vertical momentum balances and incompressibility, together with the kinematic
and dynamic boundary conditions (BCs):

∂ux

∂t
+

1

ρ

∂p

∂x
= 0,

∂uz

∂t
+

1

ρ

∂p

∂z
= 0,

∂ux

∂x
+

∂uz

∂z
= 0, (A1a)

∂h

∂t
− uz = 0, p− ρgh = 0, on z = 0. (A1b)

For surface waves, additionally one supposes that all perturbation fields vanish as z → −∞.
We substitute the dynamic BC into the kinematic BC to eliminate h in favor of p. We then invoke the ansatz of

this paper: we assume that the derivative with respect to z of this expression vanishes at the free surface, giving

∂uz

∂z
=

1

ρg

∂

∂t

(∂p
∂z

)
, on z = 0. (A2)
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This expression clearly holds because surface-wave solutions in this case are easily found by separation and vary in z
with dependence e|k|z, for real k. We put this aside and continue the formal development. Using vertical momentum
balance, Eq. (A2) becomes

∂uz

∂z
= −1

g

∂2uz

∂t2
, on z = 0. (A3)

Using the kinematic BC to express uz at the free surface in terms of h, this takes the final form

∂uz

∂z
= −1

g

∂3h

∂t3
, on z = 0. (A4)

Equations (A2)-(A4) are the 2D Cartesian equivalent of the closure Eqs. (14). The final form, Eq. (A4), is what we
use to close the remaining equations.

The remaining equations are the horizontal momentum and the incompressibility constraint. We evaluate these
on the free surface, using the dynamic BC to eliminate p in terms of h in the horizontal momentum equation and
using closure (A4) to eliminate ∂uz/∂z in the incompressibility constraint. Letting u = ux|z=0, we have the closed
equations on the free surface

∂u

∂t
+ g

∂h

∂x
= 0,

∂u

∂x
− 1

g

∂3h

∂t3
= 0. (A5)

These are the 2D Cartesian equivalent of Eqs. (15).
As already noted, the validity of all the above for linear surface waves is readily obvious from the known form of

such waves. Equation (A3) clearly holds for uz ∼ eiωt−ikxe|k|z with the dispersion relation ω2 = g|k|. Equations (A5)
can be combined to give

∂4h

∂t4
= −g2

∂2h

∂x2
, (A6)

which is satisfied for surface waves h ∼ eiωt−ikx with the dispersion relation ω2 = g|k|.
The formulation in Sec. II generalizes these statements to the case of a swirling flow with a deformed free surface.

Specifically, Eq. (A3) generalizes to

∂vs
∂z

= −1

g
D2

t uz on z = H0(r), (A7)

upon formal replacement uz → vs = uz − H ′
0ur on the LHS and ∂/∂t → Dt on the RHS. The vertical velocity on

the LHS of Eq. (A3) comes from the vertical motion of the free surface via the kinematic boundary condition. The
generalization of this quantity to the deformed free surface is vs, since vs(r,H0(r)) is the vertical velocity of the
free surface. The vertical velocity on the RHS of Eq. (A3) comes from the vertical momentum and remains vertical
momentum for the non-flat case. Equation (A7) is closure condition (14b).

This suggests also an alternative view of the model derivation. We may simply postulate that (A7) holds, as the
natural generalization of Eq. (A3) to the case of swirling base flows. This assumption alone establishes the model
closure via the equalities in Eqs. (14).

Appendix B: Exact non-reflecting boundary condition for a single frequency

When the base flow is a radially decaying vortex and the perturbation has a single frequency ω, as all testing cases
considered here are, the reduced model equations (17) allow for the imposition of an exact non-reflecting boundary
condition at spatial infinity, similarly to the shallow-water case. In order to show this, let us consider the equations
in the far-field limit. Assuming a time dependence exp{−iωt}, as the base flow vanishes, the set of equations (17)
becomes

− iωu+∇⊥h = 0, (B1a)

− iω3h+∇⊥ · u = 0, (B1b)

where u = (u, v) is the horizontal velocity field on the free surface. The equations above can be combined into a
single equation for the perturbation height, reading

∇2
⊥h+ ω4h = 0. (B2)
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This is Helmholtz equation, and so the solution may be written using Hankel functions,

h(r, θ, t) =

∞∑
m=−∞

(
amH(1)

m (ω2r) + bmH(2)
m (ω2r)

)
exp{−iωt+ imθ} (B3)

Recalling the asymptotic behaviour of Hankel functions in the far field [27], equation (B3) in the limit r → ∞ behaves
as

h(r, θ, t) ∼
∞∑

m=−∞

(
Am√
r
exp{−iωt+ iω2r + imθ}+ Bm√

r
exp{−iωt− iω2r + imθ}

)
, (B4)

where the asymptotic coefficients are given in terms of the Hankel function coefficients by

Am = am

√
2

πω2
exp{−i(2m+ 1)π/4}, Bm = bm

√
2

πω2
exp{i(2m+ 1)π/4}. (B5)

Not only does equation (B4) return the exact dispersion relation for deep-water gravity waves when the base flow is
negligible (ω2 = k, recalling that we have nondimensionalized such that g = 1), but it also represents the far field
solution as outgoing waves (with coefficients Am) and incoming waves (with coefficients Bm), provided Re(ω) > 0.
A non-reflecting boundary condition would then imply that the incoming Bm coefficients are zero independently of
the outgoing Am coefficients. However, due to the dispersive nature of such waves, the distinction between incoming
and outgoing waves is more subtle here and is reversed when Re(ω) < 0, such that in that case Am are the incoming
coefficients and Bm are the outgoing coefficients. This leads to the following two exact non-reflecting boundary
conditions in the far field:

1. If Re(ω) > 0, the exact NRBC reads:

− iω2
(√

rh
)
+

∂

∂r

(√
rh

)
= 0, r → ∞. (B6)

2. Viceversa, if Re(ω) < 0, the exact NRBC reads

+ iω2
(√

rh
)
+

∂

∂r

(√
rh

)
= 0, r → ∞. (B7)

If, as above, the frequency ω is the eigenvalue of the problem being solved, one numerical strategy would be to
implement two separate codes; the first code would implement boundary condition (B6) and retain only modes whose
frequencies have a positive real part, while the second code would implement boundary condition (B7) and retain only
modes whose frequencies have a negative real part. The full solution is then the union of these two sets of modes.
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