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Abstract

Motivated by the observation of surface waves rotating around the cores
of vortices generated in a swimming pool, in this work we have studied the
response of various free-surface swirling flows to small perturbations. While
a variety of linear waves can arise in these problems—e.g. surface gravity
waves, inertial waves and Rossby waves—we primarily focus here on the sur-
face gravity waves like those observed in the swimming pool. The behaviour
of the aforementioned waves depends on the both the swirling flow considered
and the geometry of the problem. Different configurations have been anal-
ysed, with an increase in the complexity of the corresponding mathematical
problems. In particular, we started with the study of waves in simple rotating
systems, such as a rigid-walled cylinder rotating at a uniform angular velocity.
We then moved to the study of non-dispersive shallow-water waves convected
by either a vortex or a dipole flow in a laterally unbounded domain. Fi-
nally, we generalized the previous model and include dispersion effects coming
from considering either finite-depth and deep-water waves. For the latter, we
derived a reduced two-dimensional set of equations by introducing a closure
boundary condition valid along the free surface. For each of these problems
we neglected the effects associated to nonlinearities, viscosity, surface tension
and compressibility, thus considering only the competition between gravity
and convection. In order to simulate waves in a laterally unbounded region
we imposed a non-reflecting boundary condition. For most of the problem
studied, however, an analytical form to impose such a boundary condition is
not accessible, thus we applied absorbing layer methods. In particular, for
shallow-water waves we derived a Perfectly Matched Layer (PML) formula-
tion with inclusion of advection effects; for non-shallow-water waves, on the
other hand, we proposed a simple, but novel damping layer formulation with
no need to introduce the additional unknowns of the PML formulation.
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Chapter 1

Introduction

Rotating flows are very common. Examples range from practical and engineer-

ing applications such as swirling flows in turbines and combustion chambers

(Sauer et al. 2018), contrails and vortex breakdown due to tip vortices on

airplane wings (Mager 1972, Scorer and Davenport 1970), to naturally occur-

ring phenomena involving geophysical and astrophysical flows such as Jupiter’s

Great Red Spot and accretion disks (Makhmalbaf et al. 2017, Mamatsashvili

and Rice 2009, Ziampras et al. 2023). Vortices are a special and important

class of rotating flows. These flows can be intuitively thought to have a strong

azimuthal velocity component with respect to the other two components and

this inspired researchers to find possible analytical vortex solutions and val-

idate them experimentally. The interested reader should refer to the follow-

ing books for more theoretical details on vortex dynamics: Drazin and Riley

(2006), Saffman (1992), Wu et al. (2006).

A major source of interest in the study of vortical flows is given by

their interaction with waves. This is true not only because of the beauty of the

phenomena involved, but also for the variety of applications and implications

these might have. Relevant examples can be found in acoustics (Fetter 1964,

Kopiev and Belyaev 2010, Nazarenko et al. 1995), geophysical fluid dynamics

(Bühler and McIntyre 2005), hydrodynamic stability theory (Acheson 1976,

Bach et al. 2014, Jansson et al. 2006, Tophoj et al. 2013), and wave generation

by turbulence (Cerda and Lund 1993, Lund and Rojas 1989).

In this work we focus on the interaction between vortices and surface

waves propagating on the upper free surface of a fluid. A more detailed in-

troduction on the related topics and models used is given in the following

paragraphs.

1.1 Experimental generation of vortices

In a laboratory, vortices can be generated in a number of different ways. Here

we mention two techniques often employed. The first one is named “Grav-

itational Collapse”. It consists in filling a rotating tank with fluid, while a
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Figure 1.1: Experimental setup to use the Gravitational Collapse for gener-
ating vortices in a laboratory. The tank rotates at angular velocity Ω and
contains fluid at height H̄. ∆H is the fluid height difference between the in-
ner and the outer fluid, whereas R0 is the radius of the inner cylinder. Image
has been taken from Flòr (2010).

bottomless cylinder with internal radius—say R0—is placed concentrically in

the tank with the fluid inside the inner cylinder at a level differing from that

outside it–see figure 1.1. After the inner cylinder is withdrawn vertically, a

gravity driven flow arises in radial direction. This radial motion is deflected

by the Coriolis force, and after a time of typically π/Ω an equilibrium state is

reached where the flow is close to being purely azimuthal. Following Kloost-

erziel and Heijst (1992), a possible analytical representation of the resulting

flow is given by

uθ(r) =
Ωr

2
e
− r2

R2
0 , (1.1)

where uθ is the azimuthal velocity component and r the radial coordinate. We

will refer to this flow as Gaussian Vortex.

The second suitable technique for creating vortices is achieved by con-

tinuously withdrawing fluid from a sink located at the centre of a rotating tank.

This was well studied by Andersen et al. (2006) who conducted both an exper-

imental and analytical study to analyse and control the resulting free surface

swirling flow, which is called Bathtub Vortex. As depicted in figure 1.2, close

to the bottom boundary of the tank the flow is not entirely azimuthal due to

the development of an Ekman layer (Cushman-Roisin and Beckers 2011, Ch.

8); however, sufficiently far away from the bottom, the flow becomes purely

azimuthal and a possible analytical representation for that can be given by:

uθ(r) =

√
Ω

ν

F

πr

(
1− e

− r2

R2
0

)
, (1.2)

where F is the flow rate at which the fluid leaves the drain-hole, R0 is the radius

of the drain-hole, Ω is the angular velocity of the tank and ν the kinematic

2



Figure 1.2: Experimental set up to generate a bathtub vortex (above). Char-
acteristic regions of the flow in a bathtub vortex (below). The rotating table
spins with angular velocity Ω. The fluid drains from the hole at a rate F .
Images have been taken from Andersen et al. (2006).

viscosity of the fluid.

The form of the azimuthal velocity (1.2) is equivalent to an instanta-

neous snapshot of a Lamb-Oseen flow, which we are going to use extensively

throughout the thesis. The Lamb-Oseen flow is an exact solution of the time-

dependent Navier-Stokes equations (see Drazin and Riley (2006) for more de-

tails), and this fact, together with the experimental results just mentioned,

make this flow a realistic vortex model to work with. Its form is given by

uθ(r, t) =
Γ0

2πr

(
1− e−

r2

4νt

)
, (1.3)

with Γ0 denoting the initial circulation of the vortex. Near the centre it

behaves as a solid-body rotational flow, while far away from the centre it is

equivalent to a potential vortex. For this reason it overcomes other simplified

vortex models, e.g. the Rankine vortex, which does not take into account

3
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Figure 1.3: Comparison between a Rankine vortex and a steady Lamb-Oseen
vortex (4νt = 1) as function of the radial coordinate.

the viscous dissipation mechanism resulting in the spreading of the vorticity

initially concentrated within the core. Figure 1.3 shows a comparison between

the Lamb-Oseen vortex and the Rankine vortex, highlighting particularly the

overlapping of the two functions both in the core and in the outer potential

region.

1.2 Vortex-waves interaction in rotating free sur-

face flows

Rotating flows are known to support the propagation of many different type

of waves. These are often viewed as small perturbations to an equilibrium

state, also known as a base flow, and the behaviour of such waves depends

both on the particular velocity field of the base flow and on the geometry

of the problem under consideration. One important class of such waves are

interfacial surface waves. These are waves forming at the interface between two

fluids with different physical properties, and they often are strongly localized

close to the interface. In fact, the initial motivation of this PhD work was

out of curiosity concerning vortices and waves interacting in a swimming pool.

An “experiment” (Skipp 2020) created pairs of vortices by drawing a dinner

plate through the water. The initial waves generated by this disturbance

disperse rapidly, leaving remarkably long-lived vortices with surface waves

that appear trapped in the vortex, but which propagate around the vortex in

the opposite direction to the vortex flow. Changes in the surface height can

be easily visualized by light and dark patterns on the swimming pool floor.

A photograph of the phenomena, together with a schematic representation, is

4



Figure 1.4: The physical scenario motivating this work. Surface waves are
trapped within a rotating vortex flow, but propagate in the direction opposite
the direction of rotation. Left: Photograph of two vortices in a swimming
pool (a still taken from the video of Skipp 2020). Right: schematic of the
flow and surface waves on the left-hand vortex. Black arrows show the base
velocity field. Blue lines show the wave crests. Red arrows show the direction
of propagation of the waves.

shown in figure 1.4; interested readers are encouraged to follow the reference

for a video. The main objective of the present work is indeed to study the

vortex-surface waves interaction appearing in free surface swirling flows.

Based on the example of the waves travelling in the pool, we can make

the following assumptions that will help in highlighting the main physical in-

gredients hence simplifying the mathematics involved in our problems. We

assume the pair of vortices travel with uniform velocity U∞ and have a hori-

zontal reference length scale comparable to the size of the core of one of the

two vortices. We call this length a. Moreover, there exist two other length

scales in the picture: the mean height of the pool h∞ and a length lκ respon-

sible for viscous dissipation. We take the latter to be the Kolmogorov length

scale. Thus, we can define four time scales of interest associated to different

physical phenomena: tν = l2κ
ν the viscous time scale, tg =

√
h∞
g the time scale

associated to gravity acceleration, tU∞ = a
U∞

the inertial time scale due to

the convection of the vortices and tγ =
√
ρa

3

γ the one associated with sur-

face tension γ. Using typical values of ν = 10−6[m2/s], ρ = 103[Kg/m3] and

γ = 0.073[m3/s2] for water and estimating a = 10[cm], U∞ = 0.2[m/s] and

lκ = 0.01[m], the four time scales are about

tν = 102[s], tg = 0.3[s] tU∞ = 0.5[s] tγ = 3.7[s]. (1.4)

Clearly there is a separation of scales between the viscous time scale and the

other three. So, we can easily neglect viscous contributions in the governing

equations. Also, there is a separation between the time scale associated to

surface tension and those involving the mean flow and gravity. Moreover, it

is known that for water-air interface, capillary waves dominate the dynamics

for waves whose wavelength is lower than 1.73[cm]—see Whitham (1974)—
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that is the capillary length. Even though we acknowledge that from figure

1.4 the wavelength of the waves looks comparable to the capillary length,

due to the previous separation of time scales and owing to the mathematical

complexities that surface tension would bring to the waves dynamics, we still

neglect surface tension in our problems. Finally, assuming the perturbations

to have a small amplitude with respect to the base swirling flow, we can also

neglect the nonlinear advective term in the perturbations dynamics. A more

detailed derivation and analysis on the general governing equations will be

carried out in the next chapter.

In the next paragraphs we will recall what has been done in the litera-

ture about three main aspects concerning waves and free surface swirling flows

that are yet not very well explored and that explore in this work. The first

one deals with the presence of a background vortex flow on which waves can

propagate. Indeed, many wave phenomena have been investigated only in the

absence of a base vortex flow—see Johnson (1997) for a review on the subject.

The second major point concerns the treatment of non-reflecting boundaries.

More specifically, in principle we are going to simulate waves over horizontally

unbounded domains; when truncation is needed for numerical purposes waves

must exit the boundary without being reflected backwards. The third and

last difficulty comes from the character of the waves, i.e. whether they are

supposed to be non-dispersive or dispersive— see Whitham (1974) for further

details.

1.3 Waves in simple rotating systems

Waves on a swirling flow have been studied numerically in Mougel et al. (2014,

2015, 2017) for three sufficiently simple rotating fluid systems: solid-body rota-

tion, potential vortex and Rankine vortex. These have been studied supposing

the fluid is confined inside a rigid cylindrical container. Their studies reveal

the presence of four main types of waves as long as the flow does not form a dry

region at the bottom boundary. Such waves are surface gravity waves, inertial

waves, Rossby waves, and centrifugal waves (figure 1.5). The first three waves

are observed for solid-body rotation, while centrifugal waves and gravity waves

arise in the potential vortex problem. Depending on the context, each of these

waves can be easily recognized and distinguished by its spatial structure and

the associated frequency of oscillation.

An interesting feature of the potential vortex flow is the occurrence

of an instability due to an interaction between centrifugal and gravity waves.

This instability is termed “Polygon Instability” due to the polygonal shapes

appearing on the free surface when the interaction occurs. The problem was

initially studied by Tophoj et al. (2013) and subsequently by Mougel et al.

(2017) where they showed that the interaction involves these two types of

6



(a) (b) (c)

(d)

Figure 1.5: Example of surface gravity wave (a), inertial wave (b), Rossby wave
(c) and centrifugal wave (d). The quantity plotted here is the real part of the
pressure in the r − z plane for the first three type of waves, and the real part
of the velocity potential in the r− z plane for the fourth type of wave. These
four type of waves can be distinguished by their spatial structure: surface
gravity waves are oscillatory in the radial direction, but evanescent in the
axial direction. Inertial waves are oscillatory in both directions. Rossby waves
are independent of the axial direction; they oscillate only along r. Centrifugal
waves are oscillatory in the radial direction, but very localized where the free
surface is steep. The first three figures (a–c) have been taken from (Mougel
et al. 2015). Figure (d) has been taken from (Mougel et al. 2017).

wave modes, one of which is dependent on the outer boundary. The resonance

mechanism can be easily understood by looking at the diagram in figure 1.6

showing the intersection of the gravity waves branches with those belonging

to the centrifugal waves. At those intersection points modes with a small

positive imaginary part in the corresponding eigenvalues appear, leading to

the aforementioned instability.

Instabilities of vortices in horizontally unbounded domains have been

found to occur within the shallow-water limit, as studied by Ford (1994).

However, it is worth noting that the study of shallow-water rotating flows

is rather different to the study of finite-depth rotating flows on two counts:

firstly, shallow-water rotating flows can only rotate very slowly before the

deformation in the free surface at the centre of the vortex touches the bottom

boundary and a dry inner region is formed; and secondly, shallow-water waves

are nondispersive and have a fixed wave speed, while finite-depth water waves

are dispersive such that any wave speed is available to the system, and for

example a wave can exist whose speed matches the flow speed at a given

location.

Surface waves have also been studied by Hunt et al. (2015) by con-

sidering the effects of an electric field on both linear and nonlinear inviscid,

irrotational waves. Moreover, two-dimensional surface waves in electrohydro-

dynamics and magneohydrodynamics have been studied by Hunt (2019), Hunt

and Dutykh (2021), Hunt and Vanden-Broeck (2015), although in the present

work we do not consider any electric or magnetic field. Finally, for interested

readers, additional material involving inertial and Rossby waves can be found

in Johnson (1997), Greenspan (1969) and McWilliams (2006).

7



Figure 1.6: Top image: interaction mechanism between gravity and centrifugal
waves in the potential free surface vortex problem studied by Mougel et al.
(2017). The picture has been taken from the same paper. ωr

√
R/g represents

the scaled real part of the eigenvalues (oscillation frequencies) as function of
the scaled size of the dry area ξ/R. On the other hand, ωi

√
R/g represents

the scaled imaginary part of the eigenvalues (the growth rate if positive). The
branches going up are those of gravity waves; the branches going down are
those of centrifugal waves. Bottom image: the polygonal patterns formed due
to the instability. The picture has been taken by Jansson et al. (2006)

1.4 Non-reflecting boundary conditions

Usually vortices like those appearing in the swimming pool propagate natu-

rally in laterally unbounded domains, so that the resulting wave propagation

problems also have to be studied in the same unlimited region. This introduces

one of the main points that we have covered throughout this thesis, which is

the imposition of non-reflecting boundary conditions (NRBC). The basic idea

is that at infinity there are no sources of waves, therefore any source of waves

coming in from infinity should be avoided. Finding new formulas and methods

to impose such a desired behaviour of waves at infinity is by itself a research

field and a literature review is discussed below. However, before going through

that, let us explain the main idea using the simplest 1D wave equation. The

physical scenario is displayed in figure 1.7, with a right-going wave leaving the

domain without any reflection. We want to describe this mathematically. Let

8



Figure 1.7: Example of a wave leaving the domain Ω without begin reflected
backward. This is the result of applying a NRBC. Picture has been taken by
Sim (2010).

us consider the 1D wave equation:

∂2u

∂t2
− c2

∂2u

∂x2
= 0, x ∈ Ω ≡ [0, L], (1.5)

with suitable boundary conditions and where c = const. represents the con-

stant phase speed of the waves. Defining v = ∂tu+ c∂xu and w = ∂tu− c∂xu,

equation above can be re-written as a first order system of PDEs of the form

∂v

∂t
− c

∂v

∂x
= 0,

∂w

∂t
+ c

∂w

∂x
= 0.

(1.6)

Its solution is given by v(x, t) = ϕ(x+ct) and w(x, t) = ψ(x−ct), being ϕ and

ψ two arbitrary functions representing an incoming wave (moving to the left)

and an outgoing wave (moving to the right), respectively. Now, if we want

our waves to exit the boundary x = L without coming back, then we need to

impose the Non-Reflecting Boundary Condition:

v(L, t) = 0 ⇒ ∂u(L, t)

∂t
+ c

∂u(L, t)

∂x
= 0. (1.7)

Equation (1.7) for u is the exact NRBC obtained by formally using the Method

of Characteristics. This method is widely used in Applied Mathematics in

order to study hyperbolic problems and hence it is the simplest way to derive

a Non-Reflecting Boundary Condition. A classical reference on the topic can

be found in Fritz (1978).
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We give a review of the main works done to deal with different formu-

lation of non-reflecting boundary conditions for wave propagation problems.

The first part is devoted to finding exact boundary conditions based on the

characteristics analysis; the second part instead deals with Perfectly Matched

Layers that are novel methods to impose the non-reflecting behaviour.

The pioneering work on NRBC was performed by Engquist and Ma-

jda (1977) for plane waves. They first obtained the exact NRBC in terms

of a pseudo-differential operator computed by Laplace-Fourier transforming

the wave equation in time and space respectively. Then, they localized the

pseudo-differential operator by expanding it in Taylor series around a small

wave speed, hence obtaining a hierarchy of local NRBCs. The first and second

approximations are still widely used. Higdon (1986, 1987, 1994) generalized

the results of Engquist and Majda by deriving a high-order NRBC capable of

absorbing exactly waves travelling at a given wave speed and incident with a

known angle at the transparent artificial boundary. The boundary conditions

derived by Engquist, Majda and Higdon, however, could contain operators

whose spatial and temporal derivatives might be higher than two. To limit

this increasing in the order of the derivatives, Givoli and Neta (2003) reformu-

lated the boundary condition introduced by Higdon without spatial derivatives

higher than two. This goal is achieved by introducing J auxiliary variables in

the formulation representing waves travelling at the know constant velocity cj .

Later on Hagstrom and Hariharan (1998) extended the formulation of Givoli

and Neta to non-dispersive waves in both polar and spherical coordinates. It

was Lindquist et al. (2012) who generalized that to dispersive waves in polar

coordinates. Regarding spherical waves, Bayliss and Turkel (1980), inspired by

the high-order NRBCs introduced by Higdon, derived a sequence of local oper-

ators by increasingly annihilating terms coming from the far-field expansion of

an outgoing spherical wave solution. Exact boundary conditions for spherical

waves, however, were derived later in a very elegant way by Grote and Keller

for the non-dispersive wave equation (Grote and Keller 1995, 1996, 2000) and

then extended to electromagnetic and elastic waves too (Grote 2000a,b, 2006,

Grote and Sim 2009).

As far as Perfectly Matched Layers (PMLs) formulation are concerned,

the initial work was done by Berenger (1994) to deal with Maxwell equations.

The initial formulations in his work were based on splitting the electromagnetic

fields into two parts, the first containing the tangential derivatives and the

second containing the normal derivatives. Damping is then enforced only

upon the normal direction. Later, Zhao and Cangellaris (1996) proposed a

formulation without splitting the electromagnetic field. Similar approaches

were then applied to wave phenomena in elasticity (Basu and Chopra (2007),

Chew and Liu (1996)) and fluid dynamics (Söderstrom et al. (2010)). The main

disadvantage in the PML formulations lies in the high number of additional
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unknowns that have to be defined in order to close the system of equations.

A more recent and novel formulation that tries to reduce such an issue was

proposed by Sim (2010) for the non-dispersive (with possibly varying velocity)

wave equation. As discussed, this offers a big advantage in terms of new

variable definitions, especially in 2D spatial problems.

1.5 Modelling the convection in shallow-water waves

When waves are driven by a background vortex flow in an unbounded region

their behaviour can be complicated and rich. A prototype model for this will

be derived in chapter 3 and consists in studying a Convective Wave Equation

(CWE) of the form

D2
t ϕ− c2∇2ϕ = 0, (1.8)

where Dt = ∂t +U0 · ∇ represents the convective derivative due to the back-

ground vortex flow U0, c =
√
gH the wave speed in the Shallow-Water limit

and ϕ the velocity potential associated to the perturbation. Due to the con-

vective derivative operator, this model is the first attempt to describe the

advection effect that a prescribed background flow has on the dynamics of the

surface gravity waves. The CWE has been widely studied only recently as an

analogue to the behaviour of rotating black holes. The pioneering work on the

topic was done by Unruh (1981) who showed that the dynamics of rotating

black holes is exactly equivalent to the dynamics of surface gravity waves on

vortices. A more recent and complete work is contained in the PhD thesis by

Patrick (2019). Within these studies, there are two main features that we are

going to focus on throughout this work because of their relevance in the Fluid

Dynamics field: the first one is called rotational superradiance–see Patrick

and Weinfurtner (2020), Richartz et al. (2015), Torres (2019), Torres et al.

(2017)–and represents the amplification of an incident wave into the vortex,

whereas the second one is called ergoregion instability (Oliveira et al. 2014)—

or even superradiance instability as it is directly related to the superradiance

amplification mechanism (Cardoso et al. 2004)—and represents the possibility

of exciting unstable normal modes having an exponential growth rate in time.

The instability can be also seen as a resonance condition between the surface

gravity waves and the vortex, as shown in (Dolan et al. 2012, Patrick et al.

2018, Torres et al. 2018). Even though these two effects are linked one another,

here we give more emphasis on the latter as we are interested in investigating

the possible unstable modes interacting with a base vortex flow. The paper

inspiring the material developed in chapter 3, in fact, is that by Oliveira et al.

(2014), who showed that a potential vortex in an “unbounded” fluid can give

rise to unstable normal modes beyond a certain rotation rate of the vortex.
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1.6 Dispersive models for waves on swirling flows

As explained in the previous section, the Convective Wave Equation holds

only under the Shallow-Water approximation. Such limit though ceases to

be valid in many contexts. It is therefore important to derive new models

capable of dealing with the dispersive character of non-shallow-water waves,

which comes from finite-depth effects. The pioneering effort in this direction

was made by Boussinesq (1871). We briefly give the main ideas and the

generalizations that leads to more recent models. The Boussinesq equation

and subsequent models are all based on the potential flow assumption, as

well as the approximation that the free surface remains flat and it is located

at a level, say z = H. The flow is also bounded at the bottom z = 0 and

neither viscosity nor surface tension is included. For simplicity, we just focus

here on the linear problem. The strategy shown here to derive Boussinesq-type

equations is based on depth-averaging the governing Laplace equation and then

use integration by parts to link the average potential and the fluid elevation.

By doing so, one can obtain a hierarchy of wave equations that approximate

better and better the dispersive effects in a finite-depth configuration. The

order of convergence of the approximate model is dictated by the truncation

in the series of integrals computed. In particular, Boussinesq kept only the

first three terms in the series, obtaining the following PDE:(
1− H2

2
∇2

)
∂2ϕ

∂t2
− gH

(
1− H2

6
∇2

)
∇2ϕ = 0. (1.9)

More accurate and recent models have been derived by keeping higher or-

der terms in the series. This might ultimately lead to the following pseudo-

differential equation

∂2ϕ

∂t2
− ig∇ tanh(−iH∇)ϕ = 0, (1.10)

in the absence of a background flow, and to the following in case a base flow

is present

D2
t ϕ− ig∇ tanh(−iH∇)ϕ = 0. (1.11)

Equation (1.11) has been studied analytically by means of the Ray-Tracing

method (Bühler 2014) in the paper by Torres et al. (2018) in order to predict

the oscillation frequencies of surface waves propagating over a potential vortex.

A further generalization of that model was derived by Milewski and Keller

(1996) including viscosity and surface tension too.
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1.7 Contents of the chapters

In this thesis we overcome some of the drawbacks present in the literature

or not yet fully investigated. The different problems studied in this work are

explained by increasing complexity. More precisely, the contents are organized

as follows:

• Chapter 2 is devoted to the derivation of the general stability equations

for free surface swirling flows, highlighting the role of the boundary con-

ditions. Then, simple configurations are analysed and studied in detail;

analytical results are presented to give more insight into the problem as

well as to validate the numerical codes built up.

• Chapter 3 is about the study of wave propagation problems in unbounded

domains, using in particular the Convective Wave Equation. This model

is deeply studied either when the convection is due to a monopolar vortex

and when it is due to a dipole flow. Solutions are computed both in

the frequency and in time domain. For the dipole case, a full PML

formulation is derived and the problem is solved by time marching using

the Method of Lines.

• Chapter 4 deals with the study of surface waves over a Lamb-Oseen

vortex flow in a finite-depth configuration. Two main kind of modes

are discovered and analysed. Furthermore, we conducted a parametric

study involving different azimuthal mode numbers, Froude numbers and

fluid heights so as to analyse the influence that each of these have on the

dynamics of surface gravity modes.

• Chapter 5 is devoted to the derivation of a novel 2D model for studying

the vortex-surface waves interaction in deep-water. We believe that such

model overcomes the difficulties coming from the inclusion of higher dis-

persive terms presented earlier in equation (1.11). Moreover the model

is valid for any nontrivial two-dimensional background flow, and able

to take into account both the possible non-zero vorticity and the free

surface deformation.

• Chapter 6 is a summary of the work done during this PhD and some

possible future ideas to be implemented along the same research line.
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Chapter 2

Waves on bounded free

surface swirling flows

In this chapter we are going to derive the equations governing the linear prop-

agation of waves in a specified free surface swirling flow. This is equivalent to

study the linear stability of the free surface swirling flow. We assume here the

base flow to be purely azimuthal and radially dependent only; moreover, the

geometry is cylindrical with rigid walls both at a fixed radius r = R and at the

bottom z = 0. The physically relevant assumptions we make are those of ne-

glecting viscous dissipation, surface tension effects and compressibility. Hence,

the main equations will be the incompressible Euler equations. We will start

our investigation of the mathematical problem by studying what happens if

no vortex is present. Despite this is very well-known in the literature, it is

instructive to do the calculations in order to highlight some of the features con-

cerning surface gravity waves. We will then move to the so-called Newton’s

Bucket problem and solve it both numerically and analytically whenever pos-

sible. The study of these two rather simple problems lays the foundations for

studying more complicated problems involving waves on laterally unbounded

vortices, which will be addressed in subsequent chapters.

2.1 Euler equations linearised about a steady swirling

flow

In this section we want to derive the equations describing the linear stability

of a steady swirling flow, i.e. a purely azimuthal base flow, in a cylindrical

reference system. Incompressible Euler equations read

ρ
∂u

∂t
+ ρ(u · ∇)u+∇P = 0,

∇ · u = 0.

(2.1)
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Dividing by ρ and calling p = P
ρ , equations (2.1) become

∂u

∂t
+ (u · ∇)u+∇p = 0,

∇ · u = 0.

(2.2)

In order to investigate the linear stability, we can express both the velocity field

u and the pressure field p as the sum of two terms: the first one given by the

equilibrium steady state (U0, P0) whereas the second given by a perturbation

term, whose amplitude is controlled by a small parameter ϵ≪ 1 as

u = U0 + ϵu′,

p = P0 + ϵp′.
(2.3)

Substituting these expressions into (2.2), at the first order in ϵ we get the

following equations in the unknowns (u′, p′)

∂u′

∂t
+ (u′ · ∇)U0 + (U0 · ∇)u′ +∇p′ = 0,

∇ · u′ = 0.

(2.4)

In the present work, every time the base flow is a monopolar vortex, it will

be always assumed that this is axisymmetric, that is U0 = U0(r)θ̂. We define

the angular velocity field as

Ω0(r) =
U0(r)

r
, (2.5)

and after having omitted the apex ′ for notation convenience, the governing

equations read

∂ur
∂t

+Ω0

(
∂ur
∂θ

− 2uθ

)
+
∂p

∂r
= 0,

∂uθ
∂t

+Ω0

(
∂uθ
∂θ

+ ur

)
+ ur

d(rΩ0)

dr
+

1

r

∂p

∂θ
= 0,

∂uz
∂t

+Ω0
∂uz
∂θ

+
∂p

∂z
= 0,

1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0.

(2.6)

Looking for a solution in the form of rotating waves in the azimuthal direction

θ
ur = u(r, z)e−iωt+imθ,

uθ = v(r, z)e−iωt+imθ,

uz = w(r, z)e−iωt+imθ,

p = ϕ(r, z)e−iωt+imθ,

(2.7)
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FS

Figure 2.1: Free surface separating two fluids having different physical prop-
erties.

system (2.6) reduces to

(−iω + imΩ0)u− 2Ω0v +
∂ϕ

∂r
= 0,

(−iω + imΩ0) v +

(
Ω0 +

d(rΩ0)

dr

)
u+

im

r
ϕ = 0,

(−iω + imΩ0)w +
∂ϕ

∂z
= 0,

1

r

∂

∂r
(ru) +

im

r
v +

∂w

∂z
= 0,

(2.8)

where now we have omitted the r-dependence of Ω0 in order to use a lighter

notation. Equations (2.8) are valid in the bulk; now we are going to deal with

the boundary conditions so that our differential problem is well-posed.

2.2 Free surface problem

Let us consider two fluids divided by an interface surface as shown in figure

2.1. The free surface can be implicitly expressed as

f(r, θ, z, t) = 0. (2.9)

In a cylindrical geometry, assuming the fluid height is a single-valued function,

it can also be written as

z = h(r, θ, t). (2.10)

The presence of a free surface adds a further unknown to the problem since the

function h(r, θ, t) has to be determined. What makes the free surface shape an

unknown is two boundary conditions that have to be imposed at the interface

itself in order to close the differential problem. The two boundary conditions

are a kinematic and a dynamic boundary conditions. In this work we will

always assume the upper fluid to be dynamically passive, in particular at rest

and having constant pressure. As a matter of fact, we are interested only in

the dynamics of the fluid below the free surface. Let us now formally derive

the two free surface boundary conditions just mentioned.
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Figure 2.2: Stresses on an interface surface between two fluids

2.2.1 Kinematic boundary condition

The kinematic boundary condition expresses that along the free surface every

particle follows the fluid motion. Consequently we have that the material

derivative of the surface is zero, i.e.

Df

Dt
= 0, at z = h. (2.11)

Letting f = z − h(r, θ, t), by the previous relation we get

uz −
Dh

Dt
= 0, (2.12)

i.e.

uz =
∂h

∂t
+ ur

∂h

∂r
+
uθ
r

∂h

∂θ
, at z = h. (2.13)

2.2.2 Dynamic boundary condition

The dynamic boundary condition states that all forces acting on and within

the interfacial surface must balance. Generally, this includes inertial forces,

body forces, pressure and viscous stresses and the force due to the surface

tension (γ), which we are going to assume to be constant.

Let us consider an infinitesimal volume of fluid accross the free surface,

as depicted in figure 2.2. The element has area δs2 and a height much smaller

than δs. For this reason, in the force balance we can ignore both the inertial

contribution and that coming from the body forces. The force balance on the

infinitesimal element involves only the stresses that either the lower and upper

fluid exert on the element and the force from inside the interface which is due

to the surface tension. The equilibrium condition implies

δs2T+ · n+ δs2T− · (−n) + δsγ
(
t1(s1 + δs, s2)− t1(s1, s2)

)
+ δsγ

(
t2(s1, s2 + δs)− t2(s1, s2)

)
= 0, at z = h.

(2.14)

We recall that for a Newtonian, incompressible fluid, the stress tensor T (per
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unit-density) is defined as

T = −pI+ ν
(
∇u+∇uT

)
. (2.15)

Proceeding with the derivation of the dynamic boundary condition, if we divide

by δs2 equation (2.14) and take the limit δs→ 0, we get

T+ · n− T− · n = −γ
(∂t1
∂s1

+
∂t2
∂s2

)
≡ γκn, at z = h, (2.16)

where κ represents the curvature of the interface. Now, using the properties

that t1 ·n = 0 and t2 ·n = 0, after differentiating them with respect to s1 and

s2 respectively, we can write

∂t1
∂s1

· n+ t1 ·
∂n

∂s1
= 0,

∂t2
∂s2

· n+ t2 ·
∂n

∂s2
= 0,

(2.17)

hence the curvature can be written as

κ = −
(∂t1
∂s1

+
∂t2
∂s2

)
· n = t1 ·

∂n

∂s1
+ t2 ·

∂n

∂s2
= ∇s · n, (2.18)

where ∇s is the surface gradient operator. This operator is the gradient op-

erator taking effect on a surface, hence can be defined as

∇s = ∇− n(n · ∇). (2.19)

It is indeed the standard gradient subtracted from its normal component.

Through the differential relationship n(n ·∇) = ∇×n×n, application of the

surface gradient to the normal unit vector n yields

κ =
(
∇−∇× n× n

)
· n ≡ ∇ · n. (2.20)

Therefore, the dynamic boundary condition takes the final form

T+ · n− T− · n = γ(∇ · n)n, at z = h. (2.21)

In case the effects of both surface tension and viscosity are negligible, the

stress tensor reduces to T = −pI and the dynamic boundary condition simply

states a balance of the pressure across the interface

p− = p+, at z = h. (2.22)

Equation (2.22) is the version of the dynamic boundary condition we are al-

ways going to use throughout the thesis.
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2.2.3 Free surface shape for a generic axisymmetric swirling

flow

As previously stated, in this section we consider a base steady velocity field

of the form U0(r, θ, z) = U0(r)θ̂. The associated equilibrium equations then

read

− U2
0 (r)

r
+
∂P0

∂r
= 0,

∂P0

∂z
= −g,

(2.23)

where g is the gravity acceleration. By integrating the second equation we

obtain

P0(r, z) = −gz + f(r), (2.24)

and inserting it into the first one we get

f ′(r) =
U2
0 (r)

r
⇒ f(r) =

∫
U2
0 (r)

r
dr + C, (2.25)

being C an arbitrary constant. Now, the shape of the base free surface h0(r)

is obtained by using the dynamic boundary condition (2.22). Let P̄0 be the

constant pressure on the free surface, we obtain

P0(r, h0(r)) = P̄0, (2.26)

that is

− gh0(r) +

∫
U2
0 (r)

r
dr + C = P̄0. (2.27)

We can always set C = P̄0 so that

h0(r) =
1

g

∫
U2
0 (r)

r
dr. (2.28)

2.2.4 Linearisation of the boundary conditions at the free sur-

face for inviscid flows and with no surface tension

Through the kinematic and dynamic boundary conditions, the free surface

enters the problem as a new unknown. Consequently, we can express it as the

sum of a steady free surface (derived in the previous paragraph) and a small

perturbation

h(r, θ, t) = h0(r) + ϵh′(r, θ, t), ϵ≪ 1. (2.29)

Now, recalling the perturbation velocity, we expand expressions (2.13) and

(2.22) in Taylor series around the steady free surface h0(r). Starting with the

kinematic boundary condition, its linearised version reads

u′z =
∂h′

∂t
+
U0(r)

r

∂h′

∂θ
+ u′r

dh0(r)

dr
, at z = h0(r). (2.30)
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Following the hypothesis for the pressure to be constant on the free surface and

neglecting surface tension, after linearisation, the dynamic boundary condition

(2.22) reads

h′ =
1

g
p′, at z = h0(r). (2.31)

We can combine the two conditions obtaining a unique one that links the

pressure and the velocity components at the free surface

u′z =
1

g

(
∂p′

∂t
+
U0(r)

r

∂p′

∂θ

)
+
dh0(r)

dr
u′r, at z = h0(r). (2.32)

Following the notation previously used for the rotating waves as in equations

(2.8), we finally write the linearised boundary condition at the free surface as

w =
1

g
(−iω + imΩ0(r))ϕ+

dh0(r)

dr
u, at z = h0(r). (2.33)

2.2.5 Stability problem in a confined cylindrical geometry

We want to study the linear stability problem of a steady axisymmetric swirling

flow whose upper boundary is given by its steady free surface and has finite

radius and finite depth. Since, as shown in the previous section the unknowns

of the equations are supposed to be travelling waves in the azimuthal direction,

we can consider the domain of the problem as the cross section of a cylinder

delimited by the free surface at the top. The physical domain is shown in

figure 2.3. The differential problem governing the phenomenon is described

Figure 2.3: Physical domain of the problem in the r−z plane. The free surface
h0(r) is drawn in red and represented by the boundary Γ3. Also, Γ1 represents
the bottom wall of the cylinder z = 0; Γ2 the lateral boundary r = R and Γ4

the axis of the cylinder r = 0.
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by the following set of equations and boundary conditions

(−iω + imΩ0)u− 2Ω0v +
∂ϕ

∂r
= 0,

(−iω + imΩ0) v +

(
Ω0 +

d(rΩ0)

dr

)
u+

im

r
ϕ = 0,

(−iω + imΩ0)w +
∂ϕ

∂z
= 0,

1

r

∂

∂r
(ru) +

im

r
v +

∂w

∂z
= 0,

w =
1

g
(−iω + imΩ0)ϕ+ u

dh0
dr

, on Γ3,

w = 0, on Γ1,

u = 0, on Γ2,

(u, ϕ) = (u, v, w, ϕ) <∞, on Γ4.

(2.34)

We start now to study simpler mathematical problems with respect to equa-

tions (2.34), given by few simplifications in the form of the base velocity field

and/or the type of perturbation considered (axisymmetric or not).

2.3 Stability of a flow at rest and surface gravity

waves

Let us consider a fluid initially at rest filling a cylinder of radius R and whose

free surface is initially constant as shown in figure 2.4:

U0(r) = 0 ⇒ h0(r) = H. (2.35)

The equations governing the perturbation dynamics are given by

∂u′r
∂t

+
∂p′

∂r
= 0,

∂u′θ
∂t

+
1

r

∂p′

∂θ
= 0,

∂u′z
∂t

+
∂p′

∂z
= 0,

1

r

∂

∂r

(
ru′r
)
+

1

r

∂u′θ
∂θ

+
∂u′z
∂z

= 0,

(2.36)

whereas the boundary conditions read

u′r = 0, at r = R,

(u, p′) <∞, at r = 0,

u′z = 0, at z = 0,

u′z =
1

g

∂p′

∂t
, at z = H.

(2.37)
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Figure 2.4: Geometry of the problem in the case of no swirl.

We can easily reduce the system (2.36) to a single PDE in the pressure by tak-

ing the divergence of the momentum equation and re-arranging the boundary

conditions accordingly. By doing so, the resulting differential problem reads

∆p′ = 0,

∂p′

∂r
= 0, at r = R,

∂p′

∂z
= 0, at z = 0,

∂p′

∂z
= −1

g

∂2p′

∂t2
, at z = H,

(2.38)

where ∆ = ∂2

∂r2
+ 1

r
∂
∂r + 1

r2
∂2

∂θ2
+ ∂2

∂z2
is the Laplacian in cylindrical coordi-

nates. As usual, looking for a solution in terms of temporal normal modes—

p′(r, θ, z, t) = ϕ(r, z)e−iωt+imθ—the previous system reduces to

∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
− m2

r2
ϕ+

∂2ϕ

∂z2
= 0,

∂ϕ

∂r
= 0, at r = R,

∂ϕ

∂z
= 0, at z = 0,

∂ϕ

∂z
=
ω2

g
ϕ, at z = H,

(2.39)

System (2.39) can now be solved in closed form by means of separation of

variables. We set ϕ(r, z) = a(r)b(z), obtaining the following two ODEs re-
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spectively:

a′′(r) +
1

r
a′(r)− m2

r2
a(r) + k2a(r) = 0,

b′′(z) = k2b(z).

(2.40)

The first of the two equations above is a Bessel equation. In particular, in

order to reduce it to the standard form, we make a change of variable setting

x = kr. This yields

a′′(x) +
1

x
a′(x)− m2

x2
a(x) + a(x) = 0, (2.41)

whose general solution is

a(x) = AJm(x) +BYm(x), (2.42)

being Jm and Ym the m-th Bessel functions of first and second kind respec-

tively. Coming back to the original coordinate r, the solution is written as

a(r) = AJm(λr) +BYm(λr). (2.43)

We impose now the boundary conditions along the radial coordinate:

a(0) <∞ ⇒ B = 0,

a′(R) = 0 ⇒ J ′
m(kR) = 0 ⇒ kR = αm,n ⇒ km,n =

1

R
αm,n,

(2.44)

begin αm,n the zeros of the m-th Bessel function derivative. As far as the

z-dependence is concerned, we have to solve the following equation

b′′ − k2b = 0, (2.45)

which, for any (m,n) mode becomes

b′′m,n − k2m,nbm,n = 0. (2.46)

The general solution of (2.46) is

bm,n(z) = Cm,ne
−km,nz +Dm,ne

km,nz. (2.47)

Imposition of the last two boundary conditions in (2.39) yields Dm,n = Cm,n

and the dispersion relation

ω2
m,n = gkm,n tanh(km,nH) ⇒ ωm,n = ±

√
gkm,n tanh(km,nH). (2.48)
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Therefore, the general solution for each mode can be expressed as

ϕm,n = Am,nJm(km,nr) cosh km,nz,

ωm,n = ±
√
gkm,n tanh(km,nH).

(2.49)

Examples of the exact eigenmodes with their relative frequencies is shown in

figure 2.5 for azimuthal wavenumbers m = 0, 1, 2, R = 1 and H = 1.
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Figure 2.5: Exact eigensolutions of surface gravity waves given by equations
(2.49) for m = 0 (first row), m = 1 (second row) and m = 2 (third row).
The real part of the pressure eigenmodes is shown here. The corresponding
eigenvalues are the following: (a): ω0,1 = 6.128. (b): ω0,2 = 8.296. (c):
ω0,3 = 9.990. (d): ω1,1 = 4.144. (e): ω1,2 = 7.231. (f): ω1,3 = 9.151. (g):
ω2,1 = 5.461. (h): ω2,2 = 8.110. (i): ω2,3 = 9.889.

2.3.1 Infinitely axially extended cylinder

In the particular case the system has infinite depth, the acceptable solution of

equation (2.46) is given by

bm,k(z) = Cm,ke
λm,kz. (2.50)
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By imposing the boundary condition at the free surface, the dispersion relation

now modifies into

ωm,n = ±
√
gkm,k. (2.51)

This is the well-known dispersion relation for deep-water surface gravity waves

and can be further seen as the asymptotic solution of (2.48) as H → ∞. A

representation of the effects of a finite depth both in a shallow and deep water

limit is is given in figure 2.6 for axisymmetric modes (m = 0). Even for

depths of unit magnitude (figure 2.6 Right), it is clear how quickly with depth

the dispersion relation (2.48) becomes indistinguishable to the one for the

deep-water regime (2.51). This is because the tanh(·) function becomes one

very quickly. For instance, the first radial wavenumber k0,1 ≃ 3, and hence

tanh(k0,1) ≃ 1 already. More significant variations in the spectrum between

the finite and infinite depth cases are expected to occur for values of H much

smaller than one.
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Figure 2.6: Dispersion of deep-water surface gravity waves (blue diagram),
and finite-depth surface gravity waves (red diagram) for m = 0, R = 1 and
two different fluid depths. Left: H = 0.1. Right: H = 1.

2.4 Free surface Newton’s bucket problem

In this section, instead of considering a fluid at rest, we assume that it rotates

with a constant angular velocity. The system is bounded again by the plane

z = 0 at the bottom and by the free surface at the top–figure 2.7. The

importance of studying this kind of free surface problem lies not only in its

historical significance (Newton was the first who tried to deal with it) and

the real applications where this problem is relevant, but also because it can

be used as an elegant and simpler problem to understand some of the main

features on the stability of more complicated swirling flows, such as the Lamb-

Oseen vortex that we are going to study later in this work. The Newton’s

bucket problem was extensively studied in Mougel et al. (2015), but we also

study the same problem for two main reasons: the first one is to validate

our numerical spectral code which we are going to adapt and use in the next
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Figure 2.7: Geometry of the Newton’s bucket problem.

chapters for different problems. Secondly, we will add to the work of Mougel

et al. (2015) a more analytical part consisting of finding the eigenmodes in

closed form when the domain is unbounded below the free surface. We start

the analysis by introducing the parameters appearing in the problem and the

corresponding base quantities. We assume the flow to be confined in a cylinder

of radius R, initially occupying a volume πR2H. The fluid is put into rotation

with a constant angular velocity Ω and is subject to centrifugal and gravity

acceleration. We express both the velocity and pressure fields as the sum of a

steady equilibrium flow and a small amplitude perturbation. For the specific

problem we have:

U(r, θ, z, t) = Ωrθ̂ + u(r, θ, z, t),

P (r, θ, z, t) = P̄ + g
[
H +

Ω2

2g

(
r2 − R2

2

)
− z
]
+ p(r, θ, z, t),

(2.52)

where P̄ is the ambient constant pressure above the free surface and h0(r) =

H+ Ω2

2g

(
r2− R2

2

)
is the base free surface obtained using the dynamic boundary

condition on the pressure. After linearising about the equilibrium solution,

the following equations and boundary conditions for the perturbations are

26



obtained
∂u

∂t
+Ω

∂u

∂θ
+ 2Ω(ẑ × u) +∇p = 0,

∇ · u = 0,

ur = 0, at r = R,

uz = 0, at z = 0,

uz =
∂h

∂t
+Ω

∂h

∂θ
+ h′0(r)ur, on z = h0(r),

p = gh, on z = h0(r),

(2.53)

where h′0(r) is the derivative of h0(r) with respect to r.

We can non-dimensionalize the system above by means of the following

transformations:

(r, θ, z) → (Rr, θ,Rz), t→ t

Ω
,

u → (ΩR)u, p→ (ΩR)2p,
(2.54)

so that, after combining the two boundary conditions on the free surface z =

h0(r), the dimensionless differential problem reads

∂u

∂t
+
∂u

∂θ
+ 2ẑ × u+∇p = 0,

∇ · u = 0,

ur = 0, at r = 1,

uz = 0, at z = 0,

uz = aF 2
(∂p
∂t

+
∂p

∂θ

)
+ h′0(r)ur, on z = h0(r),

(2.55)

where now h0(r) = a
[
1 + F 2

(
r2

2 − 1
4

)]
, h′0(r) = aF 2r, a = H

R is the aspect

ratio, giving the ratio between the fluid height and the radius of the cylinder.

Finally, F = ΩR√
gH

the Froude number measuring the competition between

inertial and gravity effects; alternatively, how fast the fluid rotates. Although

the governing equations in (2.55) are equivalent to those written in a rotating

reference frame due to the term 2ẑ×u (as it is typically the case for geophysical

flows), here these equations are valid in a non-rotating reference frame, as they

govern the perturbations over a solid-body rotational flow.

The differential problem above can be re-arranged in terms of the pres-

sure only. In order to do so, let us take the divergence of the momentum

equation. We have:

2∇ ·
(
ẑ × u

)
+∆p = 0. (2.56)

We introduce the axial vorticity ξz =
1
r
∂
∂r

(
ruθ

)
− 1

r
∂ur
∂θ . Then, ∇ · (2ẑ×u) =

−2ξz, obtaining

∆p− 2ξz = 0. (2.57)

On the other hand, if we take the curl of the momentum equation and project
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it onto the z-axis, we get an evolution equation for ξz:

∂ξz
∂t

+
∂ξz
∂θ

= 2
∂uz
∂z

. (2.58)

Applying the convective operator ∂t + ∂θ to equation (2.58) and using the

momentum equation along the axial direction, we can write

( ∂
∂t

+
∂

∂θ

)2
ξz = −2

∂2p

∂z2
. (2.59)

Finally, application of the convective operator squared to equation (2.57),

yields ( ∂
∂t

+
∂

∂θ

)2
∆p+ 4

∂2p

∂z2
= 0. (2.60)

Regarding the boundary conditions in equation (2.55), these can be re-written

in terms of the pressure only as

Dt
∂p

∂r
+

2

r

∂p

∂θ
= 0, at r = 1, (2.61a)

∂p

∂z
= 0, at z = 0, (2.61b)

aF 2D2
t (D

2
t + 4)p+ (D2

t + 4)
∂p

∂z
− 2aF 2Dt

∂p

∂θ
= aF 2D2

t r
∂p

∂r
, on z = h0(r),

(2.61c)

where for notation convenience Dt = ∂t + ∂θ is the convective operator intro-

duced before.

Equation (2.60) is the so-called Poincaré equation. It has a different

character depending on the rotation rate of the flow and will therefore give

rise to different kind of waves (Greenspan 1969). Indeed, by taking the usual

normal modes decomposition p = ϕ(r, z)e−iω+imθ and calling λ = ω −m, the

Poincaré equation becomes

∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
− m2

r2
ϕ+

(λ2 − 4

λ2

)∂2ϕ
∂z2

= 0. (2.62)

If |λ| > 2 equation above is elliptic and admit regular eigenmode solutions

represented by surface gravity waves. On the contrary if |λ| < 2, with λ ̸= 0,

the equation is hyperbolic and its solution are represented by singular inertial

waves. Finally, if λ → 0, the equation becomes degenerate and its solutions

are given by Rossby Waves which do not depend on the axial coordinate z.

These three categories of waves are those arising as long as the system remains

wet, i.e. does not form a dry region on the bottom boundary. As studied in

Mougel et al. (2015), when the Froude number exceeds F = 2, a dry region

forms and also another type of waves arise, the Edge Waves. However, in this

work we will always stick within the wet case.
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2.4.1 Weak formulation and numerical solution of Newton’s

bucket problem

In this section we are going to derive the weak formulation of the Newton’s

bucket problem defined in terms of the physical variables (2.55) and then use

this to develop a numerical scheme. We first decompose both the velocity and

the pressure in normal modes of the form

u = [u, v, w](r, z)e−iωt+imθ, p = ϕ(r, z)e−iωt+imθ. (2.63)

Defining λ = ω −m, equations (2.55) become

− 2v +
∂ϕ

∂r
= iλu, (2.64a)

2u+
im

r
ϕ = iλv, (2.64b)

∂ϕ

∂z
= iλw, (2.64c)

1

r

∂

∂r

(
ru
)
+

im

r
v +

∂w

∂z
= 0, (2.64d)

u = 0, on r = 1, (2.64e)

w = −iλϕ+ h′0(r)u, on z = h0(r), (2.64f)

w = 0, on z = 0, (2.64g)

where again h0(r) = a
[
1+ F 2

2

(
r2− 1

2

)]
is the dimensionless base free surface

and h′0(r) its derivative with respect to r. Since our domain is curvilinear,

we first make a change of coordinates to map from the physical domain to a

square S ∈ [−1, 1]2:

x = 2r − 1,

y =
2

h0(r)
z − 1.

(2.65)

The transformation is shown in figure 2.8.

Figure 2.8: Transformation from the original physical domain to the square
S = [−1, 1]× [−1, 1].
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The derivatives transform according to

∂

∂r
= 2

[
∂

∂x
− h′0(x)

h0(x)
(y + 1)

∂

∂y

]
,

∂

∂z
=

2

h0(x)

∂

∂y
.

(2.66)

At this point, we add an artificial viscous term in the momentum equa-

tion along the radial coordinate. This is useful to ensure the inertial modes

to be sufficiently smooth and well-resolved in their spatial structure. Indeed,

inertial modes have an oscillatory structure in both the radial and the axial

direction, thus an artificial viscous term would prevent those modes to resem-

ble numerically spurious modes due to a poor resolution in the discretization.

However, as we will show later the effects of such an artificial viscosity does

not influence the surface gravity modes that are going to be the most impor-

tant and discussed modes in this work. The aforementioned dissipative term

is defined as D2 = ∂2

∂x2
. This is sufficient in our weak formulation to ensure

diffusion without the need to introduce a full Laplacian operator, which would

cause unnecessary difficulties during the re-mapping of the domain. In this

way, the final differential problem written in the new coordinate system reads

− 2v + 2

[
∂ϕ

∂x
− h′0(x)

h0(x)
(y + 1)

∂ϕ

∂y

]
− ν

∂2u

∂x2
= iλu, (2.67a)

2u+
2im

(x+ 1)
ϕ = iλv, (2.67b)

2

h0(x)

∂ϕ

∂y
= iλw, (2.67c)

1

(x+ 1)

[
∂

∂x
((x+ 1)u)− h′0(x)

h0(x)
(y + 1)(x+ 1)

∂u

∂y

]
+

im

(x+ 1)
v +

1

h0(x)

∂w

∂y
= 0,

(2.67d)

u(y, 1) = 0, (2.67e)

w(−1, x) = 0, (2.67f)

w(x, 1) = −iλϕ(x, 1) + 2h′0(x)u(x, 1) (2.67g)

In equations (2.67) we have emphasised that h0 and its derivative are already

given as functions of the scaled radial coordinate x.

We are going to obtain the weak formulation of problem (2.67) and

then the corresponding approximate discrete algebraic version. We look for

the unknowns in different spaces depending on the boundary conditions. As

opposed to what done in Shen (1997), in order not to define vector spaces

dependent on the azimuthal wavenumberm, we first multiply the θ-momentum

equation and the continuity equation by 1
2(x+ 1). We can now define vector

spaces which do not depend on the azimuthal wavenumber; in particular, based
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on the boundary conditions for u and w, we define

Xu := {u ∈ H1(S) : u(1, y) = 0},

Xv := H1(S),

Xw := {w ∈ H1(S) : w(x,−1) = 0},

Q := H1(S),

(2.68)

so that we can look for the unknowns in the corresponding spaces above, i.e.

u ∈ Xu, v ∈ Xv, w ∈ Xw and ϕ ∈ Q. In order to get the weak formulation of

the problem, we chose a vector test function v = (vx, vθ, vy) ∈ Xu×Xv ×Xw,

a scalar test function q ∈ Q, we multiply the governing equations by these

test functions and integrate over the square S. After having integrated and

exploited the boundary conditions, the following weak formulation reads: find

(u, v, w, ϕ) ∈ Xu ×Xv ×Xw ×Q such that for any (vx, vθ, vy, q) ∈ Xu ×Xv ×
Xw ×Q we have∫

S
−2vxv + 2vx

(∂ϕ
∂x

− h′0(x)

h0(x)
(y + 1)

∂ϕ

∂y

)
+ ν

∂vx
∂x

∂u

∂x
= iλ

∫
S
vxu, (2.69a)∫

S
vθ(x+ 1)u+ imvθϕ = iλ

∫
S

x+ 1

2
vθv, (2.69b)∫

S
vy

2

h0(x)

∂ϕ

∂y
= iλ

∫
S
vyw, (2.69c)∫

S
−(x+ 1)

∂q

∂x

∂u

∂x
− q

h′0(x)

h0(x)
(y + 1)(x+ 1)

∂u

∂y
+ imqv − ∂q

∂y

(x+ 1)

h0(x)
w

(2.69d)

+

∫ 1

−1

2h′0(x)(x+ 1)

h0(x)
q(x, 1)u(x, 1) = iλ

∫ 1

−1

(x+ 1)

h0(x)
q(x, 1)ϕ(x, 1).

(2.69e)

Problem (2.69) defines a generalised eigenvalue problem whose eigenvalues

are λ. Indeed, after having defined the space W = Xu ×Xv ×Xw ×Q, it can

be written more elegantly and compactly as:

find (u, ϕ) ∈W such that

A((u, ϕ); (v, q)) = λB((u, ϕ); (v, q)), ∀(v, q) ∈W. (2.70)

What we are going to do in the following paragraph is to approximate its

solution by constructing the corresponding algebraic problem by means of a

Galerkin Spectral Method.

Algebraic reduction of the differential problem

In order to obtain a numerical solution of problem (2.70) we first have to

approximate the velocity and pressure spaces. We will use a Galerkin Spectral

approximation since we are dealing with a weak differential problem. Let us
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denote with QN (S) the space of polynomials given by

QN (S) := {v(x, y) =
N∑

i,j=0

aijx
iyj , aij ∈ R}. (2.71)

Because all the velocity components and the pressure belong to different vector

spaces, we are going to define proper basis functions for each of them. This

will be done through Legendre polynomials and their combination so that the

boundary conditions for any velocity components are satisfied. In an analogous

way to what has been done for the continuous case, the approximate vector

spaces are

XuN = {uN (x, y) ∈ QN : uN (1, y) = 0},

XvN = {vN (x, y) ∈ QN},

XwN = {wN (x, y) ∈ QN : wN (x,−1) = 0},

XϕN = {ϕN (x, y) ∈ QN}.

(2.72)

We then expand the unknowns in terms of Legendre polynomials both in the

x and y coordinate according to

uN (x, y) =

N−1∑
i=0

N∑
j=0

ui,jL
⋆
i (x)Lj(y),

vN (x, y) =
N∑
i=0

N∑
j=0

vi,jLi(x)Lj(y),

wN (x, y) =

N∑
i=0

N−1∑
j=0

wi,jLi(x)L
⋄
j (y),

ϕN (x, y) =
N∑
i=0

N∑
j=0

ϕi,jLi(x)Lj(y),

(2.73)

where Lk are the standard Legendre polynomials, whereas L⋆k and L⋄
k are

defined according to

L⋆k(x) = Lk(x)− Lk+1(x), k ≥ 0,

L⋄
k(y) = Lk(y) + Lk+1(y), k ≥ 0,

(2.74)

such that each L⋆k(x) satisfy a homogeneous Dirichlet boundary condition at

x = 1, whereas each L⋄
k(x) satisfy a homogeneous Dirichlet boundary condition

at x = −1. The test functions are expanded in a similar way so that by

plugging the expansion into the weak formulation previously derived we end

up with an algebraic eigenvalue problem of the form

AW = λBW . (2.75)
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Matrices A and B can be generally written as

A =


Aru Arv 0 Arϕ

Aθu Aθv 0 Aθϕ

0 0 Azw Azϕ

Acu Acv Acw Acϕ,

 (2.76)

B =


Bru 0 0 0

0 Bθv 0 0

0 0 Bzw 0

0 0 0 Bcϕ,

 (2.77)

being their elements still matrices of smaller size coming from evaluating the

integrals appearing in the weak formulation. The array W = (U ,Π)T returns

the coefficients of the expansion for the velocity components and the pressure.

The eigenproblem (2.75) is then solved numerically using Matlab.

Spurious modes and resolvedness condition

Spectral methods may give rise to spurious eigenvalues and eigenfunctions.

These are numerical artifacts caused by highly-oscillatory eigenfunctions which

are not well-resolved given a numerical resolution. That is, the eigenfunc-

tion satisfy the discretized problem (2.75) without satisfying the continuous

eigenvalue problem (2.70)—(Boyd 2001, chapter 7). Here two strategies have

been applied to retain only well resolved eigenvalues and eigenvectors. For

the eigenvalues, let λi be the set of eigenvalues computed using Nx and Ny

modes. (Previously we used the same N for both x and y to lighten notation.

Here we do not assume they are the same.) Let λj be the set of eigenvalues

computed with a slightly increased resolution (e.g. with Nx + 1 and Ny + 1).

Then, the first resolvedness condition states that

inf
j
|λi − λj | ≤ tol1, i = 1, . . . , Ni, (2.78)

being Ni the total number of eigenvalues computed using the first resolution

and tol1 a prescribed tolerance. Eigenvalues satisfying the above condition are

those stable under small changes to the discretization, and hence are a good

eigenvalues.

The second strategy to exclude spurious modes follows what has been

done in Brambley (2007, 59), and is based on the imposition of a resolvedness

condition on the eigenfunctions. Given an eigenvector with spectral coefficient

aij , it is well-resolved if

Resolvedness =
sup(i,j)∈B |aij |
sup∀(i,j) |aij |

≤ tol2, (2.79)
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being tol2 a prescribed tolerance and B an L-shaped subdomain in the i − j

plane denoting highly oscillatory modes, such that

B = {(i, j) : Nx − bx ≤ i ≤ Nx, or Ny − by ≤ j ≤ Ny}, (2.80)

with bx, by two prescribed borders widths. The region B is shown in figure

2.9. Figure 2.10 displays a well resolved pressure mode and a badly-resolved
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Figure 2.9: Resolvedness region for the convergence of a computational mode:
the subdomain B is coloured in light-green.

pressure mode taking bx = by = 4, Nx = Ny = 19 and a tolerance tol2 = 10−2.

It can be seen how for a well-resolved mode, the magnitude of the spectral

coefficient aij decreases very fast with mode number. By contrast, for a badly-

resolved mode, the amplitude |aij | does not decay.
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Figure 2.10: Comparison between a badly-resolved mode (left) and a well-
resolved mode (right).
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Mode ν = 10−2 ν = 10−4 ν = 10−9 ν = 0

(a) 4.289− 8 · 10−4i 4.289− 8 · 10−6i 4.289− 8 · 10−11i 4.289− 1 · 10−14i
(b) 7.435− 1 · 10−2i 7.435− 1 · 10−4i 7.435− 1 · 10−9i 7.435− 1 · 10−14i
(c) 9.043− 3 · 10−2i 9.043− 3 · 10−4i 9.043− 3 · 10−9i 9.043 + 1 · 10−15i
(d) −5.201− 3 · 10−3i −5.201− 3 · 10−5i −5.201− 3 · 10−10i −5.201 + 1 · 10−14i
(e) −7.458− 1 · 10−2i −7.458− 1 · 10−4i −7.458− 1 · 10−9i −7.458 + 5 · 10−14i
(f) −9.034− 4 · 10−2i −9.035− 4 · 10−4i −9.035− 4 · 10−9i −9.035 + 1 · 10−14i

Table 2.1: Variation of the eigenvalues corresponding to the surface gravity
modes as function of the artificial viscosity ν. The ordering of the modes is
exactly the same as in the paper by Mougel et al. (2015), so that it is easier
to make a direct comparison with their results.

2.4.2 Numerical Results

We now present the numerical solutions of the complete generalised eigenvalue

problem. For comparison purposes, our artificial viscosity has been set to

ν = 0.01. Figure 2.11 displays our modes; each of them can be easily compared

with those in the paper by Mougel et al. (2015, p. 223) showing excellent

agreement in terms both of the eigenvalues and the eigenfunctions.

We then lowered the artificial viscosity in order to get to the pure

inviscid limit, especially focusing on surface gravity modes as these are the type

of waves mostly studied in this thesis. Table 2.1 compares the eigenvalues of

the six Gravity modes shown in figure 2.11 as function of the artificial viscosity

ν. The real part of λ remains basically unchanged, whereas, as expected

and desirable, the imaginary part becomes smaller and smaller, reaching the

machine precision for ν = 0. The shape of the first eigenmode–mode (a)–in

our ordering, is displayed in figure 2.12 for the four values of ν used. Hence,

the shape of the surface gravity modes is insensitive to ν in the limit ν = 0,

confirming the robustness of our numerical scheme in computing surface modes

and the possibility to adapt this code to other problems, such as those we are

going to present in the next chapters.

2.4.3 Newton’s bucket problem in an infinitely axially extended

cylinder

In this section we will solve the previous problem when the axial domain

is infinite, that is there is no bottom flat boundary, however the fluid still

stays below the deformable free surface z = h0(r). Particularly, we would like

to provide some analytical results to be compared with the numerics. That

is useful to have some fast formulas available when the computation of the

oscillation frequency of the systems is needed. Moreover, we would like to test

the validity of such analytical results against those computed in the case the

cylindrical container is necessarily bounded.

We start by decomposing the pressure field into normal modes. The
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Figure 2.11: Same eigenmodes as those computed in Mougel et al. (2015, p.
223) using the same physical parameters m = 2, Fr = a = 0.5, R = 1 and
our artificial viscosity ν = 0.01. The corresponding eigenvalues follow. (a):
λ = 4.2897− 0.008i. (b): λ = 7.4359− 0.0123i. (c): λ = 9.0436− 0.0368i. (d):
λ = −5.2014−0.0029i. (e): λ = −7.4580−0.0156i. (f): λ = −9.0349−0.0408i.
(g): λ = 1.4077−0.0112i. (h): λ = 1.0974−0.0254i. (i): λ = 1.7833−0.0180i.
(j): λ = −1.6985 − 0.0111i. (k): λ = −1.3292 − 0.0304i. (l): λ = −1.9142 −
0.0122i. (m): λ = −0.0346 − 0.0086i. (n): λ = −0.0124 − 0.0139i. (o):
λ = −0.0077−0.0166i. First two rows represent surface gravity modes. Third
and fourth row inertial modes. Last row Rossby modes.
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Figure 2.12: Comparison of the shape of the first surface gravity mode for
m = 2, R = 1, a = F = 0.5 and different values of ν. (a): ν = 10−2. (b):
ν = 10−4. (c): ν = 10−9. (d): ν = 0.

equations and boundary conditions governing the eigenvalue problem are given

by

− λ2∆mϕ+ 4
∂2ϕ

∂z2
= 0, (r, z) ∈ (0, 1)× (−∞, h0(r)), (2.81a)

− λ
∂ϕ

∂r
+ 2mϕ = 0, at r = 1, (2.81b)

aF 2λ2(λ2 − 4)ϕ− (λ2 − 4)
∂ϕ

∂z
− 2maF 2λϕ = −aF 2λ2r

∂ϕ

∂r
, on z = h0(r),

(2.81c)

ϕ→ 0, as z → −∞, ϕ <∞, at r = 0. (2.81d)
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Axisymmetric perturbations

When the perturbations are axisymmetric, the azimuthal wavenumber m = 0

and the differential problem (2.81) becomes

λ2

λ2 − 4

(∂2ϕ
∂r2

+
1

r

∂ϕ

∂r

)
= −∂

2ϕ

∂z2
, (2.82a)

∂ϕ

∂r
= 0, at r = 1, (2.82b)

aF 2λ2(λ2 − 4)ϕ− (λ2 − 4)
∂ϕ

∂z
= −aF 2λ2r

∂ϕ

∂r
, on z = h0(r), (2.82c)

ϕ→ 0, as z → −∞, ϕ <∞, at r = 0. (2.82d)

We make the approximation that the right-hand side in the free surface bound-

ary condition can be neglected. Heuristically, we can think that if there is no

boundary at the bottom of the container, only gravity modes are expected

to appear due to the decaying property of the solution at z = −∞. We can

then envision that the free surface changes slowly and its deformation becomes

negligible, thus providing the aforementioned approximation. Also, in the ex-

treme case of low rotation rate we have that ∂ϕ
∂z ≃ λ2ϕ, so for |λ| sufficiently

large, the dominant terms are those on the left-hand side. The minimum value

of λ2 in this case is in fact λ2 ≃ 14.68 which then makes terms of order λ4

sufficiently larger than terms of order λ2, hence allowing to neglect the right-

hand side in the free surface boundary condition. Within this approximation,

the differential problem we aim at solving now reads

λ2

λ2 − 4

(∂2ϕ
∂r2

+
1

r

∂ϕ

∂r

)
= −∂

2ϕ

∂z2
, (2.83a)

∂ϕ

∂r
= 0, at r = 1, (2.83b)

aF 2λ2(λ2 − 4)ϕ− (λ2 − 4)
∂ϕ

∂z
= 0, on z = h0(r), (2.83c)

ϕ→ 0, as z → −∞, ϕ <∞, at r = 0. (2.83d)

The structure of this system now allows to search for a solution by separation

of variables, i.e. ϕ(r, z) = a(r)b(z), leading to the two ordinary differential

problems:

a′′(r) +
1

r
a′(r)− m2

r2
a(r) +

(k2
λ2

(λ2 − 4)
)
a(r) = 0,

a(0) <∞,

a′(1) = 0,

(2.84)

b′′(z)− k2b(z) = 0,

b(−∞) = 0.
(2.85)
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The solution for the radial problem is given by the discrete functions:

an(r) = AnJ0

(
α0,nr

)
, (2.86a)

kn
λn

√
λ2n − 4 = α0,n, n = 1, 2, . . . . (2.86b)

being α0,n the roots of the zero-th order bessel function derivative, namely the

roots of J1(·). The solution for the axial function b satisfying the asymptotic

condition at z = −∞ yields bn(z) = eknz, with kn ∈ C and ℜ[kn] > 0. Now,

the final step is to use the free surface boundary condition to get the second

relation between kn and λn and consequently to compute the eigenvalues. This

yields the simple equation

1

aF 2λ2n
(λ2n − 4)(aF 2λ2n − kn) = 0, (2.87)

which has non-trivial solutions when kn = aF 2λ2n. At this point, we go back

to equation (2.86b), substitute the expression for kn and get

λn
√
λ2n − 4 = α0,n. (2.88)

Equation above admit four type of solutions; these are given by

λ1,2 = ±

√√√√
2 +

√
4 +

α2
0,n

a2F 4
, (2.89a)

λ3,4 = ±i

√√√√
2 +

√
4 +

α2
0,n

a2F 4
(2.89b)

Eigenvalues λ3,4 have to be discarded giving rise to an increasing behaviour

along z as we get towards z = −∞. Thus, the only acceptable eigenvalues are

λ1,2. Figure 2.13 compares the approximate eigenvalues with those computed

numerically by solving the full problem (figures on the left). The dimensionless

depth used here is a = 1 and four different Froude numbers have been used,

namely F = 0.5, 0.75, 1, 1.5 .Also, the relative error between the numerical

and the theoretical eigenvalues is provided on the right part of the figures.

The agreement is excellent and at most a relative error of about 4.5% only is

obtained for the most extreme case F = 1.5.

Non-Axisymmetric perturbations

When perturbations depend on the azimuthal wavenumber m, then the differ-

ential eigenvalues problem to be solved is given by the general set of equations

(2.81). In order to get analytical results also valid in this situation, we are

going to make the same approximation as in the axisymmetric case, that is

we neglect the right-hand side in the free surface boundary condition. The
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Figure 2.13: Comparison of the eigenvalues computed using equation (2.89a)
and those using the the numerics for m = 0, a = 1 and different Froude
numbers. First row: F = 0.5. Second row: F = 0.75. Third row: F = 1.
Fourth row: F = 1.5.
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following problem under study reads:

− λ2∆mϕ+ 4
∂2ϕ

∂z2
= 0, (r, z) ∈ (0, 1)× (−∞, h0(r)), (2.90a)

− λ
∂ϕ

∂r
+ 2mϕ = 0, at r = 1, (2.90b)

aF 2λ2(λ2 − 4)ϕ− (λ2 − 4)
∂ϕ

∂z
− 2maF 2λϕ = 0, on z = h0(r), (2.90c)

ϕ→ 0, as z → −∞, ϕ <∞, at r = 0. (2.90d)

To solve it we can apply the separation of variables again, even though h0(r)

is a quadratic function of r, given that this does not enter in any terms of the

differential problem. By repeating the same procedure shown in the previous

paragraph we can write the general solution as

ϕm(r, z) = CmJm

(k
λ

√
λ2 − 4r

)
ekz. (2.91)

In order to find the two equations for (k, λ) we use the boundary conditions,

that now are, according to the assumption made, with constant coefficients.

In particular, from the boundary condition along the free surface we get

k = aF 2λ2 − 2maF 2λ

λ2 − 4
, (2.92)

so, substituting it into the lateral boundary condition we get a nonlinear al-

gebraic equation in λ only, which reads

− λJ ′
m

[(
aF 2λ− 2maF 2

λ2 − 4

)√
λ2 − 4r

]
+ 2mJm

[(
aF 2λ− 2maF 2

λ2 − 4

)√
λ2 − 4r

]
= 0, at r = 1.

(2.93)

We can re-write it in a more elegant and convenient form by defining α(λ) =(
aF 2λ−2maF 2

λ2−4

)√
λ2 − 4. Then, by using recursion formulas for Bessel functions—

see for example Abramowitz and Stegun (1965)—we have

λα(λ)Jm+1

[
α(λ)

]
+m(2− λ)Jm

[
α(λ)

]
= 0. (2.94)

Equation (2.94) gives the eigenvalues λ of the system. In order to solve that we

applied Newton-Raphson method used to solve nonlinear algebraic equations

(Quarteroni et al. 2014). In figure 2.14, in analogy to the axisymmetric case,

we show the comparison of the eigenvalues obtained by the theory and the full

numerics for m = 1, 2, 3, 4, a = 1 and Froude number F = 0.5. The agreement

is excellent, especially starting from the second mode on. The first mode seems

to be the one suffering more the approximation we made, probably being it the

closest to the limit λ = 2. However, the error made in that case is acceptable,

especially when thinking at the possible applications of the system in terms of
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estimation of the oscillation frequencies. For all other modes, the error goes

to zero really quickly, so the analytical predictions work very well.

In addition we show comparison between numerical and analytical re-

sults for the case a = 0.5, which is the typical aspect ratio taken into account

in the paper of Mougel et al. (2015). Figures 2.15 and 2.16 in fact, compare

the first six gravity modes as in the paper. The numerical eigenfunctions are

displayed on the left; those coming from the theory are displayed on the right.

The corresponding eigenvalues are indeed called λL for the numerical ones and

λR for the theoretical ones. As can be noted, the agreement is good both in

terms of the eigenvalues and of the eigenfunctions. The major discrepancy in

the plot of the eigenfunctions is for modes (a) and (d); the reason for that

might be given by the fact that in the numerical results pressure modes have

the form of ϕNum ∼ cosh(kz), whereas in the theoretical results they only be-

have as ϕTh ∼ ekz. Therefore, close to the bottom boundary the two solutions

differ. Figure 2.17 compares the eigenvalues at different Froude numbers, par-

ticularly for F ∈ [0.5, 1, 1.5, 1.9]. The last two values are extremely high since

the corresponding free surface shape is close to form a dry region. For such

a reason, the agreement stops being so accurate, even though at least in the

case F = 1.5 most of the eigenvalues are well-comparable.

2.5 Summary

In this chapter we first derived the general equations and boundary condition

for studying the linear stability of a steady, axisymmetric free surface rotating

flow. We then particularized those for two cases: the first without the presence

of any background flow and the second for a solid-body rotation.

The case with no flow, despite being very well-known in the literature,

permitted the comprehension of the surface gravity waves in terms both on

their dispersion relation, their spatial structure and the two asymptotic lim-

its of either shallow and deep water waves. In particular, considerations on

the dispersion relation for deep-water waves turned out to be useful in the

computation of the analytical eigenvalues for the Newton’s bucket problem.

The case with a solid-body rotation has been studied both numeri-

cally and analytically. Our numerical results were in excellent agreement with

those presented in Mougel et al. (2015), thus validating the numerical code

we developed. The analytical results also agreed very well with the numerics,

thus providing a fast available tool for obtaining approximate solutions of this

problem.
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Figure 2.14: Comparison of the eigenvalues computed using equation 2.94 and
those using the the numerics for m = 1, 2, 3, 4, a = 1 and F = 0.5. First row:
m = 1. Second row: m = 2. Third row: m = 3. Fourth row: m = 4.
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Figure 2.15: Comparison between the numerical eigensolutions and those com-
ing from solving equations (2.91,2.92, 2.94). Physical parameters are the same
as in Mougel’s paper, namely m = 2 and a = F = 0.5. The numerical eigen-
functions are those shown on the left of the figure; the theoretical ones on
the right. Accordingly, the numerical eigenvalues are denoted by λL, whereas
the theoretical ones by λR, as follows: (a): λL = 4.2897, λR = 4.7577. (b):
λL = 7.4359, λR = 7.4523. (c): λL = 9.0436, λR = 9.0479.
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Figure 2.16: Comparison between the numerical eigensolutions and those com-
ing from solving equations (2.91,2.92, 2.94). Physical parameters are the same
as in Mougel’s paper, namely m = 2 and a = F = 0.5. The numerical eigen-
functions are those shown on the left of the figure; the theoretical ones on the
right. Accordingly, the numerical eigenvalues are denoted by λL, whereas the
theoretical ones by λR, as follows: (d): λL = −5.201, λR = −5.3497. (e):
λL = −7.4580, λR = −7.4716. (f): λL = −9.0349, λR = −9.0386.
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Figure 2.17: Comparison of the eigenvalues computed using equation 2.94 and
those using the the numerics for m = 2, a = 0.5 and F ∈ [0.5, 1, 1.5, 1.9]. First
row: F = 0.5. Second row: F = 1. Third row: F = 1.5. Fourth row: F = 1.9.
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Chapter 3

Waves on unbounded

shallow-water free surface

swirling flows

Wave propagation problems in unbounded domains are not usually solvable

in closed form, except in very few simple cases. One of the main difficulty lies

on the treatment of the boundary condition at infinity which has to be of a

radiating type, that is only outgoing waves are allowed to propagate in the

far-field. In this chapter we will be studying a model equation that we call the

Convective Wave Equation (CWE). This model captures the essence of surface

gravity waves over a prescribed vortex flow taking into account the advection

contribution due to the flow. As described in the introduction (section 1.5),

this kind of equation exhibits unstable modes when the background flow is

a potential vortex spinning sufficiently fast. Thus, the aim of the present

chapter is doubled: on one hand we want to see whether unstable modes

exist even when the background vortex is not potential. On the other hand,

the motivating example of two vortices travelling in the pool is out of reach

with full 3D simulations, and so we would like to simulate this equation with

a dipole background flow and observe the linear response of the system in

presence of a pair of counter-rotating vortices.

As far as the imposition of a non-reflecting boundary condition is con-

cerned, we are going to use the first asymptotic radiation condition derived

by Engquist and Majda (1977) in polar coordinates for the monopolar vortex

case. Whenever an analytical formula for imposing a NRBC cannot be ap-

plied, we are going to develop a Perfectly Matched Layer (PML) formulation.

All PML formulations derived are based on the inspiring work of Sim (2010)

and properly generalized depending on the problem under consideration.

The chapter is organised as follows: in section 3.1, we illustrates the

advantages of Sim’s PML formulation by applying it to the 1D wave equation

where the efficiency of the absorbing boundary can be compared with that
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given by the exact NRBC. In sections 3.2–3.3 we introduce the Convective

Wave Equation. We study this model in a laterally unbounded domain, firstly

in the simpler case of waves convected by a single vortex, both in frequency

and time domain. Then, in section 3.6 we generalize the CWE model to the

case of surface waves advected by a dipole flow.

3.1 The efficiency of PML formulations in absorb-

ing incoming waves

In this initial section we want to show the efficiency of PML methods in

providing the absorption of outgoing waves, hence avoiding spurious reflection

from a fixed boundary. We trace exactly the formulation developed in Sim

(2010, Ch. 3) for the classical wave equation and adapt it for the much simpler

1D case.

The PML equations read

∂2v

∂t2
+ ξ(x)

∂v

∂t
− c2

∂2v

∂x2
+ c2

∂w

∂x
= 0, x ∈ ΩPML ≡ [0, L],

∂w

∂t
+ ξ(x)w − ξ(x)

∂v

∂x
= 0, x ∈ ΩPML ≡ [0, L],

(3.1)

where v(x, t) is the real unknown we are interested in, w(x, t) is the auxiliary

variable introduced by the PML method, ξ(x) is the damping function used

to damp waves out, c the constant wave speed, ΩPML = [0, L] the extended

boundary incorporating the absorbing layer which starts at a location x = Lc

and extends up to x = L. A representation of the scenario is given in figure

3.1.

Figure 3.1: Schematic representation of the domain and the behaviour of waves
in the PML formulation (3.1).

For the results we are going to present, the parameters just mentioned

and the damping function have been taken to be

c = 1,

Lc = 1, L = 2,

ξ(x) = 10
[x− Lc
L− Lc

− 1

2π
sin
(
2π
x− Lc
L− Lc

)]
.

(3.2)
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The damping function ξ(x) in (3.2) is the same one used in Sim (2010) and

has the following properties:

• it is non-negative, thus it ensure damping of the waves along the spatial

variables.

• The function and its first derivative are both null at x = Lc, location

where the damping begins. This is to ensure no reflection at that point.

• It smoothly increase within the absorbing layer, providing a gradual

dampening of the waves.

It is worth to mention though that the choice of the damping function ξ(x) is

arbitrary, provided it satisfies the three main conditions above.

We provide equations (3.1) with Neumann boundary conditions at the

end points of v, that is

∂v(0, t)

∂x
= 0,

∂v(L, t)

∂x
= 0. (3.3)

The Neumann boundary condition at the right-end point allows us to measure

the amplitude of the reflected wave at that boundary. Finally, the initial

conditions are
v(x, 0) = e−40(x− 1

2
)2 ,

∂v(x, 0)

∂t
= 0.

(3.4)

This simple case is of particular convenience because results coming from the

PML formulation can be directly compared with those coming from imposing

the exact non-reflecting boundary condition for the 1D wave equation at x =

Lc (1.7).

In figure 3.2 we give the characteristics diagram in the x− t plane for

the exact solution with NRBC and the PML one. In figure 3.3, a compari-

son of the two solutions at x = Lc is shown, together with the corresponding

difference |vex(Lc, t) − vPML(Lc, t)|. The L∞ error of the PML solution is

given by ||E ||∞ = supt |vex(Lc, t) − vPML(Lc, t)| = 5.97 · 10−5, whereas the

corresponding relative error in L∞-norm is equal to ||E ||∞
||vex(Lc,t)||∞ = 1.19 · 10−4.

Finally, in figure 3.4 the amplitude of the reflected wave in the PML formula-

tion is displayed as function of time. As can be seen, the agreement between

the two solutions is excellent and also the amount of reflection goes to zero

quickly. The maximum amount of reflection is of order 10−3 which is very

small given the geometrical and damping parameters used. Different damping

profiles ξ(x) as well as sizes/magnitudes of the damping region can be chosen

leading to possible advantages in terms of further reducing the reflection at

the extended boundary as well as the computational effort needed to solve the

problem.
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Figure 3.2: Characteristic lines in the x − t plane for the solution using the
exact NRBC (left) and the solution using the PML formulation (right).
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Figure 3.4: Rays in the x− t plane for the PML solution (left) and amplitude
of the reflected wave at the extended boundary x = L (right).

50



3.2 The Convective Wave Equation for shallow-water

surface waves

The previous section described how to deal with non-reflecting boundaries for

hyperbolic wave equations in the absence of any background flow on which

waves can propagate. Now, we want to derive a first model containing a

background flow that influences how water waves move within the fluid. As

the model is put in the context of the shallow-water approximation (Johnson

1997, McWilliams 2006), let us start our derivation by considering the set of

fully nonlinear shallow-water equations:

∂u

∂t
+ (u · ∇)u+ g∇h = 0,

∂h

∂t
+∇ · (uh) = 0,

(3.5)

where the first equation expresses conservation of momentum and the second

equation expresses conservation of mass (continuity equation). As usual we

want to linearize them around a steady equilibrium state, which we assume

to be given by a generic two dimensional velocity field U0 and by a constant

fluid depth H, i.e. we set

u = U0(x) + εu′, h = H + εh′. (3.6)

Plugging the linear expansion above into the governing equations, after drop-

ping terms of order ε2 we are left with the linear system

∂u′

∂t
+ (U0 · ∇)u′ + (u′ · ∇)U0 + g∇h′ = 0,

∂h′

∂t
+U0 · ∇h′ +H(∇ · u′) = 0.

(3.7)

We would like to simplify further the system. Following Patrick (2019),

through a Clebsch decomposition (Seliger and Whitham 1968) we can write

the perturbation velocity as

u′ = ∇ϕ+ ξ, (3.8)

so that the momentum and continuity equations (3.7) become respectively

∇(Dtϕ+ gh) +
[
Dtξ + (ξ · ∇)U0 + ξ0∇̃ϕ

]
= 0,

Dth+H∇2ϕ+H∇ · ξ = 0,
(3.9)

where Dt = ∂t+U0 ·∇ represents the material derivative due to the base flow,

∇̃ = (−∂y, ∂x) represents the co-gradient operator and ξ0 the base vorticity.

Now, still Patrick (2019, pp. 84-85) showed that the term inside the gradient
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operator in the first equation can be set to zero, yielding h = −1
gDtϕ. Inserting

that into the continuity equation we are left with a closed system in the two

unknowns ϕ, ξ:

D2
t ϕ− c2∇2ϕ = c2∇ · ξ,

Dtξ + (ξ · ∇)U0 + ξ0∇̃ϕ = 0,
(3.10)

with c =
√
gH being the speed of sound in the shallow-water limit. Assuming ξ

forms a small perturbation to∇ϕ, then the right-hand side of the first equation

can be neglected and the problem reduces to studying the single PDE

D2
t ϕ− c2∇2ϕ = 0. (3.11)

Since the vector field ξ represents the perturbation vorticity, such approxima-

tion can be justified assuming the background flow is weakly rotational, hence

ξ can be seen only as a correction term to the main flow. Besides the formal

justification of the equation, we will use the convective wave equation above

as a model for the propagation of shallow-water waves on prescribed vortical

flows, independently of the magnitude of the background vorticity.

It is more convenient to re-state the equation above in dimensionless

form. To do so, let us assume the background flow to be characterised by a

reference velocity U and by a reference length a. Note that the reference length

can be chosen as the size of the core in the case of a monopolar vortex (such

as the Lamb-Oseen flow) or could even be chosen as the distance between a

pair of vortices. Recalling c to be the wave speed, we can non-dimensionalize

the variables as follows:

x → ax, t→ a

c
t, U0 → UU0, ϕ→ (ac)ϕ, (3.12)

so that the resulting dimensionless Convective Wave Equation holds( ∂
∂t

+ FU0 · ∇
)2
ϕ−∇2ϕ = 0, (3.13)

where F = U
c = U√

gH
is again the Froude number and the only parameter in

the equation.

3.3 The Convective Wave Equation for a monopolar

vortex

When the background flow is purely azimuthal and radially dependent only,

equation (3.13) reads(
∂

∂t
+ F

U0(r)

r

∂

∂θ

)2

ϕ−∇2ϕ = 0. (3.14)
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The boundary conditions we impose are

|ϕ| <∞, at r = 0,

√
r
∂ϕ

∂t
+
√
r
∂ϕ

∂r
+

1

2
√
r
ϕ = 0, as r → ∞,

(3.15)

The second boundary condition is the first order approximation of the series

of non-reflecting boundary condition in polar coordinates derived by Engquist

and Majda (1977). With regards to our problem, as the vortex is assumed to

decay at infinity, the convective wave equation reduces to the classical wave

equation and such a NRBC is exact.

Defining Ω0(r) = U0(r)/r and looking for normal modes solutions of

the form ϕ(r, θ, t) = ψ(r)e−iωt+imθ, we obtain a single ordinary differential

problem for ψ

(ω −mFΩ0(r))
2 ψ + ψ′′ +

1

r
ψ′ − m2

r2
ψ = 0,

ψ(0) <∞,

− iω
√
rψ(r) +

√
rψ′(r) +

1

2
√
r
ψ(r) = 0, as r → ∞.

(3.16)

We solve the system for non-axisymmetric modes. In fact, we can already see

that form = 0 there are no normal modes satisfying both boundary conditions.

Regularity at the origin would imply a solution of the form ψ ∼ Jm(ωr).

On the other hand, the non-reflecting boundary condition would imply that

ψ ∼ H2
m(ωr), which is singular at the origin. As a matter of fact, looking for

eigenmodes of the convective wave problem above with m = 0 is equivalent

to solve the 1D wave equation on a semi-infinite interval with an exact non-

reflecting boundary condition at one end-point. Normal modes solutions do

not exist for such a problem. So, we will focus only on values of m greater

than zero.

The background flow we choose here is a Lamb-Oseen vortex which

takes the non-dimensional form

U0(r) =
1

r

(
1− e−r

2
)
, (3.17)

giving an angular velocity field of the form

Ω0(r) =
1

r2

(
1− e−r

2
)
. (3.18)

In the following we are going to solve problem (3.16) by means of the same nu-

merical method used in the previous chapter, i.e. a Galerkin spectral method

with linear re-mapping.
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3.3.1 Numerical method

As previously stated, we are going to take values of m > 0. Hence, the

regularity condition on r = 0 becomes ψ(r = 0) = 0, for any value of m. On

the basis of what has been done in the previous chapter, we first define the

following change of coordinate

x =
2

R
r − 1 ⇒ x ∈ [−1, 1]. (3.19)

The differential problem (3.16) becomes

4

R2
ψ′′(x) +

4

R2(x+ 1)
ψ′(x)− 4m2

R2(x+ 1)2
ψ + (ω −mFΩ0(x))

2 ψ(x) = 0,

ψ(−1) = 0,

2

R
ψ′(1) = iωψ(1)− 1

2R
ψ(1).

(3.20)

Multiplying it by a test function v in a suitable space as ψ, integrating over

(−1, 1) and exploiting the boundary conditions we get

ω2

[∫ 1

−1
vψ

]
+ ω

[
2i

R
− 2mF

∫ 1

−1
Ω0vψ

]
+m2F 2

∫ 1

−1
Ω2
0vψ +

4

R2

∫ 1

−1

1

x+ 1
vψ′

− 4m2

R2

∫ 1

−1

1

(x+ 1)2
vψ − 4

R2

∫ 1

−1
v′ψ′ − 1

R2
v(1)ψ(1) = 0.

(3.21)

The weak formulation above leads to a continuous polynomial eigenvalue prob-

lem of the form

M(m,F,R)ω2 + C(m,F,R)ω +K(m,F,R) = 0, (3.22)

which can be discretized by expanding both ψ and v in proper basis functions.

In our case we used the same modified Legendre polynomials L⋄(x) defined in

(2.74), so that the Dirichlet boundary condition at x = −1 is automatically

satisfied.

The need of imposing a non-reflecting boundary condition at a finite

radius, however, forces us to run our code twice, each time with a slightly

changed finite radius. That is because we want ultimately to get rid of those

modes affected by the spurious reflection coming from the truncation of the

domain. In practise we run the code a first time with a NRBC at a radius

R = 30; then running it a second time with a NRBC at an increased radius,

R = 40. After having obtained the eigenvalues in the two cases, we then retain

only those modes whose eigenvalues did not vary according to the resolvedness

conditions defined in the previous chapter (2.78)–(2.79). The number of grid

points has been taken as Nx = 300, the tolerances tol1 = tol2 = 0.01 and the
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border width bx = 10.

3.4 General results

In this section we present a set of complete results for the shallow-water Con-

vective Wave Equation with the Lamb-Oseen background flow. We remind

that this flow is regular at the origin and has a nonzero dimensionless vortic-

ity given by

ξ0(r) =
1

r

d

dr

(
rU0(r)

)
= 2e−r

2
. (3.23)

Our computations show the emergence of unstable modes. In figure

3.5 (top) we show the trend of the imaginary part of the eigenvalues as func-

tion of the Froude number, representing the growth rate of the modes as

function of the Froude number. The low azimuthal wavenumber modes are

those with higher growth rates. For moderately high azimuthal wavenumber

perturbations, the growth rate is slower and there exist a plateau in the eigen-

values curve where modes are mostly neutrally stable. Such an increase in

the growth rate seems to persist even at larger Froude numbers, with high

azimuthal wavenumber modes crossing the neutral stability threshold and be-

coming unstable too. Figure 3.6 shows the range of the Froude numbers for a

given azimuthal wavenumber m inside which nearly marginally stable states

are found. Nearly marginally stable states are modes whose growth rate is in

modulus less or equal than 10−4. For m = 1 there is only a single marginally

stable state, whereas for increasing values of m such an interval gets wider. In

terms of the eigenfunctions, we can subdivide the structure of the eigenmodes

into two classes: radiating modes and trapped modes. The former have a typi-

cal spiral shape, as shown in figure 3.7 (left). Such modes behave as travelling

waves along the radial direction, and radiation to infinity is responsible for

the dissipation of the initial energy put into the system to excite the mode.

In contrast, trapped modes are confined to a bounded region in the radial

direction, and without the spiraling structure seen for the radiating modes.

Those modes behave as standing waves along the radial direction and either

dissipate extremely slowly or emerge leading the overall dynamics. An exam-

ple can be seen in 3.7 (right). The distinction between radiating and trapped

modes can further be seen in the eigenvalues. Indeed, radiating modes have

eigenvalues with a significant negative imaginary part, indicating exponential

decay in time, whereas trapped modes have either a negligible imaginary part

or a positive imaginary part, ultimately leading to an instability of the vortex.

Another interesting phenomenon concerns the propagation direction of

the surface waves with respect to the rotation of the base vortex flow as its

rotation rate is varied. This is shown in figure 3.5 (bottom), which shows

how the real part of the eigenvalues (the oscillation frequency) varies with the

Froude number for different azimuthal wavenumbers. For ℜ(ω) < 0, waves
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Figure 3.5: Eigenvalues curves for different azimuthal wavenumbers as function
of the Froude number. Top: imaginary part of the eigenvalues, corresponding
to growth rate. Bottom: real part of the eigenvalues, corresponding to oscil-
lation frequency.

rotate opposite to the base flow (counter-rotating waves), while for ℜ(ω) > 0,

waves rotate in the same direction as the base flow (co-rotating waves).

The mechanism triggering the instability can be associated to the pres-

ence of an ergoregion, i.e. a spatial location where the modulus of the back-

ground velocity equals the speed of sound:

xe : |U0(xe)| = c = 1. (3.24)

Together with the ergoregion there is another important boundary which is
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Figure 3.7: Left: Radiating mode for m = 7 and F = 1.3. Right: trapped
mode for m = 7 and F = 2.

called horizon. This is the locus of points where the magnitude of the radial

velocity component equals the wave speed, i.e.

xH : |U0r(xH)| = c = 1. (3.25)

For simple monopolar vortices, these two boundaries are simply circles cen-

tered at the origin and having different radii. In the case of the potential vortex

studied by Patrick et al. (2018) with background flow U0(r) = −D
r r̂ + C

r θ̂,

the ergoregion is always external to the horizon. Indeed, the two curves are

given by rH = D and re =
√
C2 +D2 > rH . The presence of an horizon

is very useful in avoiding a possible instability as that boundary acts as a

membrane which absorbs negative energy modes, i.e. modes having a nega-

tive energy density which might ultimately become unstable. In fact, inside

the ergoregion U0(r) > c and there exist negative-energy states which become
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positive-energy states when they leave the ergoregion. Hence, in the absence

of an horizon capable of absorbing incoming waves from the ergoregion, en-

ergy conservation leads to the emergence of unstable modes whose amplitudes

grow exponentially in time. Unstable modes of this type have been previously

found in the case of a potential vortex by Oliveira et al. (2014). Since that base

flow is singular at the origin, they truncated the inner boundary at a location

r = rmin, where they imposed either a Dirichlet or a Neumann boundary con-

dition. They argue, and indeed their results confirm this, that the instability

is a general feature occurring in laterally unbounded wave systems possessing

an ergoregion but not a horizon. Indeed, they showed that the instability

mechanism is insensitive to the type of boundary condition imposed at rmin,

for example.

Our results, in conclusion, confirm the ergoregion instability argument

and show that this happen even when the flow is defined over the whole radial

domain r ∈ [0,∞) and has a nonzero vorticity.

3.5 Analytical toy model for the Convective Wave

Equation

In order to gain more insight into the appearance of neutrally stable trapped

modes, we now want to simplify further the convective wave equation described

previously, by making the following assumptions:

• the angular velocity field is discontinuous at a radius r = a and has form:

Ω0(r) =

F, 0 ≤ r ≤ a,

Ω2, r > a.
, F > Ω2 > 0, (3.26)

where F is equivalent to our Froude number, and Ω2 a generic constant.

• the Laplacian can be approximated only by using the second order

derivative, i.e. ∇2 ≃ ∂2r .

Even though the second assumption is not necessary in order to obtain an

exact solution—indeed that could be expressed in terms of Bessel functions

of the first kind in the first radial sub-domain and Hankel functions in the

second radial sub-domain—the emphasis here is to actually obtain an exact

solution which can be written explicitly, i.e. without relying on a numerical

solver. The boundary conditions remain unchanged and so are periodic in

θ, Non-Reflecting at r = ∞ and null at the centre r = 0. We define x = r

for notation convenience, so that the differential problem we aim at solving is
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given by

(∂t +Ω0(x)∂θ)
2 u− ∂2xu = 0,

u(0, θ, t) = 0,

lim
x→∞

(∂t +Ω2∂θ)u+ ∂xu = 0,

u(x, 0, t) = u(x, 2π, t), and ∂θu(x, 0, t) = ∂θu(x, 2π, t).

(3.27)

being the second boundary condition an exact non-reflecting boundary condi-

tion for u. Let us define u1 ≡ u in x ∈ [0, a] and u2 ≡ u in x ∈ (a,∞). We

can re-write the differential problem above as

(∂t + F∂θ)
2 u1 − ∂2xu1 = 0, x ∈ [0, a],

(∂t +Ω2∂θ)
2 u2 − ∂2xu2 = 0, x ∈ (a,∞),

u1(0, θ, t) = 0,

u1(a, θ, t) = u2(a, θ, t),

∂xu1(a, θ, t) = ∂xu2(a, θ, t),

lim
x→∞

(∂t +Ω2∂θ)u2 + ∂xu2 = 0,

u1(x, 0, t) = u1(x, 2π, t), and ∂θu1(x, 0, t) = ∂θu1(x, 2π, t),

u2(x, 0, t) = u2(x, 2π, t), and ∂θu2(x, 0, t) = ∂θu2(x, 2π, t).

(3.28)

Solution in the inner region: 0 ≤ x ≤ a

In this region the differential problem we want to solve reads

(∂t + F∂θ)
2 u1 − ∂2xu1 = 0,

u1(0, θ, t) = 0,

u1(x, 0, t) = u1(x, 2π, t), and ∂θu1(x, 0, t) = ∂θu1(x, 2π, t).

(3.29)

We look for a periodic solution of the form u1 = ψ1(x)e
−iωt+imθ, with ω ∈ C

and m ∈ Z. Substitution into equations (3.29) gives the reduced differential

problem

ψ′′
1 + (ω −mF )2ψ1 = 0,

ψ1(0) = 0,
(3.30)

whose solution is

ψ1(x) = −2A1 sinh[i(ω −mF )x], (3.31)

A1 being an arbitrary constant.
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Solution in the outer region: x > a

In this region the differential problem we want to solve reads

(∂t +Ω2∂θ)
2 u2 − ∂2xu2 = 0,

lim
x→∞

(∂t +Ω2∂θ)u2 + ∂xu2 = 0,

u2(x, 0, t) = u2(x, 2π, t), and ∂θu2(x, 0, t) = ∂θu2(x, 2π, t).

(3.32)

Even in this case we look for a periodic solution of the form u2 = ψ2(x)e
−iωt+imθ.

Substitution into the differential problem above yields

ψ′′
2 + (ω −mΩ2)

2ψ2 = 0,

ψ′
2(∞) = i(ω −mΩ2)ψ2(∞),

(3.33)

which returns

ψ2(x) = A2e
i(ω−mΩ2)x, (3.34)

where A2 is a constant dependent of A1 due to the matching condition at

x = a. Note also that the behaviour of the solution at x = ∞ depends on

the eigenvalues ω which in principle can be complex, therefore giving rise to

either exponentially increasing or decreasing eigenfunctions as x gets larger.

Matching conditions at the interface x = a

We want the two solutions computed before and their first derivatives to match

at point x = a. By imposing these two conditions we get the following system

of algebraic equations

− 2A1 sinh[i(ω −mF )a] = A2e
i(ω−mΩ2)a,

− 2iA1(ω −mF ) cosh[i(ω −mF )a] = i(ω −mΩ2)A2e
i(ω−mΩ2)a.

(3.35)

Re-arranging that, we end up with a single equation in the unknown ω of the

form

tanh[i(ω −mF )a] =
ω −mF

ω −mΩ2
. (3.36)

The equation above is still a trascendental equation in ω, so can only be solved

numerically. So as to make further progress and try to obtain an explicit solu-

tion in closed form, we notice that for sufficiently high azimuthal wavenumbers

m, we can approximate the right-hand side of equation (3.36) as

ω −mF

ω −mΩ2
≃ F

Ω2
, (3.37)

and study the approximate eigenvalues equation

tanh[i(ω −mF )a] =
F

Ω2
⇒ i(ω −mF )a =

1

2
log

(
Ω2 + F

Ω2 − F

)
. (3.38)
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Figure 3.8: Eigenfunctions of the toy model problem computed using the
following parameters: Ω2 = 1/2, a = 1, n = 0,m = 7.

Now, since F > Ω2 by assumption, the argument of the logarithm is negative

and leads to the following final set of discrete eigenvalues

ωn = mF +
1

2a
(π + 2nπ)− i

2a
log

(
F +Ω2

F − Ω2

)
, n ∈ Z. (3.39)

The eigenvalues as function of the Froude number are displayed in figure 3.9

for the following parameters: Ω2 = 1/2, a = 1, n = 0,m = 7. The plotted

curves look qualitatively similar to those obtained in the previous section for

the Lamb-Oseen vortex—figure (3.5). In particular, the toy model is capable

of reproducing the trend of the imaginary part of the eigenvalues as function

of the Froude number, ultimately leading to nearly marginally-stable states.

The higher the Froude number, the lower the decay rate of the eigenvalues,

hence the lower the leakage of the waves out of the first subdomain x ∈ [0, a].

This features can be seen looking at figure 3.8. The exponential growth in

x of the mode at F = 0.6 is larger than the corresponding growth at F = 2

where the mode is almost entirely sinusoidal. In this sense, at high Froude

numbers, modes tend to behave more as standing waves rather than travelling

waves, resembling one of the characteristics described in the previous section

about trapped modes. Also, the simple model studied here shows another

feature: for waves convected by a purely rotating vortex flow, solutions in

the form of normal modes can be found only over a certain range of rotation

rates and hence there exists a critical value below which the discrete set of

modes cannot be computed. In our toy model this threshold value is exactly

F = Ω2 and comes from the analytical form of the imaginary part of the

spectrum in equation (3.39). For the general case described in the previous

sections where the background flow varies continuously and the Laplacian
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Figure 3.9: Discrete infinite set of eigenvalues for the simplified convective
wave equation with a discontinuous angular velocity. Top: full 3D represen-
tation. Bottom: imaginary and real part of the eigenvalues as function of the
Froude number.

contains two additional terms, an analytical solution cannot be found and the

threshold Froude number can be just detected numerically. However, the toy

model studied here helps in getting some qualitative characteristics for this

kind of problem.

In order to explain why physically radiating and trapped modes propa-

gate, we proceed as follows. The toy problem allows us to make an interesting

analogy with the propagation of one-dimensional waves into two media hav-

ing different physical properties. To show this, let us express u1(x, θ, t) =

v1(x, τ(t, θ)) and u2(x, θ, t) = v2(x, τ(t, θ)). This dependence of the unknowns

on t and θ is justified as we are looking for rotating waves. In particular, we

choose the function τ(t, θ) = āt+ b̄θ, where ā, b̄ are two constants that might

be interpreted as the frequency of oscillation and the azimuthal wavenumber,

respectively. Computing the partial derivatives with respect to t and θ, we
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can then write
(ā+ F b̄)2∂2τv1 − ∂2xv1 = 0,

(ā+Ω2b̄)
2∂2τv2 − ∂2xv2 = 0.

(3.40)

Defining the two speeds of sound c̄1 = 1
ā+F b̄

and c̄2 = 1
ā+Ω2b̄

in the first and

second medium respectively, equations (3.40) become two standard 1D wave

equations in two different media:

∂2τv1 − c̄21∂
2
xv1 = 0,

∂2τv2 − c̄22∂
2
xv2 = 0.

(3.41)

Following Bécherrawy (2012), we define the reflection and transmission coef-

ficients

R =
c̄1 − c̄2
c̄2 + c̄1

, T =
2c̄2

c̄2 + c̄1
, (3.42)

which yield

R =
(Ω2 − F )b̄

2ā+ (F +Ω2)b̄
,

T =
2ā+ 2F b̄

2ā+ (F +Ω2)b̄
.

(3.43)

Since F > Ω2 by assumption of the model, two limiting cases are of particular

interest:

1. F → Ω2: in this case R → 0 and T → 1, thus the wave is totally

transmitted and there is no reflection at the interface. The interface

is a totally transparent boundary and we have a highly radiating wave

propagating in the second medium. In other words we are approaching

the vertical asymptote in the eigenvalue curve shown in figure 3.9.

2. F → ∞: in this case R → −1 and the wave within the first medium

is totally reflected. This is the case where a trapped mode develops; in

fact, the wave remains trapped and cannot leave the first region.

3.6 The Convective Wave Equation for a dipole flow

Thus far we have considered the background flow to be a monopole vortex.

However, our initial motivation showed waves propagating around the core of

a pair of counter-rotating vortices. The video by Skipp (2020) indeed, shows

that if a plate is dragged sufficiently slowly through the water of a swimming

pool and then gradually lifted out, two pair of counter-rotating vortices are

formed and travel throughout the entire swimming pool without dissipating

nor interacting one another for a long time. For such a reason, in this section

we examine the dynamics of linear surface gravity waves over a dipole flow

which is supposed to travel at a uniform velocity U .

In order to characterize the structure of the dipole we use the one
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Figure 3.10: Velocity vector field of Lamb’s dipole (3.44) for a = 1, k = 3.8317
and U = 0.5.

derived by Lamb in his book–Lamb (1932). Such a simple dipole model actu-

ally constitutes an exact solution of the 2D Euler equations and is composed

of a vortical part within a core centered in a circle of a prescribed radius,

and an exterior irrotational part. Generalizations of this dipole can be found

in Saffman (1992). Lamb’s dipole is usually described by its streamfunction

ψ(x, y) as follows

ψ(x, y) =

Ux− 2UJ1(k
√
x2+y2)

kJ0(ka)
√
x2+y2

x, x2 + y2 ≤ a,

Ua2x
x2+y2

, x2 + y2 > a,
(3.44)

The velocity components are easily obtained by differentiating the streamfunc-

tion according to U0(x, y) =
∂ψ
∂y and V0(x, y) = −∂ψ

∂x . The velocity vector field

is represented in figure 3.10 with parameters U = 0.5, a = 1, k = 3.8317.

We now get back to the convective wave equation as we aim at de-

scribing how surface waves are convected by the dipole flow. Firstly we non-

dimensionalize the equation. Taking a as the characteristic length scale, U as

the reference velocity of the dipole and c as the characteristic velocity of the

perturbations, the convective wave equation (3.13) can be written as

( ∂
∂t

+ FU0(x, y)
∂

∂x
+ FV0(x, y)

∂

∂y

)2
ϕ−

(∂2ϕ
∂x2

+
∂2ϕ

∂y2

)
= 0, (3.45)
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Figure 3.11: Square domain where we apply a PML formulation in order to
solve equation (3.45) for a dipole background flow.

where F = U
c = U√

gH
is the Froude number, U0(x, y) and V0(x, y) the velocity

components of the dipole in dimensionless form, whose streamfunction is now

given by

ψ(x, y) =

x− 2J1(k
√
x2+y2)

kJ0(k)
√
x2+y2

x, x2 + y2 ≤ 1,

x
x2+y2

, x2 + y2 > 1.
(3.46)

In the following we are going to solve equation (3.45) on a square domain S =

Sp ∪Sa, where Sp identifies the physical domain and Sa the absorbing region–

figure 3.11. To handle boundary conditions, we will use a PML formulation

that later on we are going to solve by time marching using the method of lines

(MOL)—see Schiesser and Griffiths (2009) for further details on this method

and its implementation in Matlab.

3.6.1 PML formulation of the convective wave equation in

cartesian coordinates

The PML formulation we are going to obtain is inspired by that given in Sim

(2010) for the standard hyperbolic wave equation without any background

flow. As stated before, in our case we have a dipole that changes the way waves

are transported. The dipole is generally represented by a two-dimensional

velocity field U0(x, y) = U0(x, t)x̂+V0(x, y)ŷ. To start our derivation we first
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re-write the convective wave equation expanding all the terms in there:

∂2ϕ

∂t2
+ 2FU0

∂2ϕ

∂t∂x
+ 2FV0

∂2ϕ

∂t∂y

+ F 2U0
∂

∂x

(
U0
∂ϕ

∂x

)
+ F 2U0

∂

∂x

(
V0
∂ϕ

∂y

)
+ F 2V0

∂

∂y

(
U0
∂ϕ

∂x

)
+ F 2V0

∂

∂y

(
V0
∂ϕ

∂y

)
−
(
∂2ϕ

∂x2
+
∂2ϕ

∂y2

)
= 0.

(3.47)

We define the Laplace transform in time of ϕ(x, y, t) as

ϕ̃(x, y, s) =

∫ ∞

0
ϕ(x, y, t)e−stdt. (3.48)

We assume the initial conditions to be non-zero in the physical domain Sp and

null outside it. So, outside Sp, the convective wave equation written in terms

of the Laplace variable reads

s2ϕ̃+ 2sFU0
∂ϕ̃

∂x
+ 2sFV0

∂ϕ̃

∂y

+ F 2U0
∂

∂x

(
U0
∂ϕ̃

∂x

)
+ F 2U0

∂

∂x

(
V0
∂ϕ̃

∂y

)
+ F 2V0

∂

∂y

(
U0
∂ϕ̃

∂x

)
+ F 2V0

∂

∂y

(
V0
∂ϕ̃

∂y

)

−

(
∂2ϕ̃

∂x2
+
∂2ϕ̃

∂y2

)
= 0.

(3.49)

At this point we introduce two stretched coordinates along x and y, namely

x̃ = x+
1

s

∫ x

0
ξ1(x

′)dx′,

ỹ = y +
1

s

∫ y

0
ξ2(y

′)dy′.

(3.50)

Functions ξ1(x), ξ2(y) are arbitrary functions having support only in the ab-

sorbing layers surrounding the actual computational domain. It will be shown

later that these can be used to provide damping of the incoming waves into the

layers. Their functional form can be chosen to minimize the reflection at the

beginning of the damping region and clearly to smoothly damp out waves all

across the damping layers up to the extended boundary. For our computations

we use the same damping function for ξ1 and ξ2 given by

ξj(xj) =


4
3

ξ̄j
(xf−xd)2

(xj − xd)
2, |xj | ≤

xd+xf
2 ,

4
3

x̄j
xf−xd (|xj | − xf ) + ξ̄j ,

xd+xf
2 < |xj | ≤ xf ,

(3.51)

with j = 1, 2 being an index here used to identify either the spatial coordinate

x or y and the corresponding damping function along these directions, xf is

the end point of the domain in one particular direction (either x or y), xd the
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Figure 3.12: Function ξ1 and ξ2 used in the PML formulation for the CWE.
Here j = 1, 2 is used to identify either the spatial coordinate x or y and
the corresponding damping function along these directions. In this example
xd = 15, xf = 20 and ξ̄j = 10.

point where the damping layer begins, ξ̄j the amount of damping. Function

(3.51) is quadratic at the beginning of the damping region and then becomes

linear throughout the damping layer in order to avoid strong reflections. An

example is shown in figure 3.12. Note that ξ1 depends on x only, whereas ξ2

only on y, so each function acts separately on the two spatial variables. The

partial derivatives change according to

∂

∂x̃
=

s

s+ ξ1(x)

∂

∂x
=

1

γ1(x)

∂

∂x
,

∂

∂ỹ
=

s

s+ ξ2(y)

∂

∂y
=

1

γ2(y)

∂

∂y
,

(3.52)

where we have defined γ1(x) = 1+ ξ1(x)
s and γ2(y) = 1+ ξ2(y)

s which depend on

the damping functions ξ1 and ξ2 respectively. Now, following Sim (2010), we

impose the differential equation (3.49) to hold in the new coordinates. This

does not affect the behaviour of ϕ inside the physical domain and ensures that

the solution decays exponentially fast in the absorbing region Sa. To see this,

let us consider a travelling wave in the single spatial direction x. Enforcing

the behaviour along x̃ yields a solution of the form

ϕ ∼ eiωt−iωx̃ = eiωt−iωx−
∫ x
0 ξ1(x′)dx′ , (3.53)
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which decays in x as the damping function ξ1(x) ≥ 0. Using the derivatives

(3.52) and multiplying by γ1γ2 we then obtain

s2γ1γ2ϕ̃+ 2Fsγ2U0
∂ϕ̃

∂x
+ 2Fsγ1V0

∂ϕ̃

∂y

+ F 2γ2U0
∂

∂x

(
U0

γ1

∂ϕ̃

∂x

)
+ F 2γ2U0

∂

∂x

(
V0
γ2

∂ϕ̃

∂y

)
+ F 2γ1V0

∂

∂y

(
U0

γ1

∂ϕ̃

∂x

)
+ F 2γ1V0

∂

∂y

(
V0
γ2

∂ϕ̃

∂y

)

− γ2
∂

∂x

(
1

γ1

∂ϕ̃

∂x

)
− γ1

∂

∂y

(
1

γ2

∂ϕ̃

∂y

)
= 0,

(3.54)

which can be simplified into

s2γ1γ2ϕ̃+ 2Fsγ2U0
∂ϕ̃

∂x
+ 2Fsγ1V0

∂ϕ̃

∂y

+ F 2U0
∂

∂x

(
γ2
γ1
U0
∂ϕ̃

∂x

)
+ F 2U0

∂

∂x

(
V0
∂ϕ̃

∂y

)
+ F 2V0

∂

∂y

(
U0
∂ϕ̃

∂x

)
+ F 2V0

∂

∂y

(
γ1
γ2
V0
∂ϕ̃

∂y

)

− ∂

∂x

(
γ2
γ1

∂ϕ̃

∂x

)
− ∂

∂y

(
γ1
γ2

∂ϕ̃

∂y

)
= 0.

(3.55)

Now, a direct computation of the products between γ1 and γ2 yields

γ2
γ1

= 1 +
ξ2 − ξ1
s+ ξ1

,

γ1
γ2

= 1 +
ξ1 − ξ2
s+ ξ2

,

γ1γ2 = 1 +
ξ1 + ξ2
s

+
ξ1ξ2
s2

,

(3.56)

so, we can write

s2
(
1 +

ξ1 + ξ2
s

+
ξ1ξ2
s2

)
ϕ̃+ 2Fs

(
1 +

ξ2
s

)
U0
∂ϕ̃

∂x
+ 2Fs

(
1 +

ξ1
s

)
V0
∂ϕ̃

∂y

+ F 2U0
∂

∂x

(
U0

(
1 +

ξ2 − ξ1
s+ ξ1

)
∂ϕ̃

∂x

)
+ F 2U0

∂

∂x

(
V0
∂ϕ̃

∂y

)

+ F 2V0
∂

∂y

(
U0
∂ϕ̃

∂x

)
+ F 2V0

∂

∂y

(
V0

(
1 +

ξ1 − ξ2
s+ ξ2

)
∂ϕ̃

∂y

)

− ∂

∂x

((
1 +

ξ2 − ξ1
s+ ξ1

)
∂ϕ̃

∂x

)
− ∂

∂y

((
1 +

ξ1 − ξ2
s+ ξ2

)
∂ϕ̃

∂y

)
= 0.

(3.57)

Let us introduce two additional unknowns ψ̃ and σ̃ as

ψ̃ =
ξ2 − ξ1
s+ ξ1

∂ϕ̃

∂x
,

σ̃ =
ξ1 − ξ2
s+ ξ2

∂ϕ̃

∂y
,

(3.58)
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so the previous set of equations become

s2ϕ̃+ s(ξ1 + ξ2)ϕ̃+ ξ1ξ2ϕ̃+ 2FsU0
∂ϕ̃

∂x
+ 2FU0ξ2

∂ϕ̃

∂x
+ 2FsV0

∂ϕ̃

∂y
+ 2FV0ξ1

∂ϕ̃

∂y

+ F 2U0
∂

∂x

(
U0
∂ϕ̃

∂x

)
+ F 2U0

∂

∂x

(
V0
∂ϕ̃

∂y

)
+ F 2V0

∂

∂y

(
U0
∂ϕ̃

∂x

)
+ F 2V0

∂

∂y

(
V0
∂ϕ̃

∂y

)

+ F 2U0
∂

∂x

(
U0ψ̃

)
+ F 2V0

∂

∂y
(V0σ̃)−

∂2ϕ̃

∂x2
− ∂2ϕ̃

∂y2
− ∂ψ̃

∂x
− ∂σ̃

∂y
= 0,

(s+ ξ1)ψ̃ = (ξ2 − ξ1)
∂ϕ̃

∂x
,

(s+ ξ2)σ̃ = (ξ1 − ξ2)
∂ϕ̃

∂y
.

(3.59)

Finally, we inverse Laplace transform in time and obtain the final PML for-

mulation

D2
t ϕ− c2∇2ϕ = (ξ1 + ξ2)

∂ϕ

∂t
+ ξ1ξ2ϕ+ 2FU0ξ2

∂ϕ

∂x
+ 2FV0ξ1

∂ϕ

∂y

+ F 2U0
∂

∂x
(U0ψ)−

∂ψ

∂x
+ F 2V0

∂

∂y
(V0σ)−

∂σ

∂y
,

∂ψ

∂t
= −ξ1ψ + (ξ2 − ξ1)

∂ϕ

∂x
,

∂σ

∂t
= −ξ2σ + (ξ1 − ξ2)

∂σ

∂y
.

(3.60)

3.6.2 Discretization and numerical solution

To discretize the previous system (3.60) using the method of lines, we want first

to re-write it as a first order system in time. Let us introduce four variables

u1 = ϕ, u2 = Dtϕ, u3 = ψ, u4 = σ. (3.61)

System (3.60) can be re-written as

∂u1
∂t

= −FU0
∂u1
∂x

− FV0
∂u1
∂y

+ u2,

∂u2
∂t

= −FU0
∂u2
∂x

− FV0
∂u2
∂y

+
(∂2u1
∂x2

+
∂2u1
∂y2

)
− ξ1ξ2u1 + F (ξ1 − ξ2)U0

∂u1
∂x

+ F (ξ2 − ξ1)V0
∂u1
∂y

− (ξ1 + ξ2)u2

+
∂u3
∂x

− F 2U0
∂

∂x

(
U0u3

)
+
∂u4
∂y

− F 2V0
∂

∂y

(
V0u4

)
,

∂u3
∂t

= −ξ1u3 + (ξ2 − ξ1)
∂u1
∂x

,

∂u4
∂t

= −ξ2u4 + (ξ1 − ξ2)
∂u1
∂y

.

(3.62)
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Before proceeding with the actual discretization, we collect all the terms on

the right-hand side of the previous equations containing x-derivatives only and

in a similar way those containing y-derivatives only. This way, we can write

the previous system as
∂u1
∂t

= X1 + Y1,

∂u2
∂t

= X2 + Y2,

∂u3
∂t

= X3,

∂u4
∂t

= Y4.

(3.63)

Let uki,j (t) = uk(xj , yi, t) for k = 1, 2, 3, 4, (xj , yi) =
(
x0 + (j − 1)∆x, y0 +

(i − 1)∆y
)

be the grid points for (i, j) ∈
(
[1, Ny], [1, Nx]

)
and (∆x,∆y) =(

xf−x0
Nx−1 ,

yf−y0
Ny−1

)
. We evaluate the previous equations at each point xj , yi. The

discretization of the right-hand sides along the x-direction is given by

X1i,j = −FU0(yi, xj)
u1i,j+1 − u1i,j−1

2∆x
,

X2i,j = −FU0(yi, xj)
u2i,j+1 − u2i,j−1

2∆x
+
u1i,j+1 − 2u1i,j + u1i,j−1

∆x2

− FU0(yi, xj)
(
ξ2(yi)− ξ1(xj)

)u1i,j+1 − u1i,j−1

2∆x

− F 2U0(yi, xj)
U0(yi, xj+1)u3i,j+1 − U0(yi, xj−1)u3i,j−1

2∆x

+
u3i,j+1 − u3i,j−1

2∆x
,

X3i,j = −ξ1(xj)u3i,j + (ξ2(yi)− ξ1(xj))
u1i,j+1 − u1i,j−1

2∆x
.

(3.64)

As far as the y-contributions is concerned, we have

Y1i,j = −FV0(yi, xj)
u1i+1,j − u1i−1,j

2∆y
+ u2i,j ,

Y2i,j = −FV0(yi, xj)
u2i+1,j − u2i−1,j

2∆y
+
u1i+1,j − 2u1i,j + u1i−1,j

∆y2

− FV0(yi, xj)
(
ξ1(xj)− ξ2(yi)

)u1i+1,j − u1i−1,j

2∆y

− ξ1(xj)ξ2(yi)u1i,j −
(
ξ1(xj) + ξ2(yi)

)
u2i,j

− F 2V0(yi, xj)
V0(yi+1, xj)u4i+1,j − V0(yi−1, xj)u4i−1,j

2∆y

+
u4i+1,j − u4i−1,j

2∆y
,

Y4i,j = −ξ2(yi)u4i,j + (ξ1(xj)− ξ2(yi))
u1i+1,j − u1i−1,j

2∆y
.

(3.65)

At the boundary points, since the type of boundary condition is unimportant,

we can simply impose a Dirichlet boundary condition Xk = 0 and Yk = 0, for

70



k = 1, 2, 3, 4. The following final system of ODEs are obtained

du1i,j
dt

= X1i,j + Y1i,j ,

du2i,j
dt

= X2i,j + Y2i,j ,

du3i,j
dt

= X3i,j ,

du4i,j
dt

= Y4i,j .

(3.66)

These have been solved using the MATLAB routine “ODE45”. We now pro-

ceed with a couple of numerical tests in order to check the efficiency and

accuracy of our numerics.

3.6.3 Numerical experiments and comparisons

In this section we want to validate our formulation with two tests conducted

on a purely rotating background flow given by the following form,

U0(x) = re−r
2
θ̂. (3.67)

For such a monopole we can find very accurate solutions since the flow depends

on r only. In fact, in this case the wave equation (3.14) can be decomposed in

Fourier modes along the azimuthal direction and solved as function of r and t

only, thus reducing the number of spatial variables involved. For this reason,

from now on, we treat such solutions as exact. In particular, we will call them

“1D exact solutions”. We are going to compare our 2D PML solutions with

the 1D exact ones. These results will be computed at different Froude numbers

(F = 0.5 and F = 4), various number of grid points and times ranges.

The first test has been done by taking F = 0.5, Nx = Ny = 400,

ξ̄1 = ξ̄2 = 10, xd = yd = 15 and the initial conditions

ϕ(r, θ, 0) =
3

2
e−8(r− 3

2
)2 cos(θ),

∂ϕ(r, θ, 0)

∂t
= 0. (3.68)

Figure 3.13 compares the trend of the PML solution along the x-axis with

the exact one at different times. The most stringent test is the second one,

conducted at F = 4. In fact, from the modal analysis at F = 4 the Gaussian

vortex profile exhibits an instability with respect to sloshing perturbations (i.e.

perturbations with azimuthal wavenumber m = 1), with the solution growing

exponentially in time. Thus, it becomes extremely important to check whether

our PML method is capable of tracking unstable modes. Figure 3.14 shows

the comparative results in this case with initial conditions

ϕ(r, θ, 0) = e−8(r−10)2 cos(θ),
∂ϕ(r, θ, 0)

∂t
= 0. (3.69)
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Figure 3.13: Time evolution of the 1D exact solution and the PML model in
cartesian coordinates for the vortex profile in equation (3.67) with F = 0.5.
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Particularly, the PML code has been run twice with two different spatial res-

olutions; the first one with Nx = Ny = 400 grid points and the second with

Nx = Ny = 600 grid points. The magnitude of the damping functions as well

as the locations of beginning of the damping regions have been kept unchanged

with respect to the previous test. Clearly, the solution with a higher number

of nodes stays closer to the exact solution for most of the time, whereas the

one with Nx = 400 suffers of little wiggles that form as time goes on. Both ap-

proximate solutions though are able to ultimately capture the aforementioned

instability. Finally, in order to give a broader picture of the scenario in this

case, the propagation of the waves in the x−y plane is displayed in figure 3.15

at different times.

3.6.4 Results for Lamb’s dipole

We now consider the Convective Wave Equation with Lamb’s dipole (3.46) as a

background flow. We show hereafter results for three different Froude numbers:

F = 0.25, 0.5, 0.75. The reason for choosing them is based on the argument

made in section 3.4 that possible instabilities of the system are associated to

the presence of an ergoregion. We want to verify that this argument holds in

the case of a non-axisymmetric, nontrivial flow, as the dipole is. In figure 3.16

the ergoregion is shown for the three different Froude numbers considered.

As can be noted, for F = 0.25 the ergoregion is actually absent, whereas for

increasing values of F it becomes more complicated. At even larger Froude

numbers (see the example for F = 1 in figure 3.16) it splits into two distinct

regions, hence bringing further complexities that we are not going to deal

in this thesis. So, we will only study the problem for three different Froude

numbers F = 0.25, 0.5, 0.75. We therefore expect an instability to occur at

F = 0.5 and F = 0.75, being these values above a critical Froude number

Fc = 0.288 at which the ergoregion starts to appear. We used the PML

formulation derived earlier. All the numerical parameters like the domain size

and the amount of damping introduced have been varied from case to case

and will be specified for each case. On the contrary the solution has always

been initialized with the same initial conditions which read

ϕ(x, y, 0) = e
−4

(
r−

xf
2

)2

,
∂ϕ(x, y, 0)

∂t
= 0. (3.70)

Results for F = 0.25

In this initial case, the domain parameters are x0 = y0 = −20, xf = yf = 20

and xd = yd = 15. The amount of damping in both direction is ξ̄1 = ξ̄2 = 10

and we used Nx = Ny = 400 grid points in both the x and y direction. In

figure 3.17, the perturbation potential ϕ(x, y, t) is shown at different times
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Figure 3.14: Time evolution of the 1D exact solution and the PML model in
cartesian coordinates for the vortex profile in equation (3.67) with F = 4.
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Figure 3.15: Time evolution of the PML solution in the case F = 4 using 400
grid points in both spatial directions.
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Figure 3.16: Ergoregion for Lamb’s dipole at different Froude numbers over
the flow. Red line: plot of the ergoregion curve. Arrows: Lamb’s dipole
velocity field.

together with its behaviour along the x and y directions, namely ϕ(x, 0, t) and

ϕ(0, y, t). As expected no instability arises in this case and the solution dies

out as time evolves. The absorbing layers work very well and provide the

desired non-reflecting behaviour.

Results for F = 0.5

We repeat the computations for F = 0.5 and the same geometrical and ar-

tificial parameters as in the previous example. Results are shown in fig-

ure 3.18. In this case, however an instability is seen to arise after a time

t = 15, with the solution being particularly oscillatory within the dipole’s

core [xcore, ycore] = [−1, 1] × [−1, 1]. We discuss this phenomenon in the next

paragraph.
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Figure 3.17: Perturbation potential for F = 0.25 at different times. Left:
contour plot of the solution in the x−y plane. Right: corresponding behaviour
along the axes. Red dotted lines indicate where the damping layers begin.
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Figure 3.18: Perturbation potential for F = 0.5 at different times. Left:
contour plot of the solution in the x−y plane. Right: corresponding behaviour
along the axes. Red dotted lines indicate where the damping layers begin.
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Results for F = 0.75

Finally, we perform computations for F = 0.75 and again using the same

parameters as in the previous examples. Results are shown in figure 3.19.

The primarily thing to be noticed in this case is the occurrence of a stronger

instability dictated both by the higher amplitude of the wave (already at a

time t = 30) and by the highly-oscillatory behaviour of the solution in the

core region. We think that this kind of instability could be generated by two

different aspects: either a numerical issue due to a poorly resolved solution

where the gradients are higher (the core indeed) or to a greater influence of the

ergoregion; this is in fact now more extended and complex, as depicted in figure

3.16. In order to check which of the two is the correct reason, we perform a

set of convergence studies. The first convergence study aims at increasing the

resolution of the numerical solution by reducing the domain size. The second

convergence study, instead, involves the addition of an artificial dissipative

term into the governing equations.

For the first check test we take x0 = y0 = −5, xf = yf = 5 and

xd = yd = 4. The number of grid points has been kept unchanged, i.e.

Nx = Ny = 400, so that the spatial resolution is increased by four times with

respect to the previous case with x0 = y0 = 20. The amount of damping

in both directions has now been taken to be ξ̄1 = ξ̄2 = 50. The solution

has been simulated until a much shorter final time, i.e. T = 5. Results are

shown in figure 3.20. As can be seen, until approximately t = 2.5 the solution

is smooth, but as the y-gradient becomes very large, then those little wiggles

start appearing again. It is interesting to notice though that the wiggles appear

only in the core where the ergoregion actually is present. Based on figure 3.20,

the wavelength of these little wiggles can be estimated as λw ≃ 0.16, whereas

the grid scale is ∆x = 0.025, hence almost an order of magnitude lower than

the wavelength. For such a reason, it seems reasonable to argue that the

wiggles are real short waves propagating within the core of the two vortices.

For the second check test, we introduce an artificial viscous term in

the governing equation. In particular, taking already the PML formulation—

equation (3.62)—we add a diffusive term of the form η∇2u2 in the second
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Figure 3.19: Perturbation potential for F = 0.75 at different times. Left:
contour plot of the solution in the x−y plane. Right: corresponding behaviour
along the axes. Red dotted lines indicate where the damping layers begin.
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Figure 3.20: Perturbation potential for F = 0.75 at different times. The
spatial resolution has been increased by four times with respect to the results
shown in figure 3.19. Red dotted lines indicate where the damping layers
begin.
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equation, so that the resulting system now reads

∂u1
∂t

= −FU0
∂u1
∂x

− FV0
∂u1
∂y

+ u2,

∂u2
∂t

= −FU0
∂u2
∂x

− FV0
∂u2
∂y

+
(∂2u1
∂x2

+
∂2u1
∂y2

)
− ξ1ξ2u1 + F (ξ1 − ξ2)U0

∂u1
∂x

+ F (ξ2 − ξ1)V0
∂u1
∂y

− (ξ1 + ξ2)u2 + η∇2u2

+
∂u3
∂x

− F 2U0
∂

∂x

(
U0u3

)
+
∂u4
∂y

− F 2V0
∂

∂y

(
V0u4

)
,

∂u3
∂t

= −ξ1u3 + (ξ2 − ξ1)
∂u1
∂x

,

∂u4
∂t

= −ξ2u4 + (ξ1 − ξ2)
∂u1
∂y

.

(3.71)

We then simulated the problem for two different values of the artificial viscosity

η = 0.001 and η = 0.01. Results are shown in figures 3.21 and 3.22 respectively.

Only for η = 0.01 the oscillations almost disappear. However, η = 0.01 is still

a high viscosity value and one needs to go further down to η = 10−4 − 10−6

to simulate the inviscid problem using an artificial viscous term. Given that

for η = 0.001 wiggles appear already, we now conclude that these are not

numerical artefacts, but real short waves possibly caused by the complexity

of the background flow and the implications this has on the structure of the

convective wave equation. Such rich dynamics can be further appreciated

by looking at the trend of ϕ at higher times; around point (x, y) = (0, 1)

something is still going on probably due to the ergoregion influence—figure

3.23). Also, it is possible that the additional presence of a sort of horizon

influences the behaviour of these waves too. However, generalization of the

definition of an horizon for a non-axisymmetric flow is out of the scope of the

present work. Thus, we limit our analysis of the results to the possible influence

of the ergoregion which, as shown, can be easily defined for any background

flow. We leave to future studies the investigation of the horizon effects on

the dynamics of surface waves in the dipolar case and their corresponding

numerical implementation.

3.7 Summary

In this chapter we have studied the Convective Wave Equation for both a

monopole and a dipole vortex flow. Regarding the monopole case, the par-

ticular Lamb-Oseen vortex has been considered and surface waves on that

flow have been shown to become unstable beyond a critical Froude number.

The instability shown ultimately confirmed the argument on the “ergoregion

instability” mechanism proposed in previous studies (Oliveira et al. 2014).
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Figure 3.21: Perturbation potential for F = 0.75 and artificial viscosity η =
0.001 at different times. Red dotted lines indicate where the damping layers
begin. 83
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Figure 3.22: Perturbation potential for F = 0.75 and artificial viscosity η =
0.01 at different times. Red dotted lines indicate where the damping layers
begin. 84
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Figure 3.23: Perturbation potential for F = 0.75 and artificial viscosity η =
0.01 up to time T = 5. Red dotted lines indicate were the damping layers
begin. 85



A toy problem has then been studied in order to obtain a solution in

closed-form for the eigenvalue problem. This was particularly useful to get

insight into the trend of the eigenvalues as function of the rotation rate of the

vortex and link the behaviour of both dissipative and weakly marginally stable

modes to the eigenvalues properties.

Finally, the Convective Wave Equation has been studied for Lamb’s

dipole. A specific PML formulation has been implemented and the problem

has been solved by time marching using the method of lines. Solutions have

been shown for three specific Froude numbers: F = 0.25, 0.5, 0.75. Dissipative

waves develop for F = 0.25, whereas in the other two cases an instability was

presumably found. However, computational costs made the achievement of

accurate results impossible. We tried to overcome this difficulty by adding an

artificial viscous term into the governing equations which helped in tracking

a smooth solution for longer times, but additional study and analysis is still

needed to obtain reliable results.
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Chapter 4

Waves on unbounded

non-shallow-water free surface

swirling flows

Motivated by the visualization of trapped surface waves rotating around the

core of vortices in the swimming pool (Skipp 2020), in this chapter we ex-

tend what has been studied in the previous chapter using the Convective

Wave Equation as a prototype model. To do so, we have numerically studied

the free-surface response of a Lamb–Oseen vortex to small perturbations in a

fluid of finite depth, but laterally unbounded. The numerical method used is

spectrally accurate, and uses a novel non-reflecting buffer region to simulate a

laterally unbounded fluid. While a variety of linear waves can arise in this sys-

tem, we focus here on surface gravity waves. We investigate the linear stability

of the vortex as a function of the perturbation azimuthal mode number and

the vortex rotation rate. While trapped modes have previously been seen in

shallow water surface waves, as outlined in chapter 3, the situation considered

here is qualitatively different owing to the dispersive nature of non-shallow-

water waves. The chapter is organised as follows: in section 4.1, a general

description is given of the mathematical model used to study perturbations to

a Lamb–Oseen swirling flow in a finite-depth configuration. The mathemati-

cal description of an absorbing layer formulation implemented to prescribe the

non-reflecting character of the waves, together with the numerical procedure

used to solve the corresponding eigenvalue problem is described in section 4.2.

The results of this numerical solutions are described in section 4.3 and 4.4.

The material presented in this chapter has been submitted to the Jour-

nal of Fluid Mechanics and it is currently under review. The corresponding

ArXiv link follows: https://arxiv.org/abs/2209.14011
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4.1 Mathematical Model

Assuming that viscosity is negligible over the timescales of interest here, the

governing equations are the incompressible Euler equations,

∂U

∂t
+U · ∇U +

1

ρ
∇P + gẑ = 0, ∇ · U = 0, (4.1)

where U is the fluid velocity, P is the fluid pressure, ẑ is a unit vector in

the vertical direction, and the constants ρ and g are the fluid density and

the acceleration due to gravity respectively. The fluid is contained between

a bottom boundary at z = 0 and an upper free surface at z = H. The fluid

must satisfy no penetration through the bottom boundary, giving U · ẑ = 0

at z = 0. Two boundary conditions, a kinematic and a dynamic boundary

condition, must be satisfied along the free surface itself. Here, we assume the

fluid above the free surface to be dynamically passive, and in particular, to

have a constant pressure P̄ . Together, these give the boundary conditions

∂H

∂t
+U · ∇H = U · ẑ and P = P̄ on z = H. (4.2)

We split the overall velocity and pressure into a steady purely swirling

base flow and a small (magnitude ε) time-dependent perturbation, where

U = U0(r)θ̂ + ε(urr̂ + uθθ̂ + uzẑ), P = P0(r, z) + εp, H = h0(r) + εh.

(4.3)

4.1.1 The steady base flow solution

A purely swirling steady base flow has a velocity given by U0 = U0(r)θ̂. The

governing equations and boundary conditions for this steady flow are satisfied

provided we take

P0(r, z) = P̄ + ρg (h0(r)− z) , (4.4a)

h0(r) = h∞ − 1

g

∫ ∞

r

U2
0 (r

′)

r′
dr′, (4.4b)

where h∞ is the depth of the fluid at r = ∞. This holds for any velocity

profile U0(r). For the specific case of the Lamb–Oseen vortex considered here,

we have

U0(r) =
Γ0

2πr

(
1− exp

(
−r2/a2

) )
, (4.5)

where a sets the radial size of the core and Γ0 sets the circulation of the vortex.

Note that, for the Lamb–Oseen vortex, for small r, we have U0(r) ≈ rΓ0/2πa
2,

so that (4.5) is a solid body rotation near the centre of the vortex, while for

large r we have U0(r) ≈ Γ0/2πr, so that (4.5) is a potential swirl far from the

centre of the vortex. A typical steady base flow free surface for the Lamb–
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Figure 4.1: A typical section through a Lamb–Oseen vortex, showing the
steady base flow free surface.

Oseen vortex is shown in figure 4.1.

4.1.2 Perturbation Dynamics

Waves arise when a small perturbation is introduced to the steady base so-

lution. By linearizing the governing equations (4.1) about the base solution

(U0, P0, h0) given above, the governing equations for the perturbation are

Dtur − 2Ω0(r)uθ +
1

ρ

∂p

∂r
= 0, (4.6a)

Dtuθ +
1

r

(
rU0(r)

)′
ur +

1

ρr

∂p

∂θ
= 0, (4.6b)

Dtuz +
1

ρ

∂p

∂z
= 0, (4.6c)

1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0, (4.6d)

where Dt = ∂t + Ω0(r)∂θ is the convective derivative and Ω0(r) = U0(r)/r is

the steady base flow angular velocity. (Here and throughout, primes denotes

derivatives with respect to the argument for a function of only one variable).

Linearizing the boundary conditions (4.2) about the steady base flow leads to

uz =
1

ρg
Dtp+ h′0ur and h =

p

ρg
on z = h0(r), (4.7a)

uz = 0 on z = 0. (4.7b)

Since our focus is on trapped waves and their formation, in addition to

these boundary conditions there is another implicit condition, which is that

there are no waves entering the domain from r = ∞, and thus only outgoing

waves are allowed at r = ∞. This rather subtle condition will become more

concrete when we truncate the domain to finite r in order to numerically solve
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the above equations.

Before we progress further, we now make two changes to the governing

equations for the perturbation. Firstly, since the governing equations for the

perturbation are linear, we may assume a modal solution of the form

u =
[
u(r, z)r̂ + v(r, z)θ̂ + w(r, z)ẑ

]
exp(−iωt+ imθ), (4.8a)

p = ϕ(r, z) exp(−iωt+ imθ), (4.8b)

where m is restricted to integer values, since the solution must be 2π periodic,

while ω in general will be complex, with Re(ω)/2π being the oscillation fre-

quency and −Im(ω) being the decay rate. The eigenvalue problem that will

eventually result will have ω as the eigenvalue to be found.

Secondly, we re-write the governing equations and boundary conditions

in a non-dimensional form. To do so, we choose the reference lengthscale to be

a, the scale of the vortex core (equation (4.5) and figure 4.1). The reference

time scale is that given by this lengthscale and gravity:
√
a/g. The velocity

scale is thus
√
ag. All dimensional variable may then be expressed in terms of

a nondimensional variable (denoted by a tilde), as

(r, θ, z) = (ar̃, θ̃, az̃), t =

√
a

g
t̃, U0(r) =

Γ0

2πa
Ũ0(r̃), Ω0 =

Γ0

2πa2
Ω̃0,

h = ah̃, p = ρagp̃, ω =

√
g

a
ω̃, u =

√
agũ.

(4.9)

There are two physical parameters that are not scaled to unity by this

nondimensionalization: these may be thought of as the strength of the vortex

and the depth of the fluid at infinity, given respectively as

F =
Γ0

2π
√
ga3

, h̃∞ =
h∞
a
. (4.10)

F is the Froude number and sets the nondimensionalized velocity of the vor-

tex. Hence, F → 0 corresponds to a slow vortex with negligible steady surface

height variation, while F → ∞ corresponds to a fast vortex with significant

steady surface height variation, as can be seen from (4.13c) below. The dimen-

sionless depth h̃∞ is exactly that, so that the limit h̃∞ → 0 corresponds to the

shallow-water limit and h̃∞ → ∞ corresponds to the deep-water limit. Care

is needed, however, in considering the shallow-water limit: in what follows,

we will assume that the steady fluid height never reaches zero, so that the

bottom stays wetted, and consequently the shallow water limit h̃∞ → 0 must

be taken together with the slow wide vortex limit F → 0 such that h̃∞/F
2

is bounded away from zero, as can also be seen from (4.13) below. The az-

imuthal wavenumber m is also a dimensionless parameter, and represents the

rotational symmetry of the solution being investigated.
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Dropping the tildes, the complete nondimensional eigenvalue problem

is

(
−iω + imFΩ0(r)

)
u− 2FΩ0(r)v +

∂ϕ

∂r
= 0, (4.11a)(

−iω + imFΩ0(r)
)
v +

F

r

(
rU0(r)

)′
u+

im

r
ϕ = 0, (4.11b)(

−iω + imFΩ0(r)
)
w +

∂ϕ

∂z
= 0, (4.11c)

1

r

∂

∂r
(ru) +

im

r
v +

∂w

∂z
= 0, (4.11d)

together with the boundary conditions of no incoming modes at r = ∞, and

w = 0, on z = 0, (4.12a)

w =
(
−iω + imFΩ0(r)

)
ϕ+ F 2rΩ2

0(r)u, on z = h0(r). (4.12b)

For the Lamb–Oseen vortex, in dimensionless terms

U0(r) =
1− exp(−r2)

r
, Ω0(r) =

U0(r)

r
, h0(r) = h∞ − F 2

∫ ∞

r

U2
0 (r

′)

r′
dr′.

(4.13a, b, c)

One consequence of the harmonic assumption (4.8) is the creation of a

so-called “critical layer”, i.e. a radial location r = rc where the background

flow resonates with the waves, namelymFΩ0(rc)−ω = 0. It is not immediately

obvious from (4.11) that anything particularly special occurs at the critical

layer, as in no equation does it cause the highest derivative to vanish, and

therefore our numerics described in §4.2 has no difficulty in this case. However,

in fact the critical layer is related to behaviour that is not of the harmonic

form assumed in (4.8); investigating the effect of the critical layer requires

a different mathematical and numerical technique (such as Frobenius series;

see, by way of example, King et al. 2022), which is beyond the scope of this

thesis. However, we comment in passing that Fabre et al. (2006) found that

disturbances related to the critical layer are necessarily damped, suggesting

that the undamped trapped wave modes we are interested in here are not

related to the critical layer.

4.2 Numerical methods

4.2.1 Absorbing layer for 3D incompressible Euler equations

In practice, we solve the eigenvalue problem in a finite computational domain

and hence introduce an artificial boundary at finite radius R. The far-field

boundary condition of no incoming waves becomes a non-reflecting boundary

condition (NRBC) at this boundary. However, exact NRBCs are generally

derived using the method of characteristics, but this is not available to us
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Figure 4.2: Left: profile of the quadratic damping function defined in (4.15)
with parameters: ξ̄ = 5, Rc = 5 and R = 10. Right: schematic of the
computational domain in the r − z plane.

since (4.11d) is not hyperbolic. A widely used alternative is based on damping

layers or even perfectly matched layers, as discussed in chapter 3. Here we

damp waves only in the radial direction. In particular, in order to provide

the damping character of the waves in the lateral absorbing region, we add

a “damped compressibility” term into the continuity equation (4.11d), which

then becomes

ξ(r)ϕ+
1

r

∂

∂r
(ru) +

im

r
v +

∂w

∂z
= 0. (4.14)

where ξ(r) is a sufficiently smooth function that is identically zero outside

the damping region. This is motivated by the introduction of damping in the

acoustic wave equation following Gao et al. (2017, pp. 81-82), and is explained

in further detail in the next subsection. In what follows, we find good results

using the simple form for ξ(r) given by

ξ(r) =


0, r < Rc,

ξ̄

(
r −Rc
R−Rc

)2

, Rc ≤ r ≤ R.
(4.15)

This gives a physical region, r < Rc, with no damping, and computational

region r ∈ [Rc, R] with a damping strength governed by the constant ξ̄. We

then impose a Dirichlet boundary condition on the pressure at an artificial

boundary r = R≫ 1. A representation of the damping function as well as the

subdivision of the numerical domain is shown in figure 4.2.

The governing equations (4.11a–c) together with the modified continu-

ity equation (4.14) and boundary conditions (4.12) form an eigenvalue problem

to solve for the allowable frequencies ω permitting a nonzero modal solution.

Rational derivation of the absorbing layer formulation

In the previous section 4.2.1, the continuity equation was modified by the in-

troduction of the “damped compressibility” term ξ(r)ϕ in equation (4.14) in
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α 0 10−4 10−2 10−1 1

Re(ω) -1.3769 -1.3769 -1.3759 -1.3662 -1.2711
Im(ω) -0.0138 -0.0138 -0.0139 -0.0147 -0.0241

Table 4.1: Eigenvalues as function of the compressibility α = 1
c2

for a radiating
mode, for m = 7, and F = 0.3.

order to emulate an infinite domain using our finite computational domain, by

damping out disturbances as they reach the unphysical computational bound-

ary at r = R. Here, we justify the inclusion of that term by analogy with the

equations of acoustics.

Small (linear) homentropic perturbations (u, p, ρ) to a static fluid (0, p0, ρ0)

are governed by the linearized Euler Equations:

ρ0
∂u

∂t
+∇p = 0,

1

c2
∂p

∂t
+ ρ0∇ · u = 0, p = c2ρ, (4.16)

where c is the speed of sound. These can be combined into a single wave

equation for the pressure,

1

c2
∂2p

∂t2
−∇2p = 0. (4.17)

Following Gao et al. (2017, pp. 81-82), in order to introduce a sponge layer

to damp outgoing waves, we add a damping term of the form ξ(r)∂tp into the

wave equation (4.17),

1

c2
∂2p

∂t2
+ ξ(r)

∂p

∂t
−∇2p = 0. (4.18)

This wave equation can be split back into the original physical mass- and

momentum-equations in the original physical variables (u, p, ρ) as

ρ0
∂u

∂t
+∇p = 0,

1

c2
∂p

∂t
+ ξ(r)p+ ρ0∇ · u = 0, p = c2ρ, (4.19)

If we now take the incompressible limit 1/c2 → 0 in system (4.19), we obtain

the modified continuity equation (4.14) introduced in section 4.2.1.

Figure 4.3 and table 4.1 show the effect of the compressibility α = 1/c2

on the structure of the radiating eigenmode and the eigenvalue respectively,

for parameters m = 7 and F = 0.3. From both, it is clear that the eigenmode

computed does not vary significantly as α → 0, and so we conclude that the

damping properties of the ξ(r)p term are carried over in the limit α→ 0.

4.2.2 Numerical discretization

In order to solve (4.11a–c,4.12,4.14), we used a Galerkin spectral method as

done in section 2.4 for the Newton’s bucket problem. The differences here
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Figure 4.3: Comparison of the structure of the eigenmode |h(r, 0, 0)| form = 7,
F = 0.3 and different value of the compressibility α = 1/c2.

are given by the Dirichlet boundary condition on the pressure (and not on

the velocity) ϕ(r = R, z) = 0 on one hand, and by the basis functions that

are chosen to satisfy the Dirichlet boundary conditions on the other. We also

remap the domain from the domain D = [0, R] × [0, h0(r)] to the computa-

tional square domain S = [−1, 1] × [−1, 1] to account for the shape of the

computational domain with a variable surface height h0(r). We then obtain

the weak formulation of the problem as in section 2.4.1. Details are given

below.

Discrete problem for non-axisymmetric perturbations

In the general case of a nonzero value of m, the weak formulation of the

eigenvalue problem can be obtained in the following way. First of all, we

notice the presence of singular terms at r = 0 for u, v, ϕ so we will require

these function to be null at the origin. Consequently, even w will be so. Thus,

we look at the unknowns in the following spaces:

[u, v, ϕ] ∈ VH(S) = {(u, v, ϕ) ∈ H1(S) : (u, v, ϕ) = 0, at r = 0}, (4.20a)

w ∈ Vv(S) = {w ∈ H1(S) : w = 0, at r = 0, z = 0}, (4.20b)

where H1(S) is the usual Sobolev space (Quarteroni 2009, ch. 2). We mul-

tiply the azimuthal component of the momentum equation and the conti-

nuity equation by (x + 1). Then, by multiplying each of the equations by

suitable test functions (vx, vt, vy, q) in the same space as the corresponding
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unknowns, after integrating over the square S and exploiting the bound-

ary conditions, the weak formulation of the differential problem reads: find

([u, v, ϕ], w) ∈ VH(S) × Vv(S) such that ∀([vx, vt, q], vy) ∈ VH(S) × Vv(S) the

following holds:∫
S
vximFΩ0(x)u−

∫
S
vx2FΩ0(x)v −

∫
S

2

R

∂vx
∂x

ϕ−
∫
S
vx

2

R

h′0(x)

h0(x)
(y + 1)

∂ϕ

∂y
= iω

∫
S
vxu,

(4.21a)∫
S
vt

[
imFΩ0(x)(x+ 1)v +

2F

R
[(x+ 1)U0(x)]u+

2im

R
ϕ

]
= iω

∫
S
vt(x+ 1)v,

(4.21b)∫
S
vy

[
imFΩ0(x)w +

2

h0(x)

∂ϕ

∂y

]
= iω

∫
S
vyw, (4.21c)∫

S

2

R
q
∂

∂x
[(x+ 1)u] +

∫
S

2

R

h′0(x)

h0(x)
(x+ 1)

[
qu+

∂q

∂y
u

]
+

∫
S

2im

R
qv

−
∫
S

2

h0(x)
(x+ 1)

∂q

∂y
w +

∫ x=1

x=−1

2imF (x+ 1)Ω0(x)

h0(x)
q(x, 1)ϕ(x, 1)

= iω

∫ x=1

x=−1

2(x+ 1)

h0(x)
q(x, 1)ϕ(x, 1).

(4.21d)

Let us define the bilinear forms A : VH × Vv → R and B : VH × Vv → R such

that the generalised eigenvalue problem above can be compactly written as:

find ([u, v, ϕ], w) ∈ VH × Vv such that

A([u, ϕ], [v, q]) = ωB([u, ϕ], [v, q]), ∀([vx, vt, q], vy) ∈ VH × Vv (4.22)

At this point, in order to discretize the problem, we need to expand the un-

knowns in terms of proper basis functions. Such basis functions are taken in

such a way the homogeneous Dirichlet boundary conditions are automatically

satisfied in both the axial and radial coordinates. In particular, we define the

following set of polynomials, P ⋆n(x) as follows:

P ⋆n(x) = Pn(x) + Pn−1(x), n ≥ 1, (4.23)

where Pn(x) are standard Legendre polynomials. Thanks to the above defi-

nition, a Dirichlet boundary condition at x = −1 is automatically satisfied.

Therefore, we expand the velocity components and the pressure as

[u, v, ϕ](x, y) =

Nx∑
i=1

Ny∑
j=1

[uij , vij , ϕij ]P
⋆
i (x)Pj(y),

w(x, y) =

Nx∑
i=1

Ny∑
j=1

wijP
⋆
i (x)P

⋆
j (y).

(4.24)
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After substituting the expansion into the weak formulation (4.22), the dis-

cretized problem ends up being of the form

Aw = ωBw, (4.25)

with w = (uij , vij , wij , ϕij) representing our array containing the spectral co-

efficients of each unknown, A and B being matrices of order 4NxNy × 4NxNy,

where Nx and Ny are the number of Legendre polynomials used in the radial

and vertical directions respectively. This discretized problem may then be

solved using any numerical eigenvalue solver; here, we use the eig solver in

Matlab. Not all solutions to the discretized problem (4.25) correspond to

solutions to the continuous problem being approximated, however. To remove

under-resolved eigenmodes and spurious eigenvalues, the numerical solutions

are filtered, as described here below.

Discrete problem for axisymmetric perturbations

In the axisymmetric case (m = 0), the differential problem over the square S

simplifies, and it can be noted that only the radial component of the velocity

must go to zero as r → 0, with the other unknowns allowed to take any finite

value. Thus, studying the axisymmetric perturbation problem means to look

for the eigensolutions in the following spaces: u ∈ VH(S), (v, ϕ) ∈ H1(S) and

w ∈ Vv0 = {w ∈ H1(S) : w = 0, at z = 0}. The weak formulation is

then obtained as shown previously. Regarding the discretization process, we

express the four unknowns (and corresponding test functions) as follows

u(x, y) =

Nx∑
i=1

Ny∑
j=1

uijP
⋆
i (x)Pj(y),

[v, ϕ](x, y) =

Nx∑
i=1

Ny∑
j=1

[vij , ϕij ]Pi(x)Pj(y),

w(x, y) =

Nx∑
i=1

Ny∑
j=1

wijPi(x)P
⋆
j (y).

(4.26)

After substitution into the weak formulation, in a similar way to the previ-

ous non-axisymmetric case, the resulting algebraic generalised eigenproblem

is obtained.

4.2.3 Spurious numerical modes and resolvedness conditions

In order to get rid of unresolved spectral modes we used the same strategy

adopted in section 2.4.1 for the Newton’s Bucket problem. For the results

computed in this chapter, however, we set Nx = 50, Ny = 20, bx = 12, and

by = 4, tol = 10−1.
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Figure 4.4: Eigenfunctions for m = 7, F = 0.3, and different values of ξ̄. A
vertical red-dashed line indicates the radial point Rc where the damping effect
begins. Left: a small computational domain Rc = 5, R = 10. Right: a large
computational domain Rc = 15, R = 30.

4.2.4 Spurious reflected modes

The finite numerical domain and damping region introduces another source

of spurious modes besides those coming from the numerical discretization,

namely those modes which are well-resolved but which include a significant

reflection from either the damping boundary at r = Rc or the truncation

boundary at r = R. Such spurious eigenmodes are affected by the values of

Rc and R, and by the amount of damping ξ̄, whereas good approximations to

the modes on the infinite domain should be insensitive to these values. Since

-Im(ω) is the decay rate of the mode, variations in damping typically have a

strong effect on Im(ω) for spurious reflected modes. We may therefore remove

these spurious reflected modes by running our numerical code twice: the first

time with a suitably chosen amount of damping ξ̄, and the second time with

twice that amount of damping 2ξ̄. Only those modes whose eigenvalues do not

change significantly with the change in the damping coefficient are retained

(as measured using the same tolerance used for the numerical resolution).

4.2.5 Numerical convergence study

The first convergence study involves varying the amount of damping in the

damping layer and checking that the eigenvalues do not change, nor does

the shape of the corresponding eigenfunctions in the physical domain r <

Rc. Here we present the convergence results for m = 7 and F = 0.3, since

for these parameters the system supports radiating (outwardly propagating)

modes, and such modes provide the most stringent test of a non-reflecting

boundary condition. For varying magnitudes of damping ξ̄, the radiating

eigenfunction is plotted in figure 4.4, and the corresponding eigenvalues are

given in table 4.2. Two domain sizes are shown in figure 4.4: Rc = 5 and

R = 10 are the values used for the results in section §4.3; and Rc = 15 and

R = 30 give an extended domain so that the effects of damping and resonance

can be seen more clearly. The damping clearly influences the eigenfunction

97



ξ̄ 0.1 1 5 10 50

Re(ω) -1.3911 -1.3894 -1.3766 -1.3769 -1.3688
Im(ω) −8× 10−4 -0.0085 -0.0133 -0.0138 - 0.0123

Table 4.2: Eigenvalues as function of the amount of damping for m = 7 and
F = 0.3, Rc = 5 and R = 10.
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Figure 4.5: Eigenfunctions for m = 7, F = 0.3, ξ̄ = 5, and different values of
Rc, computed using a small domain R = 10 (left) and a larger domain R = 30
(right).

shape, and for ξ̄ ∈ {0.1, 1} a clear standing wave shape is seen in figure 4.4.

For ξ̄ ∈ {5, 10}, the eigenfunctions are practically identical in the physical

domain 0 < r < Rc, and only differ in the damping layer Rc ≤ r ≤ R. For

ξ̄ = 50, however, the damping is too strong, and little oscillations can be seen

for r < Rc, suggesting wave reflection by the edge of the damping layer. This

is also supported by the eigenvalues in table 4.2, which show the sensitivity of

Im(ω) to variations in damping strength, as expected.

The second convergence study involves varying the width of the damp-

ing layer whilst maintaining the same size of the computational domain and

a fixed damping strength ξ̄ = 5. The eigenfunctions are displayed in fig-

ure 4.5, and the corresponding eigenvalues in table 4.3. For most results in

figure 4.5 the eigenfunctions can be seen to be very similar in the physical

domain 0 < r < Rc and to decay smoothly in r in the damping layer, while

for a damping layer of width R−Rc = 1 a standing wave pattern can be seen

for both domain sizes, implying significant wave reflection from the domain

boundary at r = R. Again, this is also seen for the variations in the eigenvalue

in table 4.3, with again Im(ω) being particularly sensitive.

Finally, in figure 4.6 we compare the radiating mode form = 7, F = 0.3

Rc 5 6 7 8 9

Re(ω) -1.3766 -1.3767 -1.3802 -1.3788 -1.3918
Im(ω) -0.0133 -0.0131 -0.0133 - 0.0143 -0.0045

Table 4.3: Eigenvalues as function of the initial position of the absorbing layer
for m = 7 and F = 0.3, ξ̄ = 5 and R = 10.
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Figure 4.6: Eigenfunction for m = 7, F = 0.3, ξ̄ = 10 computed using two
different domain sizes: Rc = 5 and R = 10 for the blue solid curve; and
Rc = 15, R = 30 for the red dashed curve.

computed using two different size of the domain; Rc = 5, R = 10 on one

hand and Rc = 15, R = 30 on the other. The two modes match very well

over the physical interval r ∈ [0, 5]. This good match demonstrates that the

damping layer successfully allows our numerical simulation on a small interval

to reproduce results that would have been obtained using a larger interval,

thus allowing our numerics to emulate an infinite unbounded domain using a

finite computational domain.

4.2.6 Choice of numerical parameters

Based on numerical convergence studies, for the results that follow we take

R = 10 and Rc = 5, with ξ̄ = 5 (to which results are compared to ξ̄ = 10). This

choice is motivated by the need for sufficiently high resolution to resolve all

modes of interest in the range of Froude numbers and azimuthal wavenumbers

considered. The eigenvalue tolerance and eigenfunction resolvedness tolerance

are taken to be tol1 = 10−2 and tol2 = 10−1 respectively, whereas other nu-

merical parameters are taken to be Nx = 50, Ny = 20, bx = 12 and by = 4. For

the majority of results presented here, we use a fluid depth of h∞ = 5. This is

the depth shown in figure 4.1. This value is large enough to allow for a wide

range of Froude numbers (0 ≤ F <
√
h∞/ log(2) ≃ 2.68) without forming a

dry region near r = 0, while small enough to exhibit finite-depth effects.

4.3 Results

We compute leading (i.e. least damped) eigenmodes for a range of Froude

numbers and for a range of azimuthal wave numbers as large as m = 20, and

find that above m = 6 surface gravity waves dominate. We shall first present
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the surface waves for a representative case, wavenumber m = 7, and discuss

in detail how the modes and eigenvalues depend on Froude number for this

case. Following this, we consider the dependence of modes and eigenvalues on

the azimuthal wave number.

4.3.1 Representative case m = 7

We begin with a detailed description of the case azimuthal wavenumberm = 7.

The reason for taking such value of m is dictated both by the explanatory

picture in Patrick et al. (2018, pp.6), who show a picture of the spiral structure

of a normal mode solution for sufficiently high azimuthal wavenumber, as

well as by the reasonable amount of computational time needed to get the

leading surface waves eigenmodes. Indeed, we find numerically that the spatial

structure of surface gravity waves becomes thinner and more localized close

to the free surface as m increases. Following particularly the latest argument,

the case of m = 7 has been taken as a reference study case and in the following

we are going to show most of the interesting features applied to this case.

One of the key results of our study is the change in character of modes

as function of the rotation rate of the vortex. Specifically, we characterize two

extremes of modes: radiating modes and trapped modes. These have been

previously discussed in section 3.4 both in terms of eigenvalues and structure

of the corresponding eigenfunctions. The same features are therefore recovered

here.

Figures 4.7 and 4.8 show representative examples of the continuous, but

rapid, transition from radiating modes to trapped modes as the Froude number

(the dimensionless rotation rate of the vortex), increases. This transition

between radiating and trapped modes is also seen in figure 4.9 where the

modulus of the free surface height is plotted as a function of r for different

Froude numbers.

To look more closely at the trend in the eigensolutions, let us first

denote by n an integer representing the number of peaks in radial direction of

the modulus of the pressure eigenfunctions, as displayed in figure 4.10. In this

way each eigensolution will be indexed by both m and n, with corresponding

eigenvalues ω = ωmn. In figure 4.11a, the two types of modes can be seen:

radiating modes with a significant negative Im(ω), and trapped modes having

an almost null Im(ω). There is no sharp transition between radiating and

trapped modes. Accordingly, here we set an arbitrary threshold to separate

the two sets of modes by considering a mode to be trapped when its eigenvalue

has an imaginary part smaller than 10−5 in modulus (although our results are

relatively insensitive to this threshold; see figure 4.14 discussed below). Hence,

while the trapped modes considered here are almost neutrally stable, they have

eigenvalues with small negative imaginary part and so radiate very slightly.

Interestingly, none of the modes computed here are observed to become linearly
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Figure 4.7: Plots of the free surface height h(r, θ, t = 0) =
Re[ϕ(r, h0(r)) exp{imθ}] for m = 7. (a) F = 0.3. (b) F = 0.32. (c) F = 0.33.
(d) F = 0.34. (e) F = 0.36. All modes displayed rotate clockwise, i.e. against
the vortex flow.

101



(a)

3.5

4

4.5

5

5.5

(b)

3.5

4

4.5

5

5.5

(c)

3.5

4

4.5

5

5.5

(d)

3.5

4

4.5

5

5.5

(e)

0 1 2 3 4 5

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.8: Plots of the pressure distribution |ϕm(r, z)| form = 7. (a) F = 0.3.
(b) F = 0.32. (c) F = 0.33. (d) F = 0.34. (e) F = 0.36. The black line
represents the base free surface.

unstable, and we hypothesise that the base solution is at most marginally

stable, but not unstable, to linear perturbations of this type at large Froude

number. This stability can be viewed as a manifestation of the robustness of

the Lamb–Oseen vortex (Fabre et al. 2006), even in the presence of a free

surface.

In our calculations, the eigenmodes for sufficiently low Froude numbers

become dependent on the amount of damping introduced in the system, and

are therefore discarded. A similar result has been obtained in Oliveira et al.

102



0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.9: Modulus of the free surface height along the radius for m = 7 in
the transition regime from radiating to trapped modes.
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Figure 4.10: Modulus of the pressure |ϕm(r, z)| for m = 7 and F = 0.5. We
show the four least stable eigenmodes for such parameters, having one, two,
three and four peaks respectively.
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Figure 4.11: Imaginary (top) and real (bottom) parts of the eigenvalue ωmn
as function of the Froude number F for m = 7 and varying n.

(2014) studying a model wave equation describing the vortex-waves interaction

in the shallow-water limit. Mathematically, this can be justified by considering

the extreme case of F = 0; in that case, a regularity condition of the modes

at r = 0 together with a radiating boundary condition at infinity cannot be

satisfied simultaneously, thus leading to the non-existence of solutions in terms

normal modes. We leave to future studies the possibility of tracking the trend

of the spectrum curve as the Froude number goes to zero. It should be noted,

that modes having a large negative decay rate in time do not play a relevant

role in the dynamics of the system.

Another interesting phenomenon concerns the propagation direction of

the surface waves with respect to the rotation of the base vortex flow as its

rotation rate is varied. This is shown in figure 4.11b, which shows how the real

part of the eigenvalues varies with the Froude number, again for m = 7. For

Re(ω) < 0, waves rotate opposite to the base flow (counter-rotating waves),

while for Re(ω) > 0, waves rotate in the same direction as the base flow (co-
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Figure 4.12: Imaginary part of the eigenvalues as functions of F for m =
2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, with the arrow indicating the direction of increas-
ing m.

rotating waves). It is clear that for each n, there is a value of Froude number

separating counter-rotating from co-rotating surface waves.

4.3.2 Extension to other azimuthal wavenumbers.

The results described above for m = 7 are found to be typical at larger az-

imuthal wavenumbers. Figure 4.12 shows the trend of the imaginary part of

the eigenvalues as a function of the Froude number. The results are qualita-

tively similar to the m = 7 case. Eigenvalue branches shift to lower F with

increasing m, thus shifting to lower F the value of F separating radiating and

trapped modes. This suggests that for very high azimuthal wavenumber per-

turbations we expect to get radiating eigenmodes at lower and lower Froude

numbers, as shown in figure 4.13 for the example cases of m = 15 and m = 20.

We have computed the range of Froude numbers in which modes ra-

diate and transition towards a neutrally stable state for different values of

m. This is summarized in figure 4.14 showing the classes of solutions previ-

ously described over a wide range of azimuthal orders m and Froude numbers

F . The contour lines plotted separate the regions of parameter space where

waves are radiating and where waves are trapped, with the arrow indicating

the direction of better trapping. While the individual contours range from

Im(ω) = 10−2 to Im(ω) = 10−5, their close spacing shows that the exact

threshold value of Im(ω) separating trapped and radiating behaviour is not

that important, with all contours giving a similar boundary. Also plotted in

figure 4.14 is a dashed line showing Re(ω) = 0, which is the boundary between

counter-rotating and co-rotating trapped waves. Two notable features of the
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Figure 4.13: Shape of the free surface height h(r, θ, t = 0) =
Re[ϕ(r, h0(r)) exp{imθ}] in two high azimuthal wavenumber cases. (a): m =
15, F = 0.19. (b): m = 20, F = 0.16.

Figure 4.14: Regimes of radiating (large |Im(ω)|) and trapped (small |Im(ω)|)
modes for different azimuthal wavenumbers m and Froude numbers F . Solid
lines are contours of |Im(ω)|, with the arrow indicating the direction of more
perfectly trapped behaviour. The dash-dot line separates counter-rotating
modes (T−) with Re(ω) < 0 from co-rotating modes (T+) with Re(ω) > 0.

plot as m is decreased are the shift of contours to larger F and the widening

of the separation between contours. Both of these features are consistent with

figure 4.12, where one sees not only a shift in the eigenvalue curves with m,

but also a steepening of the transition between radiating and trapped modes

with increasing m.

While this section considers a wide range of values of m ≥ 3, we find

m = 0, 1 and 2 to be dominated by inertial waves rather than surface waves,

which are discussed further in section 4.3.4.
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4.3.3 Effect of the free-surface height on the eigenmodes

In this subsection we investigate the effects associated to a variation in the fluid

depth, exploring the regime between shallow and deep water. We again focus

on modes with azimuthal modenumber m = 7 and show how the structure of

eigenmodes and corresponding eigenvalues vary with fluid depth, and hence

how the transition between radiating and trapped modes changes with depth.

The variation in the structure of the surface gravity eigenmodes with

fluid depth h∞ is displayed in figure 4.15 for a typical trapped mode computed

at Froude number F = 0.5. The same type of analysis is carried out for a

radiating mode at F = 0.3, whose spatial structures are shown in figure 4.16.

Finally, in figure 4.17, the transition between radiating and trapped mode is

shown as the fluid depth is varied between h∞ = 0.25, 0.5, 1. Figure 4.18 shows

the variation in eigenvalue as the Froude number is varied, for different fluid

depths. The trend in Im(ω) shown suggests that more shallow systems require

a faster rotating vortex in order to get the same wave trapping as a deeper

water configuration. The variation with depth of Re(ω) is less significant. For

h∞ = 1, the eigenvalues are essentially identical to those computed for even

higher depths, for example, in this case h∞ = 5. Hence, in this regard, for a

trapped mode a fluid with h∞ ∈ [0.5, 1] can already be considered deep water.

4.3.4 Inertial modes

While the focus of this study is surface gravity waves, our numerics finds

modal solutions to the governing equations (4.11) without any assumption

about the modes being surface gravity waves. By way of contrast, therefore,

in this section we briefly discuss another type of mode, namely inertial modes.

These modes persist even at low rotation rates, and are characterised by being

neutrally stable as well as being concentrated within the vortex core and not

being localized close to the free surface. Our results are therefore similar to the

numerical results presented by Mougel et al. (2015) for a solid-body rotation,

since the Lamb–Oseen vortex is very close to solid-body rotation close to the

centre. Figure 4.19 shows two inertial modes computed for m = 2, h∞ = 1,

and F = 0.2, 0.8. The corresponding eigenvalues are purely real, and are also

plotted as function of the Froude number in figure 4.19.

4.4 Results without the base free surface deforma-

tion

In this section, we demonstrate that the dominant contribution to the trapping

of modes by the vortex shown in section §4.3 is the swirl of the base flow, and

that the deformation of the base free surface has little effect itself. As the free

surface deformation becomes more and more important through its gradient—
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Figure 4.15: Effect of the fluid height variation on a single peak (n = 1)
trapped pressure mode |ϕm(r, z)| computed for m = 7, and F = 0.5. (a):
ω = −0.3058, h∞ = 0.25. (b): ω = −0.5316, h∞ = 0.5 (c): ω = −0.5366,
h∞ = 1 (d): ω = −0.5370, h∞ = 5. The imaginary part of the eigenvalues
reported here is at least of order 10−9, hence can be considered as purely real.
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Figure 4.16: Effect of the fluid height variation on a radiating pressure mode
|ϕm(r, z)| computed for m = 7, and F = 0.3. (a): ω = −1.3371 − 0.0530i,
h∞ = 0.4. (b): ω = −1.3633− 0.0320i, h∞ = 0.5 (c): ω = −1.3772− 0.0140i,
h∞ = 1 (d): ω = −1.3770− 0.0138i, h∞ = 5.
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Figure 4.17: Free surface height for m = 7, F = 0.4 and different fluid depths.
(a): h∞ = 0.25. (b): h∞ = 0.5. (c): h∞ = 1.

as shown in the last term of the free surface boundary condition (2.32)— in the

following we artificially assume the base free surface to be flat, meaning that

h0(r) = h∞ and h′0(r) = 0. All the remaining terms in the governing equations

and boundary conditions do not change. Solving the eigenvalue problem in

this case, we compare the eigenvalues to the complete case where the base

free surface deformation has been taken into account in figure 4.20. Little

difference is seen between the two. Indeed, figure 4.21 plots the difference in

eigenvalues as function of the Froude number; i.e. |ω − ωflat|, where ωflat are

the eigenvalues without the free surface variation. It is clear that for the range

of Froude numbers considered, the two agree remarkably closely.

In terms of the eigenfunctions, the free surface perturbation is displayed

in figure 4.22, which should be compared against the free surface perturbation

with a base free surface height variation plotted in figure 4.7; the two figures

can be seen to be almost identical. The corresponding structure in the r − z

plane is shown in figure 4.23, which should be compared against figure 4.8 in

the results section; again, the two figures are almost identical apart from the

base flow height.

We therefore conclude that the driving mechanism behind the trapping
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Figure 4.18: Effect of the fluid height variation on the spectrum curves for the
least damped set of eigenmodes obtained for m = 7.

of modes by the vortex is the rotation of the base flow, and not the free surface

deformation.

4.5 Summary

In this chapter we derived and studied in detail the equations governing the

propagation of linear waves in a laterally unbounded Lamb-Oseen flow with a

free surface.

We conducted a parametric study on the vortex stability by varying

the Froude number, the azimuthal wavenumbers and the fluid depth. We have

shown that for low Froude numbers modes are radiating and decay in time; on
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Figure 4.19: Inertial modes for m = 2, h∞ = 1 and F = 0.2 (left); F = 0.8
(right). Eigenvalues curve as function of the Froude number for the same
parameters (bottom figure).
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Figure 4.20: Imaginary and real part of the eigenvalues as function of the
Froude number for modes with m = 7 and n = 1. Blue-circle curve: full
numerics; red-asterisk curve: without the free surface contribution.

the contrary, as the Froude number increases their decay rate becomes closer

and closer to zero leading to the appearance of trapped, nearly neutrally stable

modes. The system, however, never becomes unstable.

The influence of the free surface deformation has been shown to give

only a minor contribution in the eigenmodes found in the range F ∈ [0, 1].

Thus, the most important driving mechanism leading to the emergence of the

trapped modes within the vortex is the advection of the swirling flow and not

the corresponding free surface shape.

112



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 4.21: Absolute difference between eigenvalues computed with and with-
out the free surface contribution, |ω − ωflat|, for the first radial mode n = 1
and m = 7.
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Figure 4.22: Plots of the perturbation free surface height h(r, θ, t = 0) =
Re[ϕ(r, h0(r)) exp{imθ}] for m = 7 without the base free surface deformation,
to be compared against figure 4.7. (a) F = 0.3. (b) F = 0.32. (c) F = 0.33.
(d) F = 0.34. (e) F = 0.36. All modes displayed rotate clockwise, i.e. against
the vortex flow.
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Figure 4.23: Plots of the pressure distribution |ϕm(r, z)| for m = 7 without the
base free surface deformation, to be compared against figure 4.8. (a) F = 0.3.
(b) F = 0.32. (c) F = 0.33. (d) F = 0.34. (e) F = 0.36.
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Chapter 5

A reduced model for

deep-water waves on free

surface swirling flows

In this chapter we derive a novel set of two-dimensional equations to study

the vortex-surface waves in the deep-water limit. As shown in figure 2.6, for

example, it is clear how in real applications and phenomena the dispersive

effects associated to a non-shallow fluid become important in the propagation

of the waves. It is indeed sufficient the height of the fluid to be comparable

to the wavelength of the waves in order the shallow-water approximation to

fail. This motivates primarily the present model. Moreover, the equations we

are going to derive overcome the two main assumptions used in Boussinesq-

type models described in the introduction (section 1.6) and allow for the effects

associated to the deformation of the base free surface and the non-zero vorticity

of the background flow.

There are additional reasons to derive new reduced models in this con-

text. The first one is numerical computations; indeed, faster computations

would permit the exploration of more extreme regimes (for example higher

Froude numbers limit). The second reason is the possibility of making pre-

dictions about the propagation of deep-water waves on more complicated and

nontrivial flows, e.g. a dipole or a quadrupole flow.

The key point in our derivation is the introduction of a closure bound-

ary condition imposed along the base free surface. This closure leads naturally

to a closed set of equations valid in the horizontal spatial domain and involv-

ing the horizontal velocity components and the fluid elevation only. We justify

the validity of our closure boundary condition by means of numerical results

and comparisons with full three-dimensional calculations from (Zuccoli et al.

2023) for the case of a Lamb–Oseen vortex. Finally, we use the reduced system

derived to make predictions on the propagation of deep-water modes over a

periodic array of vortices.
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5.1 Mathematical Model

We present the derivation of a reduced two-dimensional model. The equations

will be derived in a cartesian reference frame, assuming a steady background

flow of the form U0(x, y) = U0(x, y)x̂+V0(x, y)ŷ, such that U0 ·∇H0 = 0 due

to the kinematic boundary condition on the free surface of the fluid. As far as

the pressure field is concerned, that is given by P0(x, y, z) = −g(z−H0(x, y))+

P̄ , where P̄ is the ambient atmospheric pressure. The governing equations

are given by the linearized incompressible Euler equations with free surface

boundary condition, involving the velocity components and the pressure. In

particular, let u(x, y, z, t) = ux(x, y, z, t)x̂ + uy(x, y, z, t)ŷ + uz(x, y, z, t)ẑ be

the perturbation velocity, p(x, y, z, t) the perturbation pressure and h(x, y, t)

the perturbation height of the fluid, the linear equations read

Dtux +
∂U0

∂x
ux +

∂U0

∂y
uy +

∂p

∂x
= 0, (5.1a)

Dtuy +
∂V0
∂x

ux +
∂V0
∂y

uy +
∂p

∂y
= 0, (5.1b)

Dtuz +
∂p

∂z
= 0, (5.1c)

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0, (5.1d)

uz −Dth− ∂H0

∂x
ux −

∂H0

∂y
uy = 0, on z = H0(x, y), (5.1e)

p− gh = 0, on z = H0(x, y). (5.1f)

In equations above, Dt = ∂t + U0 · ∇ is the convective derivative due to the

background flow and g the acceleration of gravity. Now, let us define the

unknowns on the base free surface as u = ux|H0 , v = uy|H0 , w = uz|H0 and

h = 1
gp|H0 . Moreover, let f(x, y, z, t) represent any of these four unknowns.

Then, the following relationships hold

∂f

∂x

∣∣∣∣
H0

=
∂f(x, y,H0(x, y), t)

∂x
− ∂H0

∂x

∂f

∂z

∣∣∣∣
H0

,

∂f

∂y

∣∣∣∣
H0

=
∂f(x, y,H0(x, y), t)

∂y
− ∂H0

∂y

∂f

∂z

∣∣∣∣
H0

,

Dtf |H0
= Dt (f |H0)− (U0 · ∇H0)

∂f

∂z

∣∣∣∣
H0

= Dt (f |H0) .

(5.2)
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Evaluation of the linearized Euler equations on the background free surface

and using of equations (5.2) yields

Dtu+
∂U0

∂x
u+

∂U0

∂y
v + g

∂h

∂x
− ∂H0

∂x

∂p

∂z

∣∣∣∣
H0

= 0, (5.3a)

Dtv +
∂V0
∂x

u+
∂V0
∂y

v + g
∂h

∂y
− ∂H0

∂y

∂p

∂z

∣∣∣∣
H0

= 0, (5.3b)

Dtw +
∂p

∂z

∣∣∣∣
H0

= 0, (5.3c)

∂u

∂x
+
∂v

∂y
+
∂uz
∂z

∣∣∣∣
H0

− ∂H0

∂x

∂ux
∂z

∣∣∣∣
H0

− ∂H0

∂y

∂uy
∂z

∣∣∣∣
H0

= 0, (5.3d)

w = Dth+
∂H0

∂x
u+

∂H0

∂y
v, on z = H0(x, y). (5.3e)

By exploiting the momentum equation along ẑ and the kinematic boundary

condition, the momentum equations along the horizontal coordinates can be

modified into

Dtu+
∂U0

∂x
u+

∂U0

∂y
v + g

∂h

∂x
+
∂H0

∂x
Dt

[
Dth+

∂H0

∂x
u+

∂H0

∂y
v

]
= 0, (5.4a)

Dtv +
∂V0
∂x

u+
∂V0
∂y

v + g
∂h

∂y
+
∂H0

∂y
Dt

[
Dth+

∂H0

∂x
u+

∂H0

∂y
v

]
= 0. (5.4b)

At this point equations above are written in terms of the three unknowns

u, v, h. We need a third equation to close the system. To do so, let us start by

looking at the functional form of the boundary condition on the free surface.

We can define a functional Ψ[ux, uy, uz, p](x, y, z, t) such that

Ψ[ux, uy, uz, p](x, y, z, t) = uz −
∂H0

∂x
ux −

∂H0

∂y
uy −

1

g
Dtp, (5.5)

where the last term comes from the dynamic boundary condition. By defini-

tion, we have that along the free surface the functional is null, i.e. Ψ(x, u,H0(x, y), t) =

0. Now, Let us evaluate Ψ along a surface infinitesimally lower than H0(x, y),

i.e. along z = H0(x, y)− δz. We then get

Ψ(x, y,H0(x, y)− δz, t) ≈ Ψ(x, y,H0(x, y), t)−
∂Ψ

∂z

∣∣∣∣
H0

δz. (5.6)

We assume that Ψ(x, y,H0(x, y)− δz, t) = 0, so that even ∂Ψ
∂z

∣∣
H0

= 0 and we

can write

∂Ψ

∂z

∣∣∣∣
H0

=
∂uz
∂z

∣∣∣∣
H0

− ∂H0

∂x

∂ux
∂z

∣∣∣∣
H0

− ∂H0

∂y

∂uy
∂z

∣∣∣∣
H0

− 1

g

∂(Dtp)

∂z

∣∣∣∣
H0

= 0, (5.7)
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which means

∂uz
∂z

∣∣∣∣
H0

− ∂H0

∂x

∂ux
∂z

∣∣∣∣
H0

− ∂H0

∂y

∂uy
∂z

∣∣∣∣
H0

=
1

g
Dt

∂p

∂z

∣∣∣∣
H0

= −1

g
D2
tw = −1

g
D2
t

(
Dth+

∂H0

∂x
u+

∂H0

∂y
v

)
. (5.8)

We define equation above as the closure boundary condition. It should be

emphasized that the ansatz (5.7) has been assumed here heuristically. In Sec-

tion 5.2, we validate the resulting closure boundary condition 5.8 by presenting

numerical evidence that it holds for linear waves on the free surface of vortices

in deep water. Substituting equation (5.8) into the continuity equation (5.3d),

we get a reduced two-dimensional system of equations in the unknowns u, v, h

Dtu+
∂U0

∂x
u+

∂U0

∂y
v + g

∂h

∂x
+
∂H0

∂x
Dt

[
Dth+

∂H0

∂x
u+

∂H0

∂y
v

]
= 0, (5.9a)

Dtv +
∂V0
∂x

u+
∂V0
∂y

v + g
∂h

∂y
+
∂H0

∂y
Dt

[
Dth+

∂H0

∂x
u+

∂H0

∂y
v

]
= 0, (5.9b)

∂u

∂x
+
∂v

∂y
− 1

g
D2
t

(
Dth+

∂H0

∂x
u+

∂H0

∂y
v

)
= 0. (5.9c)

Adopting the same scaling as done in chapter 4, the dimensionless equations

now read

Dtu+ F
∂U0

∂x
u+ F

∂U0

∂y
v +

∂h

∂x
+ F 2∂H0

∂x
Dt

[
Dth+ F 2∂H0

∂x
u+ F 2∂H0

∂y
v

]
= 0,

(5.10a)

Dtv + F
∂V0
∂x

u+ F
∂V0
∂y

v +
∂h

∂y
+ F 2∂H0

∂y
Dt

[
Dth+ F 2∂H0

∂x
u+ F 2∂H0

∂y
v

]
= 0,

(5.10b)

∂u

∂x
+
∂v

∂y
−D2

t

(
Dth+ F 2∂H0

∂x
u+ F 2∂H0

∂y
v

)
= 0, (5.10c)

where again F is the Froude number and Dt = ∂t + FU0 · ∇.

5.1.1 2D model for a single vortex

If the base flow is a simple radially dependent vortex of the form U0(x, y) =

U0(r)θ̂, with r =
√
x2 + y2, H0(x, y) = h0(r) and such that U0(∞) = 0,

then working accordingly in a cylindrical reference frame, the previous set of

equations reduces to(
1 + F 4h′0

2
)
Dtu− 2FΩ0v +

∂h

∂r
+ F 2h′0D

2
t h = 0, (5.11a)

Dtv + FΓ0u+
1

r

∂h

∂θ
= 0, (5.11b)

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
−D2

t

(
Dth+ F 2h′0u

)
= 0, (5.11c)
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where now u = ur|h0 , v = uθ|h0 , h = p|h0 , Ω0(r) = U0(r)
r and Γ0(r) =

2Ω0(r) + rΩ′
0(r). Note that the prime symbol here denotes differentiation

with respect to the single spatial variable r. We tried different methods in

order to rigorously justify the correctness of the ansatz (5.7) leading to our

closure boundary condition. Details of each of them are outlined in the ap-

pendix C, however, none of them was totally successful, thus we can justify

our closure by numerical predictions and comparisons.

5.2 Application of the model to a monopolar vortex

in unbounded domain

5.2.1 Comparison with 3D finite-depth results for a single vor-

tex

We want to provide evidence of the accuracy of the closure boundary condition

on the free surface (5.7). For the results section we will show results for the

single vortex case; in particular we will compare those obtained using the

present novel model with those obtained in Zuccoli et al. (2023) with full

three dimensional simulations. We fix the azimuthal wavenumber to m = 7

and the Froude number at F = 0.5. Then, we are going to vary the depth of

the fluid at infinity and check the accuracy of our closure boundary condition.

Figures 5.1, 5.2, 5.3 show the two contributions appearing in (5.7)

written for a single vortex for different set of normal mode solutions. In

particular, the two contributions are ∂zw|h0 − h′0∂zu|h0 on one side and (iω −
imFΩ0)∂zϕ|h0 on the other. Moreover, next to the free surface contributions,

the pressure distribution in the r− z plane is displayed, suggesting how much

the bottom boundary might influence the accuracy of the closure. From those

figures, it can be noted that the two curves of the free surface contributions

become indistinguishable as the height at infinity h∞ grows. As a matter of

fact, the accuracy of the closure boundary condition gets better as the bottom

boundary ceases to influence the structure of the modes far away from the free

surface. It is surprising, however, to see how the closure gives good results for

h∞ = 1 already. Thus, as soon as the horizontal and vertical reference scales

become of the same order, the model we derived is valid and can be easily

used.

Figure 5.4 instead displays the trend of the eigenvalues as function of

the Froude number, for h∞ = 5. The agreement is excellent, especially until

F = 0.6 when the deformation of the surface starts to become dominant,

implying a more influence of the bottom boundary too on the structure of

modes.

The model we derived gives us exactly surface gravity modes and not

the other type of waves that arise (see for example Mougel et al. (2015), Mougel
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Figure 5.1: Accuracy of the closure boundary condition for the case of a Lamb-
Oseen vortex. The mode considered here has a single peak in the modulus
of the pressure n = 1, azimuthal wavenumber m = 7 and Froude number
F = 0.5. The fluid depth at infinity has progressively been increased.

et al. (2017)) for further details on those. Hence, we would like to establish

that our closure boundary condition works well for surface modes only. In

figure 5.5 we compare the terms in the closure for a gravity and inertial mode

respectively. It can be clearly seen our prediction is satisfied.

We have tested the accuracy of our closure for other type of vortices in

addition to the Lamb-Oseen one. The only assumption in considering other

single vortex profile is that the velocity field is zero at the origin and decays

to zero at infinity. In particular, we have considered the following velocity

profiles:

Ω0(r) =
r

4
exp[2− r], (5.12)

and

Ω0(r) =
1

r2 + 1
, (5.13)
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Figure 5.2: Accuracy of the closure boundary condition for the case of a Lamb-
Oseen vortex. The mode considered here has two peaks in the modulus of the
pressure n = 2, azimuthal wavenumber m = 7 and Froude number F = 0.5.
The fluid depth at infinity has progressively been increased.

which is the same used as in Patrick et al. (2018). In figures 5.6 and 5.7 we plot

the corresponding diagram as shown for the Lamb-Oseen profile, outlining the

two contributions in the closure boundary condition.

Both base flows give again good agreement.

5.3 Application of the model to a periodic array of

vortices

In this last section of the thesis we want use equations (5.10) to make pre-

dictions about the behaviour of deep-water surface waves over a more com-

plicated, non-standard background flow, namely a periodic array of vortices.

The flow is defined in a squared box of width 2π, i.e. (x, y) ∈ [−π, π]× [−π, π]
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Figure 5.3: Accuracy of the closure boundary condition for the case of a
Lamb-Oseen base vortex. The mode considered here is a radiating mode with
azimuthal wavenumber m = 7 and Froude number F = 0.3. The fluid depth
at infinity has progressively been increased.

and its velocity components are given by

U0(x, y) = sin(x) cos(y), V0(x, y) = − cos(x) sin(y). (5.14)

The velocity field is shown in figure 5.8.

Since the flow is periodic, the perturbations will also be so. However,

before showing results for this specific problem, we first generalize the set of

equations (5.9) in order to include the shallow-water regime too. This is con-

venient not only because it allows comparison in the two distinct regimes, but

also because it eases the numerical treatment of the problem. The generalized
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Figure 5.5: Comparison of the terms appearing in the closure boundary con-
dition for a Surface Gravity mode (Top) and an Inertial mode (Bottom).
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Figure 5.6: Accuracy of the closure boundary condition for the case of the
vortex profile given by (5.12). The mode considered here is trapped with a
single peak in the structure, azimuthal wavenumberm = 7 and Froude number
F = 0.5. The fluid depth at infinity has progressively been increased.

equations read

Dtu+ F
∂U0

∂x
u+ F

∂U0

∂y
v +

∂h

∂x
+ δF 2∂H0

∂x
Dt

[
Dth+ F 2∂H0

∂x
u+ F 2∂H0

∂y
v

]
= 0,

(5.15a)

Dtv + F
∂V0
∂x

u+ F
∂V0
∂y

v +
∂h

∂y
+ δF 2∂H0

∂y
Dt

[
Dth+ F 2∂H0

∂x
u+ F 2∂H0

∂y
v

]
= 0,

(5.15b)

∂u

∂x
+
∂v

∂y
− δD2

t

(
Dth+ F 2∂H0

∂x
u+ F 2∂H0

∂y
v

)
+ (1− δ)Dth = 0, (5.15c)

with δ ∈ [0, 1] being the shallowness parameter. For δ = 0, the linearized

shallow water waves equations are recovered, whereas for δ = 1, our model is

re-obtained. In order to discretize the equations above, we want to re-write

125



h1 = 0:25

0 1 2 3 4 5
0

0.5

1

0 1 2 3 4 5
0

0.5

1

h1 = 0:25

@zw ! h0
0@zu

i(mF+0 ! !)@z?

h1 = 0:5

0 1 2 3 4 5
0

0.5

1

0 1 2 3 4 5
0

0.5

1

h1 = 0:5

@zw ! h0
0@zu

i(mF+0 ! !)@z?

h1 = 1

0 1 2 3 4 5
0

0.5

1

0 1 2 3 4 5
0

0.5

1

h1 = 1

@zw ! h0
0@zu

i(mF+0 ! !)@z?

Figure 5.7: Accuracy of the closure boundary condition for the case of the
vortex profile given by (5.13). The mode considered here is trapped with a
single peak in the structure, azimuthal wavenumberm = 7 and Froude number
F = 0.5. The fluid depth at infinity has progressively been increased.

them as a first order system in time. We define

w = Dth+ F 2∂H0

∂x
u+ F 2∂H0

∂y
v,

Q = −δDtw + (1− δ)h,

(5.16)
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Figure 5.8: Velocity vector field for the flow defined by (5.14).

so that we obtain the following differential problem

Dtu+ F
∂U0

∂x
u+ F

∂U0

∂y
v +

∂h

∂x
− F 2∂H0

∂x
[Q− (1− δ)h] = 0, (5.17a)

Dtv + F
∂V0
∂x

u+ F
∂V0
∂y

v +
∂h

∂y
− F 2∂H0

∂y
[Q− (1− δ)h] = 0, (5.17b)

Dtw +
1

δ
[Q− (1− δ)h] = 0, (5.17c)

Dth+ F 2∂H0

∂x
u+ F 2∂H0

∂y
v − w = 0, (5.17d)

DtQ+
∂u

∂x
+
∂v

∂y
= 0, (5.17e)

in the five unknowns u, v, h, w,Q.

5.3.1 Numerical discretization

To solve equations (5.17) numerically we add some sort of artificial viscosity

ν in the first two equations. This helps in getting rid of spurious unresolved

eigenmodes when a finite difference scheme is applied. The system we want
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to discretize then reads

Dtu+ F
∂U0

∂x
u+ F

∂U0

∂y
v +

∂h

∂x
− F 2∂H0

∂x
[Q− (1− δ)h]− ν∇2u = 0,

(5.18a)

Dtv + F
∂V0
∂x

u+ F
∂V0
∂y

v +
∂h

∂y
− F 2∂H0

∂y
[Q− (1− δ)h]− ν∇2v = 0, (5.18b)

Dtw +
1

δ
[Q− (1− δ)h] = 0, (5.18c)

Dth+ F 2∂H0

∂x
u+ F 2∂H0

∂y
v − w = 0, (5.18d)

DtQ+
∂u

∂x
+
∂v

∂y
= 0. (5.18e)

We look for normal modes [u, v, w, h,Q](x, y, t) → [u, v, w, h,Q](x, y)eσt,

with σ ∈ C being complex in principle; in particular ℜ[σ] represents the growth
rate and ℑ[σ] the oscillation frequency. This transforms equations (5.18) into

an eigenvalue problem of the form

Lv = σv, (5.19)

with v = [u, v, w, h,Q]T and σ the eigenvalues to be determined. The aim

now is to discretize the linear operator L. To do so we use a centered finite

difference scheme as the one used in section 3.6.2 for the Convective Wave

Equation. However, here we apply periodic boundary conditions in both x

and y. Let us explain how to deal with them by looking only at u in the

x-direction. The first derivative is discretize as

∂u(xj , y)

∂x
=
u(j + 1, y)− u(j − 1, y)

2∆x
, j = 0, 1, 2, . . . , Nx. (5.20)

At the boundary points we impose u(0, y) = u(Nx, y) and u(Nx + 1, y) =

u(1, y). The same rule holds for the derivative along y, as well as for both

v(x, y) and h(x, y).

5.3.2 Results

In this section we present results of the eigenvalue problem coming from solving

equations (5.18) for δ = 1, i.e. in the deep-water limit. First, in figure 5.9

we present the structure of the first least stable modes computed for a slow

rotation of the four vortices, namely for F = 0.1. The value of the artificial

viscosity has been set equal to ν = 0.01. By keeping the same value of artificial

viscosity we then varied the Froude number in the range F ∈ [0.1, 1.5] and

found that the array of vortices undergoes an instability. The trend of both

the real and imaginary part of the eigenvalues is shown in figure 5.10. It is

interesting to notice that the first mode gets unstable at very low rotation
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Figure 5.9: Least stable eigenmodes for F = 0.1, and ν = 0.01. The real
part of the surface height is plotted: ℜ[h(x, y)]. Corresponding eigenvalues
follow. (a): σ = −0.0014 + 0.0509i. (b): σ = −0.0024 + 1.0226i. (c): σ =
−0.0026+0.9974i. (d): σ = −0.0028+0.9740i. (e): σ = −0.0044+0.0000i. (f):
σ = −0.0051+1.1901i. (g): σ = −0.0055+1.1738i. (h): σ = −0.0057+1.1593i.
(i): σ = −0.0101 + 1.4246i

rates, but becomes stable again at higher Froude numbers. Moreover, there

is a precise Froude number F = 0.9864 where the two modes have the same

growth rate, but they oscillates at different frequencies.

Figures 5.11 and 5.12 show the modulus of the perturbation height

eigenfunctions at different Froude numbers, both for the first and the second

unstable modes.

In accordance to what is shown in chapter 4 for the case of a monopolar

vortex, we now want to show the direction along which waves rotate with

respect to the periodic background flow. In figure 5.13 we show the time

dependent evolution of the first unstable mode for F = 0.2. It emerges that

this mode co-rotates with the flow. (The second mode also co-rotates with the
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Figure 5.10: Trend of the eigenvalues of the first two unstable modes as func-
tion of the Froude number. Top: real part of the eigenvalues representing the
growth rates as function of the Froude number. Bottom: imaginary part of the
eigenvalues representing the oscillation frequencies as function of the Froude
number.

flow, but for brevity this is not shown.)

Finally, the last set of results we show is about the trend of the eigen-

values as the artificial viscosity ν is decreased, for the fixed Froude number

F = 0.1. The trend of both the real part and the imaginary part of the eigen-

values is shown in figure 5.14. The real part is plotted on a log-log scale and

shows a linear dependence, hence it goes as a power law with the viscosity.

The imaginary part, as expected, remains unchanged.

Clearly, it would be interesting to track most of the other eigenvalues
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Figure 5.11: Evolution of the structure of the first unstable mode for the
following Froude numbers: F = [0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4].
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Figure 5.12: Evolution of the structure of the second unstable mode for the
following Froude numbers: F = [0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4].
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shown in the previous figures as function of the artificial viscosity. However,

time availability limited the computations of this set of additional results, thus

we leave to future studies the achievement of this goal and a full characteri-

zation of the eigenmodes in the proper inviscid limit.

5.4 Summary

In this chapter we presented a novel two-dimensional system of equations to

study the vortex-surface waves in the deep water limit. The novelty of the

model lies in the introduction of a closure boundary condition that has to be

satisfied along the free surface shape, which leads naturally to a reduced set

of equations valid in a horizontal domain.

The validity of the closure boundary condition has been tested for

different type of modes and base vortex flows and compared with the full 3D

results from Zuccoli et al. (2023).

Finally, we used the reduced model to make predictions on the eigen-

modes arising from an array of vortices in a periodic square domain. Compu-

tations gave interesting results as the appearance of unstable modes.
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Figure 5.13: Time evolution of the first unstable mode (σ = 0.0093 +
0.1047i) arising at F = 0.2 and with ν = 0.01 for different times: t =
[0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5]. Red-dotted lines represent the streamlines of
the periodic array of vortices.
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Chapter 6

Conclusions and future

research

We have considered the linear response to small perturbations of several free

surface swirling flows in different configurations and under different approxi-

mations. The perturbations are generally seen as waves of various type prop-

agating at precise frequencies and having a defined spatial structure. The

specific kind of wave and its features depends both on the geometry of the

system and on the particular background flow considered. The main results

of this thesis concern the modelling of surface waves within different approxi-

mations. From a more technical point of view, the major difficulty we had to

address is the implementation of non-reflecting boundary conditions for the

simulation of such waves in a laterally unbounded region. We now give a de-

tailed summary of what has been done throughout the chapters of the thesis

together with aspects that can be further investigated in the future.

In chapter 2 we studied waves forming in a laterally confined flow. The

specific cases of no flow and solid-body rotation were considered exhaustively,

with the aim of highlighting the major features in terms of wave-flow inter-

action and implementing some numerical schemes. Whenever the base flow

is absent, or negligible, only one type of waves is formed and these are sur-

face gravity waves. The only restoring force in that case is gravity and those

modes have an oscillatory behaviour in the radial direction, but an exponen-

tial behaviour in the axial direction. The dispersion relation in the general

finite-depth case is highly nonlinear, but reduces to a linear one in the shallow-

water regime (confirming the non-dispersive characters of these waves) and to

a quadratic one in the deep-water regime. It has been shown, however, that

the shallow-water limit ceases to be valid very soon as function of fluid depths

reasonably employed in applications, hence giving motivation to study these

kind of problems in deeper-water configurations. In particular, in chapter 2 we

considered extensively the prototype Newton’s Bucket problem and studied it

both numerically and analytically. No instability is found in this configuration
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(consistent with Mougel et al. (2015)). We have been able to provide excellent

analytical results to help getting the oscillation frequencies of modes in the

very deep-water limit as function of the rotation rate of the flow. Given the

simplicity of the base flow in this case, it would be a good starting point for

investigating the effects of both viscosity and surface tension, as well as the

equivalent of a Faraday Waves problem (Benjamin and Ursell 1954), i.e. the

response of the system to a prescribed vertical oscillation. Moreover, com-

parison with experimental studies would be beneficial to validate the theory

developed.

In chapter 3 the Convective Wave Equation arising from the shallow-

water limit was studied. This model is the first attempt to include the ad-

vection process in wave propagation over a prescribed swirling flow in an un-

bounded region. It shows two classes of modes that we also consider in chapter

4, namely radiating modes and trapped modes. Radiating modes are dissipa-

tive, and have a spatial structure which extends in the horizontal plane, there-

fore behaving as radially-travelling waves. By contrast, trapped modes, by

virtue of their near zero growth rate, persist for long times with little dissipa-

tion and remain localized within the core region of the vortex and hence could

be expected to be observed on the surface of a rotating vortex after all damped

modes have dissipated. The spatio-temporal behaviour of these modes resem-

bles that of a radially-standing wave instead of a radially-travelling wave. Our

numerical predictions show the appearance of trapped modes provided the

Froude number F (the dimensionless rotation rate) is above a threshold value,

with the threshold depending on the azimuthal mode number m. For both

a Lamb-Oseen vortex and a Gaussian vortex our computations also showed

the appearance of an instability, with higher growth rates at low azimithal

wavenumbers and a wider range of nearly neutrally stable states for large m,

as summarized in figures 3.5–3.6. This confirms the “Ergoregion Instability”

argument proposed in Oliveira et al. (2014) for waves on a potential vortex.

We then studied the same equation, but changing the background flow

to a dipole solution. The idea indeed was to mimic more closely the interac-

tion between the two vortices travelling in the swimming pool and the surface

waves around them. We carried out a time-dependent simulation on a square

domain in cartesian coordinates. We investigated the response to axisymmet-

ric perturbations for three different Froude numbers F = 0.25, 0.5, 0.75. Our

computations showed the appearance of a complex dynamics at both F = 0.5

and F = 0.75 due to the possible generalization of the ergoregion and hori-

zon arguments from the monopolar vortex case. However, the numerical costs

needed to get accurate results were too high, thus implementation of alterna-

tive strategies to get more insight into this problem is left as a future research.

In particular, the polar grid with a reduced number of grid points used in sec-

tions A.1 and A.2 to test the code with a monopolar vortex, might be extended
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to the dipole case, bringing a reduction in the computational costs. Another

approach would be that of adding a filter in the spatial discretization applied

in the cartesian formulation—see for example Bogey and Bailly (2003). This

would help in obtaining smooth solutions whenever high gradients are present,

as shown in figure 3.20.

In chapter 4 we have considered the linear response to small pertur-

bations of a free surface Lamb–Oseen vortex flow in a laterally unbounded

domain. We focused our attention primarily on surface waves, as it was these

waves that were seen in the motivating experiment; although the numerical

procedure also captures other types of modes which we briefly report on. Our

study found that surface waves fall into two distinct classes: radiating modes

and trapped modes. While these have been previously discovered for shallow

water vortices with an inflow (such as a bathtub vortex), and for purely rotat-

ing flows—as done in chapter 3 of the present work—here we have shown that

they arise in a fully 3D non-shallow-water problem without the need for an

inflow to help trap the modes. The same features regarding both radiating and

trapped modes are recovered here, as explained previously for the results of

chapter 3. The major difference in this case, however, is that trapped modes

apparently asymptotically approach a neutrally stable state in the limit of

large Froude number without becoming unstable. We have ultimately con-

firmed what has been seen in the initial motivating experiment of the pool,

namely that trapped surface wave modes in finite-depth configurations exist,

are nearly neutrally stable, and can propagate with or against the base swirling

flow (as also summarized in figure 4.14). That initial motivating experiment,

in fact, is a real case where finite-depth effects are non-negligible and the typ-

ical wavelengths of the surface waves is lower than the reference height of the

free surface.

As pointed out many times in this work, to numerically simulate a

(horizontally-)unbounded fluid on a bounded numerical domain, a far-field

non-reflecting boundary condition or buffer region is needed. Here, a novel

additional term is introduced into the governing equations, to provide damp-

ing of the surface waves in the buffer region only. This method has proved

more accurate than any non-reflecting boundary condition we implemented

while remaining computationally viable. Indeed, introduction of additional

unknowns in the mathematical formulation was not needed, thus overcoming

the main drawback of PML methods. Furthermore, given that the background

vortex flow vanishes in the far-field, the same absorbing layer formulation can

be employed with other similar vortex distributions. The numerical expense of

our eigenvalue problem (which is a two-dimensional spatial problem involving

both r and z coordinates) might be reduced by investigating a one-dimensional

approximation along the radial coordinate only; for example in either the deep-

or shallow-water limits. Moreover, new methods and formulations for the im-

138



position of a non-reflecting boundary condition in the far-field would certainly

lead to a saving in the computational time as it will avoid, for example, the

need to numerically resolve the unphysical buffer region. Due to the computa-

tional expense, we have left to future studies the extension of our parametric

study of waves to extreme Froude numbers. In particular it would be inter-

esting to investigate the trend of modes for very small and very large Froude

numbers.

Throughout chapter 4, we assumed a harmonic dependence exp{−iωt+

imθ} (equation 4.8) and looked for modal solutions, and alternative approaches,

such as time-domain simulation, may give additional insight. This is particu-

larly in relation to the critical layer, which is where there is a radial location

r = rc for whichDt = −iω+imFΩ0(rc) = 0; this possibility has been neglected

here, and investigating it would require a different numerical and mathemat-

ical method (such as has been done for aeroacoustic waves; e.g. King et al.

2022). Even with the assumption of harmonic dependence exp{−iωt + imθ},
a different but related problem would be to investigate the scattering of an in-

coming wave encountering the vortex, which would require a different far-field

boundary condition to introduce the incoming wave as well as to allow outgoing

waves to propagate through the far-field boundary without reflection. Finally,

our model also neglects both nonlinear and surface tension effects; while this is

justified for the swimming pool application we model here, these assumptions

break down for either large amplitudes or short wavelengths. Therefore, it

would be interesting to investigate whether their inclusion could lead to an

instability of the base vortex flow.

In chapter 5 we derived a new reduced two-dimensional model in order

to compute surface wave modes on any arbitrary two-dimensional flow. The

model overcomes the most widely used approximations of neglecting the free

surface deformation and of considering potential background flows. The idea

behind the derivation of the model is in principle very simple and consists of

evaluating the linearized Euler equations on the base free surface and then

introduce a closure equation to close the reduced system. The closure is rep-

resented by a closure boundary condition and the way it has been derived is

based on a heuristic argument, as well as on the numerical results presented

in chapter 4. Results presented in chapter 5 can be categorized into two main

sections: in the first part we justify the validity of our closure boundary con-

dition. We tested it for both radiating and trapped modes in the case of a

Lamb-Oseen vortex and extend this test for two other vortex profiles. More-

over, we directly compare the curve showing the trend of the eigenvalues as

function of the Froude number with that obtained from the full 3D compu-

tations shown in chapter 4 for the specific parameters m = 7 and h∞ = 5.

The overall comparison results are excellent and confirm the efficiency of our

reduced model. In the second part of the chapter we tried to make a predic-
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tion about the dynamics of deep-water waves on a periodic array of vortices.

Since the system cannot be compared with previous results, this is a prediction

of how those waves interact with a non-classical vortical flow. The problem

has been studied in a periodic domain and brought some interesting results

and dynamics, as for example the emergence of unstable modes. More care

and development is still needed in this case, hence this could certainly be the

source of future investigations on the topic. Another very useful development

on the study carried out in this chapter is represented by a possible rigorous

derivation of the closure boundary condition. In fact, we tried to justify it

rigorously in appendix C using three different strategies, but none of them

gave the desired result. It would therefore be useful to come up with new

ideas to justify our closure model.
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Appendix A

The Convective Wave

Equation for a general

two-dimensional flow in polar

coordinates

In this appendix we consider the two-dimensional CWE introduced in chapter

3 for an arbitrary background flow in polar coordinates. The flow is given by

U0(r, θ) = Ur(r, θ)r̂ + Uθ(r, θ)θ̂, and the governing equation reads(
∂

∂t
+ Ur

∂

∂r
+
Uθ
r

∂

∂θ

)(
∂

∂t
+ Ur

∂

∂r
+
Uθ
r

∂

∂θ

)
ϕ− c2

(
∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
+

1

r2
∂2ϕ

∂θ2

)
= 0.

(A.1)

We assume the base flow to decay at large distance from the centre, so that

as r → ∞ we can impose the exact non-reflecting boundary condition

lim
r→∞

√
r

(
∂ϕ

∂t
+ c

∂ϕ

∂r

)
+

c

2
√
r
ϕ = 0. (A.2)

At the origin, a regularity condition is needed, whereas along the angular di-

rection we impose the solution to be periodic, independently of the background

flow considered. The complete differential problem under study reads(
∂

∂t
+ Ur

∂

∂r
+
Uθ
r

∂

∂θ

)(
∂

∂t
+ Ur

∂

∂r
+
Uθ
r

∂

∂θ

)
ϕ− c2

(
∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
+

1

r2
∂2ϕ

∂θ2

)
= 0,

ϕ(0, θ, t) <∞,

lim
r→∞

√
r

(
∂ϕ

∂t
+ c

∂ϕ

∂r

)
+

c

2
√
r
ϕ = 0,

ϕ(r, 0, t) = ϕ(r, 2π, t),

∂ϕ(r, 0, t)

∂θ
=
∂ϕ(r, 2π, t)

∂θ
.

(A.3)
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In the following sections we numerically solve the equation both by simply

applying the exact NRBC at a finite truncated radius r = R ≫ 1 and by

using a PML method. The solutions are tested against the same Gaussian

vortex 3.67 and the “1D exact solution” introduced in chapter 3.

A.1 Comparison between the 2D-Exact-NRBC so-

lution and the 1D exact solution

We recall the background flow to be

U0(r) = Fre−r
2
. (A.4)

For the following results, parameters have been taken as c = 1, F = 4, R = 20,

Tf = 120, nr = 400, nθ = 200. It is known from the modal analysis that at

F = 4 the vortex gets unstable, with the solution growing exponentially in

time. In order to test the accuracy of our numerical time-dependent scheme,

we show in figure A.1 the time evolution of a initial sloshing mode (the m = 1

Fourier component) in both the 1D exact case and in the 2D-Exact-NRBC

model. The initial condition is taken as

ϕ(r, θ, 0) = e−8(r−10)2 cos(θ). (A.5)

As can be seen, the agreement is excellent even up to high final times t = 120.

A.2 PML formulation for the Convective Wave Equa-

tion in polar coordinates

We start by deriving a PML formulation for our problem in polar coordinates

by exploiting all terms in the convective wave equation. For notation con-

venience, let us define Ω0 = Uθ
r . This represents the angular velocity field

generated by the swirl component Uθ of the background flow. By doing so we

have

∂2ϕ

∂t2
+ 2Ur

∂2ϕ

∂t∂r
+ 2Ω0

∂2ϕ

∂t∂θ

+ Ur
∂

∂r

(
Ur
∂ϕ

∂r

)
+ Ur

∂

∂r

(
Ω0
∂ϕ

∂θ

)
+Ω0

∂

∂θ

(
Ur
∂ϕ

∂r

)
+Ω0

∂

∂θ

(
Ω0
∂ϕ

∂θ

)
− c2

r

∂

∂r

(
r
∂ϕ

∂r

)
− c2

r2
∂2ϕ

∂θ2
= 0.

(A.6)
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Figure A.1: Time evolution of the solution for the 1D exact model and the
2D-NRBC model. Times shown here are t = 0, 10, 20, 30, 60, 90, 120.
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Adopting a similar approach to what has been done 3.6.1, we first take the

Laplace transform in time of the equation yielding

s2ϕ̃+ 2sUr
∂ϕ̃

∂r
+ 2sΩ0

∂ϕ̃

∂θ

+ Ur
∂

∂r

(
Ur
∂ϕ̃

∂r

)
+ Ur

∂

∂r

(
Ω0
∂ϕ̃

∂θ

)
+Ω0

∂

∂θ

(
Ur
∂ϕ̃

∂r

)
+Ω0

∂

∂θ

(
Ω0
∂ϕ̃

∂θ

)

− c2

r

∂

∂r

(
r
∂ϕ̃

∂r

)
− c2

r2
∂2ϕ̃

∂θ2
= 0.

(A.7)

Secondly, we define a new stretched radial coordinate

r̃ = r +
1

s

∫ r

0
ξ(r′)dr′, (A.8)

where ξ(r) is a damping function acting only in the layer surrounding the

actual domain. The radial derivative transforms according to

∂

∂r̃
=

s

s+ ξ(r)

∂

∂r
=

1

γ(r)

∂

∂r
. (A.9)

At this point we impose equation (A.7) to be satisfied in the new stretched

coordinate as well, producing

s2ϕ̃+
2sUr
γ

∂ϕ̃

∂r
+ 2sΩ0

∂ϕ̃

∂θ

+
Ur
γ

∂

∂r

(
Ur
γ

∂ϕ̃

∂r

)
+
Ur
γ

∂

∂r

(
Ω0
∂ϕ̃

∂θ

)
+Ω0

∂

∂θ

(
Ur
γ

∂ϕ̃

∂r

)
+Ω0

∂

∂θ

(
Ω0
∂ϕ̃

∂θ

)

− c2

γr

∂

∂r

(
r

γ

∂ϕ̃

∂r

)
− c2

r2
∂2ϕ̃

∂θ2
= 0.

(A.10)

Multiplication by γ gives

s2γϕ̃+ 2sUr
∂ϕ̃

∂r
+ 2sγΩ0

∂ϕ̃

∂θ

+ Ur
∂

∂r

(
Ur
γ

∂ϕ̃

∂r

)
+ Ur

∂

∂r

(
Ω0
∂ϕ̃

∂θ

)
+Ω0

∂

∂θ

(
Ur
∂ϕ̃

∂r

)
+ γΩ0

∂

∂θ

(
Ω0
∂ϕ̃

∂θ

)

− c2

r

∂

∂r

(
r

γ

∂ϕ̃

∂r

)
− γ

c2

r2
∂2ϕ̃

∂θ2
= 0,

(A.11)
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and recalling the definition of γ = 1 + ξ(r)
s , we can re-arrange the equation

above as

s2
(
1 +

ξ

s

)
ϕ̃+ 2sUr

∂ϕ̃

∂r
+ 2s

(
1 +

ξ

s

)
Ω0
∂ϕ̃

∂θ

+ Ur
∂

∂r

(
Ur

(
1− ξ

s+ ξ

)
∂ϕ̃

∂r

)
+ Ur

∂

∂r

(
Ω0
∂ϕ̃

∂θ

)
+Ω0

∂

∂θ

(
Ur
∂ϕ̃

∂r

)
+

(
1 +

ξ

s

)
Ω0

∂

∂θ

(
Ω0
∂ϕ̃

∂θ

)

− c2

r

∂

∂r

(
r

(
1− ξ

s+ ξ

)
∂ϕ̃

∂r

)
−
(
1 +

ξ

s

)
c2

r2
∂2ϕ̃

∂θ2
= 0,

(A.12)

i.e.

(
s2 + sξ

)
ϕ̃+ 2sUr

∂ϕ̃

∂r
+ 2sΩ0

∂ϕ̃

∂θ
+ Ur

∂

∂r

(
Ur
∂ϕ̃
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)
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∂

∂r

(
Ω0
∂ϕ̃

∂θ

)
+Ω0

∂

∂θ

(
Ur
∂ϕ̃

∂r

)

+Ω0
∂

∂θ

(
Ω0
∂ϕ̃

∂θ

)
− c2

r

∂

∂r

(
r
∂ϕ̃

∂r

)
− c2

r2
∂2ϕ̃

∂θ2
− Ur

∂

∂r

(
Ur

ξ

s+ ξ

∂ϕ̃

∂r

)
+
c2

r

∂

∂r

(
r

ξ

s+ ξ

∂ϕ̃

∂r

)

+ 2ξΩ0
∂ϕ̃

∂θ
+
ξ

s

[
Ω0

∂

∂θ

(
Ω0
∂ϕ̃

∂θ

)
− c2

r2
∂ϕ̃

∂θ2

]
= 0.

(A.13)

As the damping function varies along r only, in order not to introduce two

auxiliary unknowns as for the formulation in cartesian coordinates, we assume

that the effect associated to the damping only affects the radial derivatives, so

we neglect the last term in square brackets. By doing so, we can just define one

auxiliary variable, given by ψ̃ = ξ
s+ξ

∂ϕ̃
∂r . Finally, we inverse Laplace transform

in time the previous equation and obtain the PML formulation

D2
t ϕ− c2∇2ϕ+ ξ

∂ϕ

∂t
+ 2ξΩ0

∂ϕ

∂θ
+
c2

r

∂

∂r
(rψ)− Ur

∂

∂r
(Urψ) = 0,

∂ψ

∂t
+ ξψ − ξ

∂ϕ

∂r
= 0.

(A.14)

As already discussed a few times, the final differential problem above can be

combined with any boundary conditions at the extended radial boundary.

A.2.1 Discretization and numerical solution

We again solve the set of equations by means of the Method of Lines. As done

for the cartesian coordinates problem, we re-write it in a more convenient form

via the three variables:

u1 = ϕ, u2 = Dtϕ, u3 = ψ. (A.15)

145



The PML formulation in polar coordinates can be then written as

∂u1
∂t

= −Ur
∂u1
∂r

− Ω0
∂u1
∂θ

+ u2,

∂u2
∂t

= −Ur
∂u2
∂r

− Ω0
∂u2
∂θ

+ c2∇2u1 − ξ

(
u2− Ur

∂u1
∂r

− Ω0
∂u1
∂θ

)
− 2ξΩ0

∂u1
∂θ

+ Ur
∂

∂r
(Uru3)

− c2

r

∂

∂r
(ru3) ,

∂u3
∂t

= −ξu3 + ξ
∂u1
∂r

.

(A.16)

Before proceeding with the actual discretization, we collect all the terms on

the right-hand sides of the previous equations containing radial derivatives

only and in a similar way those containing angular derivatives only. This way,

we can write the previous system as

∂u1
∂t

= R1 + T1,

∂u2
∂t

= R2 + T2,

∂u3
∂t

= R3 + T3.

(A.17)

This splitting is much more convenient for imposing the boundary conditions

in r and θ once the spatial contributions have been discretized. So, we now

proceed with the discretization of the spatial terms appearing in (A.16) using

a finite difference scheme. The grid points are taken to be (rj , θi) =
(
(j −

1)∆r, (i − 1)∆θ
)
for (i, j) ∈

(
[1, Nθ], [1, Nr]

)
and (∆r,∆θ) =

(
R

Nr−1 ,
2π

Nθ−1

)
.

Proceeding term by term we have

R1i,j = −Ur(θi, rj)
u1i,j+1 − u1i,j−1

2∆r
,

R2i,j = −Ur(θi, rj)
u2i,j+1 − u2i,j−1

2∆r
+ c2

(
u1i,j+1 − 2u1i,j + u1i,j−1

∆r2
+

1

rj

u1i,j+1 − u1i,j−1

2∆r

)
+ ξ(rj)Ur(θi, rj)

u1i,j+1 − u1i,j−1

2∆r
+ Ur(θi, rj)

Ur(θi, rj+1)u3i,j+1 − Ur(θi, rj−1)u3i,j−1

2∆r

− c2
u3i,j+1 − u3i,j−1

2∆r
− c2

rj
u3i,j ,

R3i,j = ξ(rj)
u1i,j+1 − u1i,j−1

2∆r
.

(A.18)

for the radial part, and

T1i,j = −Ω0(θi, rj)
u1i+1,j − u1i−1,j

2∆θ
+ u2i,j ,

T2i,j = −Ω0(θi, rj)
u2i+1,j − u2i−1,j

2∆θ
+
c2

r2j

u2i+1,j − 2u2i,j + u2i−1,j

∆θ2
− ξ(rj)Ω0(θi, rj)

u1i+1,j − u1i−1,j

2∆θ
,

T3i,j = −ξ(rj)u3i,j ,
(A.19)
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for the angular contributions. Regarding the boundary conditions along the

radial direction, these they can be of any type so we can simply impose

R1i,1 = 0, R2i,1 = 0, , R3i,1 = 0, ∀i ∈ [1, Nθ],

R1i,Nr
= 0, R2i,Nr

= 0, R3i,Nr
= 0, ∀i ∈ [1, Nθ].

(A.20)

On the other hand, along θ, the periodic boundary conditions are implemented

as follows

u10,j = u1Nθ,j
, u1Nθ+1,j = u11,j , ∀j ∈ [1, Nr],

u20,j = u2Nθ,j
, u2Nθ+1,j = u21,j , ∀j ∈ [1, Nr].

(A.21)

Finally, The final discrete formulation using the MOL is given by

du1i,j
dt

= R1i,j + T1i,j ,

du2i,j
dt

= R2i,j + T2i,j , ∀(i, j) ∈
(
[1, Nθ], [1, Nr]

)
,

du3i,j
dt

= R3i,j + T3i,j .

(A.22)

A.2.2 Comparison between the solution using the PML formu-

lation in polar coordinates and the 1D exact solution

In this paragraph we do the same kind of comparison we did in both section

3.6.3 and A.1, i.e. we test our code with the purely gaussian rotating flow at

two Froude numbers. The first set of results is shown in figure A.2, having

taken the initial condition

ϕ(r, θ, 0) = 1.5e−8(r−1.5)2 cos(θ), (A.23)

and with the following physical and numerical parameters: c = 1, F = 0.5,

Rc = 15, R = 20, Tf = 20, nr = 400, nθ = 100, where Rc is the radial position

where the damping layer begins and R is the actual end of the discretization

domain. It can be noted that the agreement is really good at all times consid-

ered. we turn now to the second example considered, which is computed using

the the same set of parameters, but F = 4 and Tf = 60, in order to allow the

initial perturbation to develop the expected instability at a sufficiently long

time. Moreover, the initial condition now has been taken as

ϕ(r, θ, 0) = e−8(r−10)2 cos(θ). (A.24)

Results are shown in figure A.3. The 2D PML model captures well the in-

stability at higher times and overall the two solutions matches pretty well.

Also, it can be noted that the damping layer works well as in there the red-

dotted curve vanishes sufficiently fast, therefore providing good absorption of
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Figure A.2: Time evolution of the solution for the 1D exact model and the
PML model in polar coordinates for F = 0.5. Times are taken to be t =
0, 1, 2, 3, 5, 10, 20.
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Figure A.3: Time evolution of the solution for the 1D exact model and the
PML model in polar coordinates for F = 4. Times shown in here are t =
0, 1, 2, 3, 5, 10, 30, 60.
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the incoming wave at the artificial boundary Rc = 15.
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Appendix B

An analytical dipole solution

of the unsteady Oseen

equations

Oseen first derived an improved set of equations for studying the problem of

a slow viscous flow around a infinitely extended cylinder, known as Stokes

Paradox—see Batchelor (2000, Chapter 4). He accounted in the momentum

equation for a transport term proportional to the uniform velocity of the fluid

at infinity. In addition, we are going to include the temporal derivative term

into the momentum equation. Our goal is to find a dipole solution for the

following unsteady Oseen equations:

∂u

∂t
+ (U ŷ · ∇)u+∇p− ν∇2u = 0,

∇ · u = 0,

(B.1)

where U ŷ represents the uniform velocity at which the dipole moves and, as

usual, ν the kinematic viscosity of the fluid. The additional convective term

can be re-arranged as (U ŷ · ∇)u = U ∂u
∂y , so the momentum equation becomes

∂u

∂t
+ U

∂u

∂y
+∇p− ν∇2u = 0. (B.2)

Since the flow is two-dimensional, by taking the curl of the momentum equa-

tion we obtain the vorticity-stream function system:

∂ω

∂t
+ U

∂ω

∂y
− ν∇2ω = 0,

∇2ψ = −ω.
(B.3)

The two equations above are decoupled and we can start by solving that for

the vorticity. As a first step we reduce the diffusion-transport equation in

ω(x, y, t) into a purely diffusion equation by making the following variables
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transformations:
ω(x, y, t) = q(x, ξ, τ),

τ = at+ by,

ξ = ct+ dy,

(B.4)

with a, b, c, d constants to be determined. The derivatives transform according

to
∂ω

∂t
= a

∂q

∂τ
+ c

∂q

∂ξ
,

∂ω

∂y
= b

∂q

∂τ
+ d

∂q

∂ξ
,

∂2ω

∂y2
= b2

∂2q

∂τ2
+ 2bd

∂2q

∂τ∂ξ
+ d2

∂2q

∂ξ2
,

∂2ω

∂x2
=
∂2q

∂x2
.

(B.5)

Substitution into the governing equation yields

(a+Ub)
∂q

∂τ
+(c+Ud)

∂q

∂ξ
−νb2 ∂

2q

∂τ2
−2νbd

∂2q

∂τ∂ξ
−νd2∂

2q

∂ξ2
−ν ∂

2q

∂x2
= 0. (B.6)

Since we want to eliminate the transport term, the second derivative in τ and

the mixed derivative, we impose

b = 0,

d = 1,

c = −Ud = −U,

(B.7)

leading to the diffusion equation

∂q

∂τ
− η
(∂2q
∂x2

+
∂2q

∂ξ2

)
= 0, (B.8)

with η = ν
a being a new diffusivity coefficient.

A dipole solution satisfies the periodicity property along the azimuthal

direction q(r, θ, τ) = q̃(r, τ) cos(θ), so it is more convenient to express the

Laplacian in polar coordinates through the transformation x = r cos(θ) and

ξ = r sin(θ). After a bit of algebra, the remaining equation for q̃(r, τ) reads

∂q̃

∂τ
− η
[1
r

∂

∂r

(
r
∂q̃

∂r

)
− 1

r2
q̃
]
= 0. (B.9)

In order to re-arrange the equation in a more convenient way we define Γ = rq̃,

so that we have
∂Γ

∂τ
− ηr

∂

∂r

[1
r

∂Γ

∂r

]
= 0. (B.10)

This is the same equation that leads to Lamb-Oseen vortex for example, and

hence we try to look for a similarity solution—see for example Drazin and

Riley (2006, sec. 5.6). In particular, we set Γ(r, τ) = a(τ)γ(s), with s = r2

δ(τ)
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being the similarity variable. Plugging the ansatz above into equation (B.10),

we get the following system of ODEs

ȧ(τ)δ(τ) = −4ηa(τ),

δ̇(τ)a(τ) = 4ηa(τ),

sγ′′(s) + sγ′(s) + γ(s) = 0,

(B.11)

which returns the general solutions

δ(τ) = 4ητ + a20,

a(τ) =
B

4ητ + a20
,

γ(s) = se−s.

(B.12)

Thus, Γ(r, τ) is given by

Γ(r, τ) =
Br2

(4ητ + a20)
2
e
− r2

4ητ+a20 , (B.13)

and consequently the vorticity

q(r, θ, τ) =
[ Br

(4ητ + a20)
2
e
− r2

4ητ+a20

]
cos(θ). (B.14)

At this point, we turn to the Poisson equation for the streamfunction. Given

the functional form of the vorticity just derived, we have

∇2ψ = −
[ Br

(4ητ + a20)
2
e
− r2

4ητ+a20

]
cos(θ). (B.15)

We set ψ(r, θ, τ) = ϕ(r, τ) cos(θ) to get an equation for ϕ:

∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
− 1

r2
ϕ = − Br

δ2(τ)
e
− r2

δ(τ) . (B.16)

Now, the left-hand side can be re-written as ∂
∂r

[
1
r
∂
∂r (rϕ)

]
, so that we have

∂

∂r

[1
r

∂

∂r
(rϕ)

]
= − Br

δ2(τ)
e
− r2

δ(τ) . (B.17)

A double integration gives us the general solution

ϕ(r, τ) =
1

r

[
K(τ)− B

4
e
− r2

δ(τ)

]
+
H(τ)

2
r, (B.18)

whereH(τ) andK(τ) are function to be determined by imposing the boundary

conditions. In particular, we impose ϕ(∞, τ) = 0 and ϕ(0, τ) <∞, which yield

H(τ) = 0 and K(τ) = B
4 . Therefore, the streamfunction in polar coordinates

153



0 1 2 3 4 5
r

-1.5

-1

-0.5

0

A
(r

;3
=

0)

Figure B.1: Comparison between Lamb’s streamfunction (black line) and the
analytical streamfunction according to equation (B.19)—red dotted line. The
parameters have been taken as: U = 0.5, B = 4, δ(τ) = const. = 0.5.

is given by

ψ(r, θ, τ) =
B

4r

(
1− e

− r2

δ(τ)

)
cos(θ). (B.19)

Recalling the definition of (x, ξ) in terms of (r, θ) and finally ξ = y − Ut, the

final expression for the time-dependent streamfunction in cartesian coordinates

is

ψ(x, y, t) =
Bx

4[x2 + (y − Ut)2]

(
1− e

− [x2+(y−Ut)2]

4νt+a20

)
. (B.20)

In figure B.1 a comparison between the streamfunction of the solution

just derived and the one of Lamb’s dipole Lamb (1932) is shown. For the

latter, the matching radius has been taken to be of unitary value.

In figure B.2, moreover, we show the time evolution of the two vortices

along the y-direction for four times t = 0, 5, 10, 15. This feature indeed mimics

very well the representation of the two vortices travelling in a swimming pool,

thus providing a good analytical model capable of describing that situation.
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Figure B.2: Travelling in time of the two pair of vortices, according to the
analytical solution derived—equation (B.20). Parameters have been set to
U = 0.5, B = 1, ν = 10−5, a0 = 0.1. 155



Appendix C

Attempts to formally justify

the closure boundary

condition for the 2D

deep-water waves model

In this appendix we show three methods that we applied in order to justify

rigorously our closure 2D deep-water waves model derived in chapter 5. Each

method’s ideas are outlined below, however none of them gave naturally the

correct argument to being able to justify the closure. Therefore, as explained

in chapter 5, we just validated our closure by means of numerical results and

comparisons, and we leave to possible future studies the possibility to find an

exact way to derive it.

C.1 Derivation assuming axial exponential depen-

dence

In this section we tried to derive the reduced set of equations (5.11) rigorously

in the case of a monopolar vortex. The derivation is based on the assumption

of an exponential dependence of the unknowns along the axial coordinate; in

particular

u =
[
u(r, θ, t)r̂ + v(r, θ, t)θ̂ + w(r, θ, t)ẑ

]
exp[α(r)(z − h0(r))], (C.1a)

p = h(r, θ, t) exp[α(r)(z − h0(r))], (C.1b)

with α(r) being a generic function of r to be determined. Notice that, un-

der the functional form written above, the dynamic boundary condition for

the pressure is automatically satisfied. Substituting into the dimensionless
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linearized Euler equations and dropping the common exponential term yields

Dtu− 2FΩ0v +
∂h

∂r
+ α′(z − h0)h− αh′0h = 0, (C.2a)

Dtv + FΓ0u+
1

r

∂h

∂θ
= 0, (C.2b)

Dtw + αh = 0, (C.2c)

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+ α(w − h′0u) + α′(z − h0)u = 0, (C.2d)

together with the free surface boundary condition that now simplifies into

w − h′0u = Dth. (C.3)

Now, as the unknowns u, v, w, h do not depend on the axial coordinate, the

only possibility for system (C.2) to be valid is that α′ = 0 ⇒ α(r) = const. =

k. In such case, we obtain five equations in the five unknowns u, v, w, h, k:

Dtu− 2FΩ0v +
∂h

∂r
− kh′0h = 0, (C.4a)

Dtv + FΓ0u+
1

r

∂h

∂θ
= 0, (C.4b)

Dtw + kh = 0, (C.4c)

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+ k(w − h′0u) = 0, (C.4d)

w − h′0u = Dth. (C.4e)

At this point, however, we stop our further computations as our numerics

showed that actually α(r) is not a constant, but varies in r, as can be seen in

figure C.1. In particular, we plot the following quantities in modulus:

∂zur
ur

∣∣∣∣
h0

,
∂zuz
uz

∣∣∣∣
h0

,
∂zp

p

∣∣∣∣
h0

. (C.5)

The figure shows that all the three quantities in C.5 have—net of numerical

resolution errors—the same trend of along the free surface; this is indeed a

measure of α(r). However, this is not constant, hence contradicts the hypoth-

esis made at the beginning.

C.2 Derivation by means of Laplace transform

Let us define the shifted coordinate

ξ = h0(r)− z, (C.6)
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Figure C.1: Trend of the modulus the three quantities appearing in (C.5) as
function of the radial coordinate. The mode used to plot these graphs have
been computed for m = 7 and F = 0.5.

so that the free surface is now located at ξ = 0, and when z → −∞ ξ → ∞.

Let the velocity and pressure fields vary with ξ according to

u = u(r, θ, ξ, t), p = p(r, θ, ξ, t). (C.7)

The linearized Euler differential problem becomes

Dtur − 2FΩ0uθ +
∂p

∂r
+ h′0

∂p

∂ξ
= 0, (C.8a)

Dtuθ − 2FΓ0ur +
1

r

∂p

∂θ
= 0, (C.8b)

Dtuz −
∂p

∂ξ
= 0, (C.8c)

1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+ h′0
∂ur
∂ξ

− ∂uz
∂ξ

= 0, (C.8d)

Dtp+ h′0ur − uz = 0, on ξ = 0, (C.8e)

plus a decay condition as ξ → ∞. Firstly we deal with the continuity equation;

in particular we add and subtract the quantity Dt
∂p
∂ξ . Hence, we get

1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

−Dt
∂p

∂ξ
+

[
Dt
∂p

∂ξ
+ h′0

∂ur
∂ξ

− ∂uz
∂ξ

]
= 0. (C.9)
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Now, let us define a functional ψ[ur, uz, p], such that

ψ[ur, uz, p](r, θ, ξ, t) = Dtp+ h′0ur − uz. (C.10)

It is clear that due to the free surface boundary condition ψ(r, θ, 0, t) = 0.

At this point, let us introduce the Laplace transform; for any function f =

f(r, θ, ξ, t), its Laplace transform along the axial direction is given by

f̂(r, θ, s, t) = L[f ] =
∫ ∞

0
f(r, θ, ξ, t) exp(−sξ)dξ. (C.11)

Thus, by taking the Laplace transform of the Euler equations we obtain

Dtûr − 2FΩ0ûθ +
∂p̂

∂r
+ h′0 (sp̂− p|0) = 0, (C.12a)

Dtûθ + FΓ0ûr +
1

r

∂p̂

∂θ
= 0, (C.12b)

Dtûz − (sp̂− p|0) = 0, (C.12c)

1

r

∂

∂r
(rûr) +

1

r

∂ûθ
∂θ

−Dt (sp̂− p|0) + L
[
∂ψ

∂ξ

]
= 0, (C.12d)

being L
[
∂ψ
∂ξ

]
the Laplace transform of the derivative of the functional with

respect to ξ. In particular, we have that

L
[
∂ψ

∂ξ

]
= sψ̂ − ψ|0 = sψ̂. (C.13)

So, by inserting this expression into the previous equations and exploiting the

term sp̂− p|0 as function of ûz, we get

Dtûr − 2FΩ0ûθ +
∂p̂

∂r
+ h′0Dtûz, (C.14a)

Dtûθ + FΓ0ûr +
1

r

∂p̂

∂θ
= 0, (C.14b)

1

r

∂

∂r
(rûr) +

1

r

∂ûθ
∂θ

−D2
t ûz + sψ̂ = 0. (C.14c)

In order to obtain our final system of equations (5.11) we would need to assume

that ψ̂ = 0. However, this is not true in principle so we do not have enough

arguments to make this assumption. Indeed, we started with the hypothesis

that the unknowns vary exponentially in ξ (given implicitly by the Laplace

transformation) and came to another assumption that ψ̂ = 0. Hence, even

by using the Laplace transform method we are not able to justify our closure

model.
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C.3 Derivation through the method of Multiple Scales

Let us start with the linearized Euler equations:

Dtur − 2FΩ0(r)uθ +
∂p

∂r
= 0, (C.15a)

Dtuθ + Fξ0(r)ur +
1

r

∂p

∂θ
= 0, (C.15b)

Dtuz +
∂p

∂z
= 0, (C.15c)

1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0, (C.15d)

Let us define a slow axial variable: ξ = ϵ(z − h0(r)), with ϵ ≪ 1. Then, we

look for a solution in the following form

ur(r, θ, z, t) = ũr(r, θ, ξ, t)e
k(r)(z−h0(r)),

uθ(r, θ, z, t) = ũθ(r, θ, ξ, t)e
k(r)(z−h0(r)),

uz(r, θ, z, t) = ũz(r, θ, ξ, t)e
k(r)(z−h0(r)),

p(r, θ, z, t) = p̃(r, θ, ξ, t)ek(r)(z−h0(r)),

(C.16)

with k(r) a function to be determined as well. Plugging the ansatz above into

the equations, we obtain

Dtũr − 2FΩ0(r)ũθ +
∂p̃

∂r
− h′0(r)k(r)p̃− ϵh′0(r)

∂p̃

∂ξ
+ k′(r)(z − h0(r))p̃ = 0,

(C.17a)

Dtũθ + Fξ0(r)ũr +
1

r

∂p̃

∂θ
= 0, (C.17b)

Dtũz + ϵ
∂p̃

∂z
+ k(r)p̃ = 0, (C.17c)

1

r

∂

∂r
(rũr) +

1

r

∂ũθ
∂θ

+ k(r)(ũz − h′0(r)ũr) + ϵ
(∂ũz
∂ξ

− h′0(r)
∂ũr
∂ξ

)
+ k′(r)(z − h0(r))ũr = 0,

(C.17d)

Now, z − h0(r) =
ξ
ϵ , so the previous system can be written entirely in terms

of ξ as

Dtũr − 2FΩ0(r)ũθ +
∂p̃

∂r
− h′0(r)k(r)p̃− ϵh′0(r)

∂p̃

∂ξ
+
k′(r)

ϵ
ξp̃ = 0, (C.18a)

Dtũθ + Fξ0(r)ũr +
1

r

∂p̃

∂θ
= 0, (C.18b)

Dtũz + ϵ
∂p̃

∂z
+ k(r)p̃ = 0, (C.18c)

1

r

∂

∂r
(rũr) +

1

r

∂ũθ
∂θ

+ k(r)(ũz − h′0(r)ũr) + ϵ
(∂ũz
∂ξ

− h′0(r)
∂ũr
∂ξ

)
+
k′(r)

ϵ
ξũr = 0.

(C.18d)
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with the boundary condition on the free surface

ũz = Dtp̃+ h′0(r)ũr, on ξ = 0. (C.19)

We proceed by making the formal expansion in powers of ϵ:

ũr = ũr,0 + ϵũr,1 +O(ϵ2),

ũθ = ũθ,0 + ϵũθ,1 +O(ϵ2),

ũz = ũz,0 + ϵũz,1 +O(ϵ2),

p̃ = p̃0 + ϵp̃1 +O(ϵ2),

k(r) = k0(r) + ϵk1(r) +O(ϵ2).

(C.20)

Collecting terms with the same power of ϵ we get the following systems cascade:

• ϵ−1:

k′0(r)ξp̃0 = 0,

k′0(r)ξũr,0 = 0,
(C.21)

which returns k0(r) = const. = k̄0.

• ϵ0:

Dtũr,0 − 2FΩ0(r)ũθ,0 +
∂p̃0
∂r

− k̄0h
′
0(r)p̃0 + ξk′1(r)p̃0 = 0,

Dtũθ,0 + Fξ0(r)ũr,0 +
1

r

∂p̃0
∂θ

= 0,

Dtũz,0 + k̄0p̃0 = 0,

1

r

∂

∂r
(rũr,0) +

1

r

∂ũθ,0
∂θ

+ k̄0(ũz,0 − h′0(r)ũr,0) + ξk′1(r)ũr,0 = 0,

(C.22)

From the set of equations (C.22) it has to be k′1(r) = 0 in order it to be

uniformly valid in ξ ∈ (−∞, 0). However, such a condition leads back to

the interruption made in section C.1 of the present appendix, therefore we

conclude here a justification based on the Multiple Scales approach.
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